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A Doubly Asymptotic,
Nonreflecting Boundary for
Ground-Shock Analysis'

I. C. Mathews?

Consultant.
T. L. Geers? This paper desribes the formulation and implementation of a nonreflecting boun-
o dary for use with existing finite-element codes to perform nonlinear ground-shock
FeIIgA\:nAaSg:Aré analyses of buried structures. The boundary is based on a first-order doubly asymp-

totic approximation (DAA ;) for disturbances propagating outward from a selected
portion of the soil medium surrounding the structure of interest. The resulting set of
Sfirst-order ordinary differential equations is then combined with the second-order
equations of motion for the finite-element model so as to facilitate solution by a
staggered solution procedure. This procedure is shown to be computationally stable
as long as the time increment is smaller than a limiting value based on the finite-
element mass matrix and the DAA-boundary stiffness matrix. Computational
results produced by the boundary are compared with exact results for linear

Applied Mechanics Laboratory,
Lockheed Palo Alto Research Laboratory,
Palo Alto, CA 94304

canonical problems pertaining to infinite-cylindrical and spherical shells.

1 Introduction

The primary objective of this effort has been the implemen-
tation of a nonreflecting boundary for use with existing finite-
element codes to perform nonlinear ground-shock analyses of
buried structures. This boundary is based on the first-order
doubly asymptotic approximation (DAA,) for elastodynamic
scattering (Geers and Yen, 1981; Underwood and Geers,
1981). In addition, a staggered solution procedure is utilized to
partition the global equations in order to achieve both com-
putational efficiency and software modularity (Felippa and
Park, 1980).

This work extends that of Underwood and Geers (1981) for
linear ground-shock problems, wherein the DAA surface is
placed on the surface of the buried structure. Here, the DAA
surface is moved some distance out from the surface of the
structure, enclosing both the structure and a portion of the
surrounding soil medium, which may be treated with
nonlinear finite elements. Other extensions include formula-
tion and implementation for general two-dimensional and
three-dimensional problems, improved discretization of the
DAA surface with higher-order interpolation functions, and
utilization of a conditionally stable staggered solution
procedure.

It is important to differentiate between doubly asymptotic
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2Currently Lecturer, Department of Aeronautics, Imperial College, London
SW7 2BY. .
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approximations, which address quasistatic and wave-
propagation effects simultaneously, and singly asymptotic ap-
proximations, which address these effects separately (see, e.g.,
various papers in Kalinowski, ed., 1981, Datta, ed., 1982, and
Cohen and Jennings, 1983). For example, representation of
the external medium by an elastic foundation, which may be
quite satisfactory at low frequencies, does not account, at
higher frequencies, for energy dissipation through outward
propagation of scattered waves. On the other hand, represen-
tation of the external medium by a viscous boundary, which
may be quite satisfactory for wave-propagation problems,
does not provide elastic restoring forces in the static limit.

A response-averaging method originally proposed by Smith
(1974) and extended by Cundall et al. (1978) also fails in the
static limit. For example, consider the response of a rigid
structure surrounded by an infinite, linear-elastic medium to
an internal, quasi-static point force. A computational model
for this problem might consist of the rigid structure surround-
ed by a portion of the medium enclosed by a nonreflecting
boundary. If this boundary is that of Smith, the total response
of the structure is the average of two responses, one associated
with the structure and bounded portion of medium enclosed
by a rigid boundary, and the other associated with the struc-
ture and bounded portion of medium floating freely in space.
Unfortunately, the latter response grows indefinitely in the
static limit because the freely floating system is not in static
equilibrium. In contrast, doubly asymptotic approximations
approach exactness in the static limit.

2 Governing Equations

This section presents the governing equations for the finite-
element (FE) model of the structure along with a portion of
the surrounding soil medium, and for the boundary-element
model (BE) of the nonreflecting DAA surface. These equa-

SEPTEMBER 1987, Vol. 54 / 489

t©1987 b
€or

Cop¥r®hstl;vls%e http://www.asme.org/terms/Terms_Use.cfm



tions are then partitioned, and a staggered-solution procedure
is introduced to solve for transient response. Throughout the
development, the dependence of excitation and response
quantities on time is implicit.

2.1 Finite-Element/Boundary-Element Model. Let x be
the computational vector of displacement response in global
coordinates for the FE model of the structure and a portion of
surrounding medium. The governing equations for the finite-
element model are then (see, e.g., Zienkiewicz, 1977)

MX+Dx+Kx=f,+f; 2.1
where M, D, and K are the mass, damping, and stiffness
matrices, respectively, for the FE model, f, is the computa-
tional vector of external medium forces imposed by the DAA
surface, and f; is the vector of internal nonlinear forces; as
usual, a dot denotes differentiation in time. Compatibility of
forces and displacements at the DAA surface may be ex-
pressed as (Underwood and Geers, 1981)

f,=—-Gg

u=G’x
where the superscript ¢ denotes transpose, where g and u are
the global force and displacement vectors, respectively, for the
BE model of the DAA surface, and where G is the force-
transformation matrix when moving from BE to FE
coordinates.

Now the force vector g and displacement vector u may be
decomposed into incident-wave and scattered-wave com-
ponents as

2.2)

g=8r+8s

u=u; + Ug
where g; is the known force vector associated with a free-field
incident wave and gg is the unknown force vector associated
with the wave scattered by the structure. It is worth noting that
this dual decomposition does not require constitutive linearity
of the medium to be valid, for g and ug may each be viewed
as merely the difference between two vectors, one obtaining
with the structure absent and the other obtaining with the
structure present.

(2.3)

2.2 Doubly Asymptotic Approximation. A first-order
DAA is used here to relate the scattered-force vector gy and
the scattered-displacement vector ug (Geers and Yen, 1981;
Underwood and Geers, 1981). this approximation approaches
exactness in both the high and low-frequency limits, and ef-
fects a smooth transition between. The development of DAA
for a linear, isotropic external medium proceeds as follows.

At high frequencies, the geometrical vector of scattered-
wave surface tractions for the DAA surface corresponding to
normal and tangential motions of that surface is given by

ts/ (p)= Pm Cm us, (p) (24)
where p denotes a point on the surface, p,, is the mass density
of the medium, and C,, is the diagonal sound-speed matrix
corresponding to #/, which is geometrical vector of normal
and tangential scattered-wave velocities. For the component
of #! normal to the DAA surface, the corresponding matrix
component is the dilatational velocity, while for each compo-
nent of #/ tantential to the DAA surface, the corresponding
matrix component is the shear velocity.

Now the local-coordinate vectors of equation (2.4) may be
transformed into global-coordinate vectors as

u;(p) =Q(p)uy(p), t(p)=QP)L(p) 2.5
to obtain, inasmuch as Q~! = ', where the superscripts — 1
and ¢ denote inverse and transpose, respectively,

L (p)=Q" (1) CnQ(P) s (D) 2.6)

Hence boundary-element discretization of u; as (see, e.g., .

Zienkiewicz, 1977)

490/ Vol. 54, SEPTEMBER 1987

u;(Py=N(p) wu, @7

where N (p) is a matrix of shape-functions and u, is a vector
of displacement degrees of freedom, and defintion of the high-
frequency scattered-wave force vector as

gi= [N oras eX)
yield, for high-frequency motions, '
g!=D 2.9
in which
Dm - SNrQ’memQ N dS (2.10

At low frequenczes the computational vector for scattered-
wave forces is given by the quasi-static relation

2.11)

where K, is a full, nonsymmetric stiffness matrix for the
boundary-element mesh, whose construction is described in
the next section.

Finally, the first-order doubly asymptotic approximation
DAA, is formed by the superposition of g/ and g/ to obtain

gS = D”luS + Km uS (2' 12)

It is clear that, at high frequencies where i, >> uy, this equa-
tion approaches (2.9), and that, at low frequencies where
u, >> i, it approaches equation (2.11); hence equation (2.12)
is doubly asymptotic. At intermediate frequencies, equation
(2.12) constitutes an approximation whose accuracy may be
explored by solving canonical steady-state problems; this has,
in fact, been done for an acoustic medium by Geers (1978).
Unfortunately such explorations have not proven very useful
in assessing DAA performance in transient problems because
the frequency content of the excitation dictates so strongly the
frequency content of the response. Much more useful has been
the comparison of DAA and exact solutions for canonical
transient problems, as is done later in this paper.

Now the assumption embodied in DAA, of a constitutively
linear medium for the scattered wave is justified within the
framework of classical plasticity theory if the material point
for every exterior location, i.e., every location in the medium
outside the DAA surface, remains within its corresponding
yield surface when and after the scattered wave arrives at the
DAA surface. For incident waves with sufficiently rapid decay
rates and for a DAA surface sufficiently removed from the
surface of the structure, the scattered wave causes minor per-
turbations about an elastic state at each: exterior. location,
thereby satisfying the preceding condition.

The assumption of material isotropy outside the DAA sur-
face cannot be rigorously maintained if the material has suf-
fered plastic excursions in response to. the incident wave.
However, it is likely that the resulting anisotropy is no more
pronounced than that characterizing the ambient state, which
is generally uncertain in practical cases. Hence, while an exten-
sion to material orthotropy may be theoretically possible, it
may not be worth the trouble.

g Km ug

2.3 Response Equations. Introduction of the first of equa-
tions (2.2) and (2.3) into (2.1) and of the second of equations
(2.2) and (2.3) into (2.12) yields the doubly asymptotic equa-
tions of motion

MX+DXx+Kx=— i
5 s 5 G{g1+gs}+fl (213)
gS=Dm {Gtx—ul} +Km {er_ul}
which may be numerically integrated in time to obtain the
solution vectors x and gs. Because M;, D,, and K; are typically
large and banded, while K, is relatively small and full, it is not
computationally practical to introduce the second of these
equations into the first to eliminate gg.
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However, because D, is banded and multiplies the highest-
derivative terms in the second of equations (2.13), it is advan-
tageous to apply the technique of augmentation (Park et al.,
1977), which here merely involves introducing the second of
equations (2.13) into the first, moving the term containing D,
to the left side of the resulting set of equations, and keeping
D K,,G'x on the right. This yields the augmented doubly
asymptotic equations of motion .

M,X + [D; + GD,,,G'Ix + K;x = — Gg,; + GD 1,
+GK ll1+f,'—GKmGtx 2.14)

which are highly amenable to stdggered solution, as discussed
in Section 4.

m

3 Medium Stiffness Matrix

This section describes the construction of the boundary-
element stiffness matrix that relates the scattered-wave force
and displacement vectors at low frequencies. The development
is based on Somigliana’s identities, which derive from Betti’s
reciprical work theorems and Kelvin’s problem of a point load
in an infinite elastic medium (see, e.g., Kupradze, 1964; Rizzo,
1967; Cruse, 1969; Lachat and Watson, 1976).

3.1 Elastostatic Boundary-Integral Equations. The sur-
" face behavior of an elastic medium, whether occupying an ex-
terior or interior region, may be expressed as (Rizzo, 1967;
Cruse, 1969)

cwu)+ | Twau@d,=| veouadr, 61

where p is a point on the boundary and ¢ is the integration
variable, and where u(p) and ¢(p) ared X 1 vectors (d = 2 or
3) of medium displacements and tractions in Cartesian coor-
dinates on the boundary at p. The elements T; (p, g) and
U;(p, q) of the d X d matrices T(p, g) and U(p, q) are fun-
damental solutions for the tractions and displacements at a
location q in the direction i due to a point load at location p in
direction j. With §; as the Kronecker symbol, each element of
the matrix c is defined as

¢ (p) =", 3.2)
if there exists a continuous tangent at p, or, with I, as the sur-
face of a sphere of radius e centered at p,

() =lim | Ty(p.a)r, (3.9
€~ €
if the tangent is not continuous.
Now an element of the two-dimensional displacement-
kernel matrix U(p, q) for plane-strain problems is given by
(3.4)

U (p.q) = G[(3_4V)ln(r)6ij_r,ir,j]

-1
8mw(1—»)
where G and v are the shear modulus and Poisson’s ratio,
respectively, and r = r(p, g) is the distance between the load
point p and the field point g; the derivatives are taken with
reference to the coordinates of g. With p; and ¢, as the coor-
dinates of p and g, respectively,

ri=q;—D;

r=(rr)* (3.5)
4P

st r

In contrast, an element of the three-dimensional displacement-
kernel matrix U(p, q) is given by

[B—4r)o,+r;r ] 3.6)

1
Ui (P0) =i nGr

Journal of Applied Mechanics

Finally, an element of the traction-kernel matrix T(p, g) for
both two and three-dimensional problems is given by

-1
m[ (1 —=20)8;+Br,r I n;
—(1“2V)(r,,-nj——r,jn,.)] (3.7

where n; and n; are direction-cosines for the surface normal at
q. The two and three-dimensional forms are explicitly ob-
tained by letting « = 1, 2 and 8 = 2, 3, respectively,

T;(p,q) = yi

. 3.2 Discretization. Numerical solution of the integral
equation (3.1) requires discretization of the DAA surface,
over each boundary element of which the displacement and
traction vectors are approximated. The curved isoparametric
elements of finite-element theory offer both the generality and
the accuracy needed for this purpose. With this approach, the
global Cartesian coordinates of any point in an element are
taken as related to the nodal coordinates by (cf (2.7))

x(p)=N(p) x

i.e., the same shape functions are used to approximate element
geometry, displacements, and tractions. This allows inter-
polated displacements and tractions along the DAA curve in
two-dimensional space to be integrated over a normalized
length in £-coordinate space, and similar quantities over the
DAA surface in three-dimensional space to be integrated over
a standard 2 x 2 normalized square in £,,£,-coordinate space.
On an element-by-element basis, equation (3.8) becomes

3.8)

X ()= ) Ne(&) x; 3.9
k

where x¢ (£¢) is the d X 1 vector of Cartesian coordinates of a
point in element e, the N, (£°) are the element shape func-
tions, and x§ is the d X 1 vector of Cartesian coordinates of
the kth element node; also, £¢ = £ in 2-D, but £¢ = £¢, £5in
3-D. The elements used in this study are the three-noded,
quadratic, curved element for 2-D anaysis and the eight-
noded, quadratic, serendipity element for 3-D analysis. The
shape functions for the three-noded quadratic element are

Ny=%g(E-1)
N,=1-§2 (3.10)
Ny=1E(E+])

where £ € [— 1, 1]; the nodes are located at ¢ = — 1,0, 1. The

shape functions for the eight-noded quadratic element are

Ny=—-Y(-E)1-E)A+E +£)
Ny="(1-ED(1 - &)

Ny=Y%1+E)A-E)E —&—1)
Ny=%(1+§)1-£)

Ns=V(Q+E)A+E)E +5—-1
Neg=1(1-ED)(1+4,)

Ny=Ya(l=g)A+E)(— & +&,—-1)

Ny=Y(1~£)(1-£3)
where £, € [~ 1, 1]and £, € [—1, 1], and all nodes lie at the in-

tersections of the §;, = —1,0, 1 and the £, = —1, 0, 1 lines,
except at 0, 0, where there is no node.

(3.11)

3.3 Matrix Assembly. With DAA-surface coordinates,
displacements and tractions approximated as

x(p)=N(p) x, u(p)=N(p) u, ((p)=N(p)t
equation (3.1) may be expressed at a node P as

(3.12)
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E

c(Pyu(P)+ ), SF

e=1""e

T(P.qlte N (E9)ugJ (£°)dEe
( qlfl); (£ ug (2)2(3.13)

E

-1,

U(PqlED ) N (BT (E°)dge

e=1 e k
where E is the total number of elements on the DAA surface
and J(£¢) is the Jacobian for x®:£¢ transformation; also, d§€
= df¢ in 2-D, but di¢ = df$dE§ in 3-D. Finally, coalescence
of element contributions at common nodes is implicit in
(3.13). The numerical techniques used to evaluate the integrals
in this equation are discussed in Takahasi and Mori (1976),
Burton (1976), Lachat and Watson (1976), and Mathews and
Geers (1985).

The enforcement of equation (3.13) at every node on the
DAA surface yields a set of simultaneous algebraic equations
that can be expressed in the form

Au=Bt (3.14)
t=B-'Au (3.15)

Now the nodal force vector g corresponding to a traction
distribution ¢ on the DAA surface is given by

so that

g= SF N'(p) t(p) dr (3.16)

Introduction of the third of equations (3.12) and of (3.15) into
this relation then yields
3.17)

where the generally nonsymmetric medium stiffness matrix
K,, is given by

¢g=K, u

K,,,=[Sr N’NaT]B“A (3.18)
A symmetric form may be obtained as
K, ="K, +K.,) (3.19)

which is identical to that derived from energy considerations
(Zienkiewicz et al., 1977). As indicated in the Appendix,
however, the use of K,, generally yields numerical results in-
ferior to those produced by K,,,.

4 Staggered Solution Procedure

In the interest of computational efficiency, the augmented
doubly asymptotic equations of motion given by equation
(2.14) are solved with a staggered solution procedure. The pro-
cedure is conditionally stable, requiring that the time incre-
ment be smaller than the shortest medium-boundary period
divided by «. This shortest period may be obtained by deter-
mining the highest natural frequency for the eigenproblem

o*Mx=G K,,G'x .1

In cases where the surrounding soil does not appreciably stif-
fen the embedded structure beyond its inherent level, the
highest medium-boundary frequency is substantially lower
than the highest natural frequency characterizing the structure
itself, thereby allowing the analyst to carry out stable calcula-
tions with a relatively large time increment. The remainder of
this section describes the staggered solution procedure and the
stability analysis that leads to equation (4.1).

4.1 Solution Algorithm. To construct the staggered solu-
tion procedure for equation (2.14), those equations are ex-
pressed at mid-step as

4.2)
where the time step n = ¢/At, in which ¢ and At are time and
Jixed time increment, respectivley, and where the total damp-

ing matrix Dy, the medium-boundary stiffness matrix K,,,
and the rotal force vector f are given by

MX, 12+ DX 10 T KX =Fi 12 — KXo 10

492/ Vol. 54, SEPTEMBER 1987

D;=D,+G D,G’
I(Mz(; KmG’
f=-Gg,+GD,u;+G K, u;+{;

The integration algorithm utilized is the trapezoidal rule (see,
e.g., Henrici, 1962), for which

Xpe1/2~ (Xps12 —X,)/8

4.3)

in+l/2:(i(n+l/2_i(n)/6 (4.4)

Xpe1 = 2Xn+ 172 Xy
Xn+ 1= 27.‘n+ 172 Xn
where § = At¢/2. Introduction of the first and then the last of
these into the third yields the standard form
At .
xn+l=xn+7(xn+l+xn) (45)
Now the first two of equations (4.4) are introduced into the
left side of equation (4.2) and x,,, |, on the right side of equa-
tion (4.2) is predicted as X%, ,, to obtain the set of algebraic
equations

EX, 1n=€1n—EXi 4.6)
where
E, =M, + 6D+ 62K,
E, =K, @.7)

€hr12= 62fn+ 12t M, (x, + 6)-(11) +6D7x,

Finally, the prediction xZ,,,, is based on the one-term
extrapolation

4.8)
The preceding staggered solution procedure leads to the

following computational sequence to determine system
response at time step n + 1:

(a) fn+l/2=(fn+fn+1)/2

XE =X,

(b) en+1/2=62fn+1/2'["Ms(xn_*—(;bkn) +6DTxn
(¢) x5 =%,
(d) Xpr12=Ei e 12— E X000l

(e} Xpy1=2X,112 X%,

() Xu12=Cni12—X0) /0

(&) Kpy1n=M;'(Epi12 D0, 12— KX,y i102)
(n
(i) X1 =2%p, 10— Xy

where the total stiffness matrix K; = K; + K,,. To improve
accuracy, an iterative loop has been introduced at (d),
wherein x2,,,, on the right is corrected to the previously
calculated value of x,,,; two iterations generally produce
satisfactory convergence. The calculation starts at n = 0 with
X, = Xo = 0.

4.2 Stability Analysis. Park (1980) has performed a
stability analysis of a generalized form of the staggered solu-
tion procedure just described. The result is that the procedure
is computationally stable if no root of the characteristic
équation

det[[z2(M, — 6°K,,) + 26D+ 82K, 11 =0

Xpi12 =X, + 0%, 0 10

(4.9)

has a positive real part. Verification. of this condition is
relatively straightforward when all of the matrices in (4.9) are
symmetric; it is generally quite difficult when one or more is
not. Unfortunately, as discussed in Section 3, the medium
stiffness matrix K,, is nonsymmetric, which pollutes K,, and
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K;. Fortunately, however, K,, constitutes a small perturba-
tion of K,,, which is symmetric; hence it is appropriate to con-
sider the characteristic equation
det[z2(M, — 82K ,;) + 28D + 62K, =0
where K, = G K,,G' and Kr = K; + Ky,

As discussed on page 255 of Bellman (1970), no root of
equation (4.10) has a positive real part if (M, 521(M), D,
and KT are all non-negative definite and either (M; ~ 62KM)
or K is positive definite. On physical grounds, D and K, are
both non-negative definite, but generally not positive definite.
However, inasmuch as M; is positive definite, (M, — §° KM) is
positive definite if & is sufficiently small. The degree of
smallness defines the stability requirement, as discussed next.

Consider the following first eigenproblem:

Ox=Xx 4.11)

where Q = M;‘ﬁM. This problem yields nonnegative real
eigenvalues and real eigenvectors. These eigenvectors may be
assembled into a modal transformation matrix ¥ that
diagonalizes Q) as ¥' oV = O and normalizes as ¥'¥ = I, the
identity matrix. Hence the introduction into equation (4.11) of
a transformation from physical to generalized coordinates as x
= Yy and subsequent premultiplication through by ¥’ yield
the diagonal eigenvalue matrix

(4.10)

Ag=Q¢ (4.12)
Consider next the following second eigenproblem:
K, x=\M_x (4.13)

whose eigenvalues and eigenvectors are the same as those of
the first eigenproblem. Hence the transformation from
physical to generalized coordinates and premultiplication
through by ¥/ yields

(M) 1K,

Axme= 4.14)

where M? = ¥'M,¥ and K¢, =
identical to Ag.
Finally, consider the following third eigenproblem:
(M, — 8K ,)x=\x (4.15)

Transformation and premultiplication through as before
yields

WKy ¥ Ak is, of course,

Ap_x =M¢—52Kg,
=M{[1-5*(MY) ~'Ki]
- Mg [I_5ZAK/M]
=MI[1-8%Ap]

4.16)

Hence the elgenvalues of M, —~ 62KM) are all positive, and
thus (M, — 62KM) is positive definite, if 52 times the largest
cigenvalue AJ™ is less than unity. With A§* = (w§*)?2, this
yields the stability requirement

At< max

wQ

which is stated in slightly different terms at the beginning of
this section,

Establishment of the stability requirement (4.17) for a sym-
metric medium stiffness matrix facilitates the estimation of a
similar requirement for a nonsymmetric one. Clearly, no root
of equation (4.9) has a-positive real part if § is vanishingly
small, as M is symmetric and positive definite, and D.; is sym-
metric and nonnegative definite. Also, on physical grounds,
the eigenvalues of (M) ~! K,, must be real and nonnegative.
Finally, the eigenvalues for the three eigenproblems above dif-
fer only slightly from their counterparts when K,, is replaced
by K,, because K,, constitutes a small perturbation of K,,.
Hence, as § is increased from zero, all the roots of equation
(4.9) contain negative real parts until the stability requirement

4.17)
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Fig. 1 Geometry and notation for canonical problems

(4.17) is approached, where wd™ now pertains to the use of

e
5 Implementation and Computation

This section describes the techniques used to implement in
software the approach delineated above, and presents
numerical results generated by that software. Modern
software-engineering techniques are used (Felippa, 1981), in
order to facilitate extension to large-scale production analysis.
The numerical results pertain to linear canonical problems in-
volving plane, dilatational step-waves that envelope infinite-
cylindrical and spherical shells (Fig. 1). These problems
possess known analytical solutions.

5.1 Software Implementation. The approach described in
Sections 2, 3, and 4 is embodied in an assembly of four soft-
ware entities:

1. Structural Matrix Generator. The structural mass and
stiffness matrices, M, and K; in equation (2.14), are generated
by the finite-element code DIAL (Ferguson and Cyr, 1984); D
is neglected. The structural matrices and related data are read
into a NICE global database (Felippa, 1982).

2. Medium Matrix Generator. The medium damping and
stiffness matrices, D,, and K, in equation (2.14), are
generated by software developed as part of this study in the
manner described above; the force-transformation matrix G is
constructed as a correspondence table. These data are read in-
to the NICE global database.

3. Incident Field Generator. The incident-wave displace-
ment, velocity and force vectors, u;, 4;, and g; in equation
(2.14) are also generated by software developed as part of this
study in the manner described below; as these are time-
dependent vectors, they are calculated dynamically as the
calculation proceeds. f; is taken as zero.

4. Staggered Solution Procedure. The solution algorithm
described in Subsection 4.1 is implemented as a NICE pro-
cedure using a command language interpreter (Felippa, 1983).
The matrix operations embedded in the algorithm are per-
formed with a matrix utility processor for data in unblocked
skyline format (Felippa, 1978).

The FE and BE models are constructed independently,
although the element grids match at their common boundary.
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Fig. 2 Displacement response histories for the infinite cylinderical
shell (DAA boundary on shell surface)

Fig. 3 Halt-model grid for the infinite cylinderical shell problem (finite
elements extending to r = 2a)

Geometrical symmetry is exploited in both canonical

problems.

5.2 Incident-Wave Vectors. A plane, dilational step-wave
characterized by a velocity jump ¥V, and propagating in the x,;
direction may be described in terms of a scalar potential as

6.1

|4
= ——2(cyt—x,—a)?H(cyt—x, —a)

2Cd
where c, is the dilatational speed in the elastic medium, H is
the Heaviside operator, and —a is the point on the x; axis
where the wave front is located at ¢+ = 0. The application of
classical continuum formulas (Achenbach, 1973) yields for the
components of the geometrial displacement and velocity vec-
tors for the incident wave

vV,
© (cyt—x,—aYH{c t—x,~a)
Ca (.2)
u,’ = 61" VOH(Cdt—Xl b a)

Hence the elements of the computational vectors u; and 1, are
given by equations (5.2) evaluated at the surface nodes.

Similarly, the components of the incident-wave stress tensor
and geometrical surface-traction vector are given by (Achen-
bach, 1973)

I
ui =dy;
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V,
of=—8; Cd" (N+2ub ;) H (cgt —x —a)

(5.3)
th =(T,-jn,~

where N\ and p are the Lamé constants and the n; are the
direction-cosines for the surface normal. Hence the computa-
tional vector g; is determined from equation (3.16).

5.3 Infinite Cylindrical Shell. The first canonical problem
is that of an infinite cylindrical shell embedded in an elastic
medium and excited by a transverse, plane, dilatational wave
(Garnet and Crouzet-Pascal, 1966). The parameter ratios for
this problem are E,/E,, = 2.5 (Young’s modulus), #/a = 0.01
(shell thickness-to-radius), p,/p, = 1.156 (mass density), »,,
= 0.25 and v, = 0.2 (Poisson’s); these pertain to a concrete
shell in slow granite. The duration of the rectangular incident-
wave pulse is ¢,t/a = 10. A curved, three-noded shell element
is used to model the shell, so that the FE/BE discretization
employs conforming elements.

The first computational model for this problem places the
DAA boundary directly on the shell in the manner of Under-
wood and Geers (1981). The use of six curved quadratic
clements over the half-model yields results that are virtually
identical to those of Underwood and Geers (1981), which were
generated with twenty linear elements over the half-model.
Figure 2 shows DAA' and exact displacement-response
histories; agreement is seen to be excellent.

Such agreement is not produced by singly asymptotic ap-
proximations.. The  elastic-foundation . approximation
generates response histories that oscillate markedly about the
corresponding exact responses and the viscous-boundary ap-
proximation generates response: histories that grossly exceed
their exact counterparts (Geers and Yen, 1981).

The second computational model introduces eight-noded
medium finite elements between the shell and the DAA boun-
dary, which is located one shell radius out from the shell sur-
face (Fig. 3). The displacement-response histories thus pro-

‘duced are shown in Fig. 4 as solid lines, along with their DAA

counterparts from Fig. 3, which are shown as dashed lines. It
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Fig. 5 Quarter-model grid for the spherical sheli problem (DAA boun-
dary on shell surface)
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Fig. 6 Displacement response histories for spherical shell (DAA boun-
dary on shell surface)

is seen that the use of medium finite elements degrades solu-
tion accuracy somewhat by introducing spurious oscillations
caused by ringing of the mesh. A third computational model,
which locates the DAA boundary three shell radii out from the
shell surface, yields results that are even more oscillatory,
although peak-tesponse values are still satisfactory.

5.4 Spherical Shell. The second canonical problem is that
of a spherical shell embedded in an elastic medium and excited
by a plane dilatational wave (Grafton and Fox, 1965; Geers
and Yen, 1981). The parameter ratios for this problem are the
same as those for the infinite cylindrical shell, and the dura-

Journal of Applied Mechanics

Fig. 7 Quarter-model grid for the spherical shell probiem (Finite
elements extending to r = 2a)

tion of the rectangular incident-wave pulse is also ¢,¢/a = 10,
An eight-noded Ahmad shell element is used to model the
shell, so that this FE/BE discretization also employs conform-
ing elements.

As previously, the first computational model for this pro-
blem places the DAA boundary directly on the shell; six eight-
noded quadratic elements are used over the quarter-model of
the shell (Fig. 5). DAA-based displacement-response histories
are compared with their exact counterparts in Fig. 6, the latter
having been generated in the manner of Geers and Yen (1981).
Here too, agreement is seen to be excellent; and, the singly
asymptotic approximations also fail, generating response
histories that exhibit behavior similar to that described above
for the infinite cylindrical shell.

The second computational model introduces twenty-noded
medium finite elements between the shell and the DAA boun-
dary, which is located one shell radius out from the shell sur-
face (Fig. 7). The displacement-response histories thus pro-
duced are shown in Fig. 8 as solid lines, along with their DAA
counterparts from Fig. 6, which are shown as dashed lines.
Here too, it is seen that the use of medium finite elements
degrades solution accuracy by introducing spurious oscilla-
tions caused by ringing of the mesh.

6 Conclusion

This paper has documented the formulation and implemen-
tation of a nonreflecting boundary for use with existing finite-
element codes to perform nonlinear ground-shock analyses of
buried structures. The boundary is based on a first-order
doubly asymptotic approxiation (DAA,) for disturbances pro-
pagating outward from a selected portion of the soil medium
surrounding the structure of interest. The resulting set of first-
order ordinary differential equations is then combined with
the second-order equations of motion for the finite-element
model so as to facilitate solution by a staggered solution pro-
cedure. This procedure is shown to be computatioally stable as
long as the time increment is smaller than a limiting value
based on the finite-element mass matrix and the DAA-
boundary stiffness matrix. Computational results produced by
the boundary are compared with exact results for linear
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curves: finite elements around shell; dashed curves: DAA boundary on
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canonical problems pertaining to infinite-cylindrical and
spherical shells.

From this study, the following observations may be made:
1. Doubly asymptotic approximations are clearly
superior to singly asymptotic approximations, the former in-
corporating both radiative energy dissipation and elastic
restoring forces, the latter accounting for only one or the
other.

2. While the medium damping matrix may be interpreted
in terms of local dashpots positioned on the DAA surface, the
medium stiffness matrix is not so easily regarded; attempts to
simplify the fully coupled nature of K,, merely degrade the
validity of low-frequency approximation.

3. Although it is tempting to use a symmetric medium
stiffness matrix in DAA computations, the resulting loss of ac-
curacy constitutes too high a price.

4. The computational stability requirement (4.17) is a
generous one when the soil is substantially softer than the
structural material; when this is not the case, however, more
efficient computations might be realized with an uncondi-
tionally stable staggered solution procedure, which is yet to be
developed.

5. The use of modern software-engineering techniques
greatly facilitates the implementation of methods for the
analysis of coupled systems.

6. The results for the linear canonical problems once again
demonstrate the difficulty of propagating a discontinuous
wave front through a finite-element grid and, in contrast, the
good performance of a boundary-element grid located directly
on the surface of the structure.
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ERROR IN CONSTITUENT FORCES GENERATED ON A SPHERICAL
CAVITY BY A UNIFORM IMPOSED DISPLACEMENT
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APPENDIX

Symmetric and Nonsymmetric Medium Stiffness
Matrices

The accuracy of symmetric and nonsymmetric medium
stiffness matrices is evaluated here by computing the nodal
forces generated by a uniform radial displacement applied to a
spherical cavity in an infinite elastic medium. The correct
nodal forces follow from the known traction solution
(Timoshenko and Goodier, 1951) and equation (3.16), the
nodal forces produced by the nonsymmetric stiffness matrix
follow from equation (3.17), and the nodal forces produced by
the symmetric stiffness matrix follow from equation (3.17)
with K,, replaced by K,,,. Figure 9 shows, for the discretization
of Fig. 5, computational error in nodal-force magnitudes com-
puted with the symmetric and nonsymmetric matrices; K,
clearly outperforms K,,. It should be noted that convergence
of the nodal forces generated by the symmetric medium matrix
K,, was obtained by successive mesh refinement.
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On'TensiIe Shock Waves in
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Rubber-Like Materials’

The problem of generation of one-dimensional tensile shock waves in rubber-like

materials is studied numerically and compared to the exact elastic nonlinear solution

Institute of Mathematics,
Academiei 14,
Bucharest, Romania

and the steady wave solution. It is shown that a rate-type semilinear visco-elastic
model can describe the steepening of the wave during its propagation and a
“thickness’’ of the wave is naturally incorporated. An energetic criterion for the

numerical stability is discussed. The numerical results point out the uncertainty (dif-
ficulty) one may encounter in measuring the dynamic Young’s modulus and
Maxwell-type viscosity coefficient.

1 Introduction

The main purpose of this work is to investigate the possibil-
ity of describing rubber-like materials by means of a rate-type
viscoelastic constitutive equation. In this sense, we try on one
hand to gain some insight in the way shock waves in nonlinear
elasticity could be ‘‘captured” by using a ‘‘smoothing”
Maxwell-type viscosity approach. On the other hand, we want
to see how the steepening of the tensile waves in rate type
viscoelasticity may take place when the equilibrium curve has
an upwards oriented concavity. We also .intend to test an
energetic condition for the numerical stability of the integra-
tion scheme, obtained under different -circumstances
(Mihailescu-Suliciu and Suliciu, 1985).

We do not claim to give here a precise constitutive equation
which could describe accurately the behavior of a certain
material under dynamic test conditions. However, for the pur-
pose of running the numerical experiments we did choose
from the experimental literature (Treloar, 1949; Bell, 1973) the
elastic (or equilibrium) stress-strain curve, the Young’s
modulus, etc., which are appropriate for a certain kind of
rubber.

Governing Equations.
motion of a body are

ov do de v
e =0, - g, M
il X ot X
where v=uv(X,f) is the particle velocity, o=0(X, ?), €=
€ (X, ) are the engineering stress and strain, respectively, and
p=const. >0 is the mass density in the reference configura-
tion; ¢ is the time coordinate and X is the space coordinate in
the reference configuration.

We shall complete the system (1) either by a nonlinear

elastic constitutive equation

The equations of one-dimensional

I This paper is dedicated to William F. Ames on the occasion of his 60th
Birthday.
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NAL OF APPLIED MECHANICS,
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10017, and will be accepted until two months after final publication of the paper
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Applied Mechanics Division, June 20, 1985, final revision, April 15, 1986.
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0=R(e)>0,R'(e) >0, R"(e) >0, eele, 6,1, 2)
or by a rate-type, viscoelastic constitutive equation
6—Eé=—k(oc—R(e)), eeley, 6], —o<a< o 3)

where 6=00/0t, é =0de/dt, k= const. >0 is called the Maxwell-
type viscosity coefficient or simply viscosity coefficient;
dimension (k) = dimension {(time)~'}. E=const.>0 is called
the dynamic Young’s modulus. The Newtonian viscosity coef-
ficient u is formally related to k& by u = E/k since if in (3) ¢/k is
neglected then o=R (€)+pué. But completing the system (1)
with such a constitutive equation, one obtains a semilinear
parabolic system of equations while the semilinear system (1)
and (3) preserves the hyperbolic character of the system (1)
and (2). Thus, by a Maxwell-type viscosity approach to a
nonlinear elastic problem, the hyperbolic character of the
governing system is preserved.

It is known that an initial or an initial and boundary value
problem for system (1) and (2) may, in general, lead to solu-
tions which involve shock waves after a finite interval of time
even if the data are continuous (or even C*).

One can think of the constitutive equation (3) as a better
model than the elastic one for the description of rubber
behavior in dynamic experiments. Then we have to determine
k (eventually as function of stress and strain) and E for each
kind of rubber.

On the other hand, as it was suggested by Mihailescu-Suliciu
and Suliciu (1985), if we are given an elastic nonlinear problem
which involves shock waves we can artificially build the con-
stitutive equation (3) taking a positive and large enough k and
an E > R’(e) on [e;, ¢,]. We add to the elastic initial condi-
tions for strain and particle velocity, the initial condition for

stress

0(X,0) =0, (X) =R (e(X,0)).

In this way, instead of the elastic nonlinear problem we get a
viscoelastic semilinear problem consisting of system (1) and (3)
and the initial and boundary data.

In the viscoelastic problem, continuous initial and boundary
data do not generate shock waves at any time. This means that
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Fig. 1 The characteristics plane for an elastic nonlinear solution in-

volving a shock wave

at a given spacial coordinate X where the elastic problem will
lead, at a time ¢;, to a jump of v and e, the viscoelastic prob-
lem must lead to a continuous but fast increase in time of v, ¢,
and ¢ and the increase is faster for larger & (if E is fixed).

Another purpose of this paper is to get some information on
the way shock waves can be “‘captured’’ and ‘‘shock struc-
ture’’ described by means of a Maxwell-type viscosity ap-
proach instead of a Newton-type viscosity approach.

On the Numerical Method and the Experimental Data. In
order to obtain numerical solutions, the method of
characteristics is often used for the initial and boundary value
problem for the system (1) and (3). We only go up to the se-
cond approximation in this method since it is known (see for
instance Rozhdestvensky and Yanenko, 1978) that, in general,
the higher order approximations do not improve the order of
accuracy over Mh?, where # is the time integration step and
M>0 is a constant.

For an isolated body problem in rate-type viscoelasticity
(i.e., for a problem in which the body does not exchange
energy with the surroundings) one can prove (Mihdilescu-

. Suliciu and Suliciu, 1985) using an energy estimate based on
the second law of thermodynamics that one gets numerical
stability if the time.integration step 4 is smaller than a deter-
mined value 4,,. For the initial and boundary value problem
for which the strain e (X,#) remains in the interval [e,, ¢,] we
have '

E—~R’
ER E @
—R’(e,) k

Another purpose of this work is to test numerically if condi-
tion (4) is sufficient for the numerical stability in a non-
isolated body problem. Such a problem is, for instance, that
of the motion of a semi-infinite body with prescribed one-end
particle velocity which will be considered here.

The elastic curve (2) which is the same as the equilibrium
curve of equation (3) is taken of the form

=R (e)=Aexp(Be), ecle),e;]. (5)

When

A=2.26x%10° dyne/cm?, B=0.34,

it gives a good fit to an experimentally reported curve for a
certain kind of rubber (Treloar 1949, Chapter 1, Section 1).
For the mass density (cf Treloar, 1949, Chapter IX, Section 3,
Fig. 69) we take

€,=3.5, =5.5 (6)

p=1 gramme/cm?, , @)

These experimental data seem also to agree with those dis-

cussed by Bell (1973, table 141, and Fig. 4.257 on p. 733).
For the same rubber for which (6) and (7) hold, the Young’s

modulus at zero stress and strain is experimentally found to be
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of order of magnitude 1 x 107 dyne/cm? (Treloar, Chapter I,
Section 1). Since we have

R'(¢)<E=1x10" dyne/cm? &)

we may take this value of E as the dynamic Young’s modulus.
The inequality (8) is essentially used in constructing the free
energy function compatible with the second law of ther-
modynamics for the constitutive equation (3) (see Mihdilescu-
Suliciu and Suliciu, 1985, and the literature quoted there).
Based on that energy the estimate (4) is derived.

The Initial and Boundary Value Problems. We choose a
continuous initial and boundary value problem similar to
Kolsky’s experiment, i.e.,

e(x,t)=¢,>0, v(X,00=0, o(X,00=R(e;), XZ0
—at, 05t=1¢,, a>0
v(0,1) =v, (1) = ®)
—aty=v,, 1>,

Due to the simple form of v, (#) we explicitly construct in Sec-
tion 2 the exact solution of the problem (1) + (2) + (9) for R (¢)
given by equation (5). In this solution a shock wave is
developed in a finite time from continuous data.

In Section 3 we find, by the method of characteristics the
numerical solution of the viscoelastic problem (1), (3), and (9)
and compare it with the exact elastic solution for different
viscosity coefficients.

2 A Nonlinear Elastic Solution Involving a Shock
Wave

We consider the problem consisting of equations (1), (5),
and (9) with p=1. This problem describes the motion of a
semi-infinite elastic nonlinear body initially at rest, with the
section X=0 subjected to a prescribed particle velocity (9).
For the purpose of our numerical experiments we need the ex-
act solution of the above problem. We construct this solution
by elementary methods (see for instance Rozhdestvensky and
Yanenko, 1978, Chapter 1 and Chapter IV) and we give it
below.

The strain at X=0 is

2

= In[(@Br/2+ C,)/NAB), for 7e[0,t,]
0,7)=é(r)=+ B (10)

E(t,)=¢€y>€, for 7>1¢,

where C, =V R’ (¢;). We obviously have é(7)¢e[e;, e,].

The curve OABS (see Fig. 1) separates the rest region from
the perturbed one. The straight line OA is a segment of the
characteristic line X'=C,¢. At the point

A= (X,t,)=(2CE/(aB),2C,/(aB)) an

the shock wave starts to develop. The parametric equation of
the shock wave AB is t=1(7), X =X(7), 7€[0,¢,] with
T(aB1/3+ C,/2)
C(r)=U(r) ’
TC(7)(U(1) —aB1/6 - C,/2)
C(r)~-U(1n)
for 7¢(0,2,1,

f(o)ztsa;(T): for TE(O,IO]

. . (12)
X(0) =X, X(1)=

H

where
C(1)=vVR'(é(7))=aB1/2+C,, 7€[0,t,]
' (13)
C(T)]

U =c,, U(T)=[CZ(T)—C12]/|:2In =2, 70t
1

Here C(7) and U(7) are the acceleration and skock wave
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Fig. 2 Particle velocity-time profiles at different cross sections for
several viscosity coefficients. The full line represents the exact elastic
solution, and the cross sections, where there are jumps, are mdlcated
by full arrows. Double dotted line (— " * —) is for k=64000 s™ ', dotted
fine — " —) is for k=32000 s 1, and crossed line (— x —) is for
k=5000s™"'. The numbers (0), (2), . .., (12) represent the arrival time in
millisec. at the corresponding cross sections computed from the wave

speed ¢ =+VE/p by use of dynamic Young’s modulus E = 107 dynelcm?
and p=1 gricm®,

speeds, respectively. Above the point B= (X, f,) = (X(t,),
t(t }) the shock wave BS becomes a straight line

X=X, +U,(t—1,), t>0,;
UL =U2(t,) =R (&) —R{e)V/(e; —€1). (14)

The solution in the perturbed region is as follows: In the
region bounded by OABT,O (see Fig 1), e(X, ) = é(7), v(X,
t) = v,(r) along X=C(7) (¢—7) for each fixed 7¢[0, ¢,]. In
the region bounded by T7T,BS, e(X, t) = €, v(X, 1) = v,.

3 Some Numerical Experiments in Rate-Type

Viscoelasticity

We construct here by the method of characteristics, the
numerical solutions of the viscoelastic problem (VEP) (1), (3),
and (9) with the equilibrium curve ¢ = R (e) given by equation
(5). This VEP corresponds to the nonlinear elastic problem

(NEP) solved in Section 2.
In the case when in the VEP the curve o=R(e) has

downwards oriented concavity (i.e., R” (¢) <0),. the follow-
ing facts are known from both laboratory and numerical ex-
periments. The solutions — v(X,t), e(X,t), o (X, of the VEP
are increasing functions of ¢ for any fixed X and they tend
asymptotically in time to a ‘‘platean’’ value —v,, €;, R(ey),
respectively. Here the strain ¢, >¢, is determined by v,.

The increase in time for a fixed X is faster for larger £ and
for fixed k the increase in time is slower for larger X (see, for
instance, Cristescu and Suliciu, 1982, Chapter III and IV, and
also Daimaruya and Naitoh, 1983). However, in this case
(R” (¢) <0), the corresponding NEP does not generate shock
waves.

To understand some laboratory data as well as the behavior
of the rate-type constitutive equation (3), we consider the case
when the NEP associated with the equilibrium curve e =R (¢)
generates a shock wave starting at some section X, >0.

Kolsky’s measurements show that the wave becomes steeper
as it propagates. On the other hand, theoretical results show
that the wave cannot become a mathematical shock wave if the
material has a finite viscosity coefficient k and suggest that the
wave becomes steeper at the same section X for a material with
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velocity
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Fig. 3 Particle velocity-time profiles for the viscosity coefficient
k=5000 s—1 at different cross sections with the time origin on the
elastic shock wave (or as they are seen by observers moving on the cor-
responding elastic shock waves)

a larger viscosity coefficient. However, we would like to see
the above facts in more detail and also to see the behavior of
the wave with the propagating distance for different fixed
viscosity coefficients k.

Numerical Experiments. The function R (¢), its numerical
entries as well as the values of E and p-are those of Section 1.
The other numerical entries which will be used are

e, =4, a=1x10%cm/s?, t,=2%x1073s. (15)
With these data, from equations (10) and (4) we get
€,=5.055, h,,=1.631/ks. (16)

The strain ¢, is asymptotically reached in time by the solution
e(X,t) of VEP, for fixed X.

We discusss here the results obtained for the following
choices of k:

k=5000, 32000, 640001, an

Figure 2 shows the particle velocity in m/s versus time in
milliseconds at sections X'=0; 6.32; 12.65; 18.97; 25.30; 31.62
cm obtained as the numerical solution of the VEP for the
above values of & as well as the exact elastic solution for the
above numerical data.

The exact elastic solution has the following properties: The
squtlon stays continuous for 0= r<#,=10.18 ms and all
X2 0. At a point (X,,£,), X,=17.61 cm, a shock wave starts
to-be generated and 1t is completely formed at the point (X,

7), 1, = 12.66 ms. X, = 22.06 cm. For £ 2 #, a single shock
wave w1Il propagate Wlth a speed U = 1897.73 cm/s. Across
this shock wave (e, v) will jump from (¢, = 4, v = 0) to (¢, =
5.055; v, = 2000 cm/s).- This solution is plotted in Fig. 2 by
full and arrowed lines:

One observes that for all three values of £, at all sections
X >0, the velocity-time profile v=wv(¢) starts tangent to the
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Fig. 4 Stress-strain relations at X=25.3 cm and at X=126.5 cm. The
line k = o represents the equilibrium curve ¢ = R(e). The straight line with
higher slope represents the instantaneous response curve at ¢ =400
percent {(and ¢=8.8x10° dynelem“). The crossed straight line
represents the steady wave stress-strain relation as well as the com-
puted solutons for k = 32000/s and k = 64000/s at X =25.3 cm.

line v=0 and ends asymptotically tangent to the line
v=1v,=2000 cm/s. For k=5000/s the wave spreads with the
increase in distance from the end X =0 (see Figs. 2 and 3). For
k=32000/s and k=64000/s, Fig. 2 shows that the wave gets
steeper with the propagating distance and the viscoelastic solu-
tion gets closer to the elastic one with the increase of k, i.e.,
the wave becomes steeper with the increase of both & and X.

Another important point is: suppose we deal with a real
material described by the constitutive equation (3) with
k=64000/s, E and R (¢) as above. This material will have the
bar velocity c=vVE/p = 3162.28 cm/s. Suppose we measure
the particle velocity-time profile of the wave at X=31.6 cm
(say); then the first signals arrives at this section at =10 ms
but at the scale of our Fig. 2 we see something significant ar-
riving only for > 16.6 ms. This kind of behavior, which one
must have in mind, places serious experimental difficulties for
measuring both dynamic Young’s modulus £ and viscosity
coefficient k. The same effect is present even if one uses the
linear standard model of viscoelasticity.

Numerical Stability. According to the results of
Mih#ilescu-Suliciu and Suliciu (1985), a discrete isolated body
problem formulated for the system (1) and (3) remains stable
in energy if the maximum time integration step does not ex-
ceed the value 4, given by equation (4). This restriction on the
time integration step may be physically interpreted in a similar
way one does with the Courant number, i.e., for the numerical
stability of the integration scheme it is necessary to index in
time at a rate that allows the viscous effects time to develop.
Since we do not know a similar proof for a nonisolated body
problem such as (1), (3), and (9), we have tested here
numerically the validity of the restriction 0< 4 = ,,, with 4,
given by equation (16),. The following experiments have been
run. For each k in (17) we have chosen a time integration step
h, <h,,, but close enough to 4,, in order to have 2, =2h, > h,,.

For all k in (17), the numerical solution for 2= A, was stable
and agreed with the solution for A= h,/2. For k=32000/s or
k = 64000/s the numerical solution did not behave properly for
h=2h, in the sense that the stress starts to decrease while the
strain still increases for a few time steps, after which both of
them decrease down to very large negative numbers. For
k=5000/s the same behavior is observed for A=4h,. For
h=2h, the numerical solution looks stable and it agrees with
the solution for & = h, at the level of stresses which are not far
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from the equilibrium. However, the two numerical solutions
(for h="h, and h=2h,) do not quite agree for stresses which
are not close to the equilibrium.

Steady Waves. Our numerical experiments show how the
particle velocity-time profile transforms in a steady wave pro-
file for large k after propagating a certain distance (compare
the plottings of Fig. 2 for &= 32000 and 64000/s at the sections
X =253, 31.6 cm and see also Fig. 4 for k=64000/s and
X=25.3 cm).

Greenberg (1986) studied steady wave propagation through
materials with governing equations of the form (1) and (3) but
under the assumptions E=F(e, 0), 0E/06<0, 0E/0e>0.
These assumptions are not satisfied here since E=const.
However, in a similar manner we find the following steady
wave solutions

(D =U,le() —er], o()=R(e))+Eyle(§) —eil,
(=t—=X/U,, E,=pU%=[R(e;)—R(e)l/(es—€,),
(E—E,)e' () =k[E,(e($) =€) = (R(($)) =R (e D],
(18)

for our equations (1) and (3). (For a detailed discussion on
steady waves, see Nunziato et al., 1974). The differential equa-
tion for ¢ is of the form ¢’ ({) =kf(e($))/ (E—E,), {e(— o,
w)ore’(n) =f(e(n)), ne( —oo, ) withy=£k{/(E—E,). Any
solution e(n) (or e(¢{)) is a strictly increasing function on
(— o, ) with €(y)—¢, when n— —o0 and e(n)—e, when
7. '

Now let A, 0 <A< (e; —¢€,)/2 be an arbitrarily small number
(A= (€5 —¢€,)/10 say). One can determine the maximal finite
interval (y4,m7x) such that e¢(n)e(e, + A, ¢, —A) when ne(ys,
n4). The quantity {, = 4 — 4 can be called the conventional
thickness of the wave in the plane 5 —¢; it is independent on k&
and E and it depends only of R(¢) on [¢, ¢,]. (For a similar
notion in gas dynamics see Witham, 1974, Sections 2.4, 6.15;
for an exact and finite thickness of wave see Suliciu, 1974, and
also Cristescu and Suliciu, 1982, Chapter V, Section 2). The
conventional thickness of the wave L, in the physical plane
¢—e is then

Ly=(E—E,),/k. (19)

Since the conventional thickness of the steady wave for
k=64000/s does not exceed 0.8 ms (see Fig. 2) if we take k=1
x 10%/s, then by equation (19) the thickness of the wave will
be about 0.05 ms which at the scale of Fig. 2 makes this wave
appear as a shock wave. We also note that for the equilibrium
curve (5) and (6), for any E verifying equation (8) and any
k>0, the steady waves (i.e., the solutions of equation (18))
always exist. However, for small & the solution of our problem
(1), (3), and (9), first spreads with the distance (see Fig. 3) and
then it becomes a steady wave. One can see that this wave is
almost steady from Fig. 4, where for k= 5000/s at the distance
of 126.5 cm the triangles representing the stress-strain relation
along the wave are very slightly above the straight line
0=R(e;)+ E,(e—e;) representing the steady wave stress-
strain relation.

4 Concluding Remarks

1. The shock waves, in nonlinear elasticity, generated by
continuous data can be described by using a viscoelastic model
with a large enough Maxwell-type viscosity coefficient.
However, one has to decrease accordingly the time integration
step, at least in the neighborhood of the shock waves.

2. In the semilinear rate-type viscoelasticity, shock waves
are not generated by continuous data, but a wave can become
steeper during its propagation. The wave does not transform
itself into a mathematical shock wave if the viscosity coeffi-
cient is large but finite, instead it becomes a steep but smooth
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steady wave. Therefore, a thickness of the wave is obtained,
which is different in nature from the corresponding notion in
gas dynamics.

3. There is a close relation between the size of the time in-
tegration step and magnitude of the viscosity coefficient. If
this relation is not violated, one gets numerical stability; on
the other hand, in a given problem it allows a proper choice of
the time integration step in order to minimize the computa-
tional time,

4. The numerical results presented here show that one can
not easily identify, in a laboratory experiment, the dynamic
Young’s modulus from the wave speeds since a high viscosity
coefficient flattens very much the front of the wave during its
propagation. Therefore, the dynamic Young’s modulus can be
much larger than it may seem. From this point of view, the
results are better if one uses measurements closer to the im-
pacted end. This remark is true even for the standard linear
model of viscoelasticity.
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Elastic Wave Scattering from an
Interface Crack: Antiplane Strain

A. Bostrom

Division of Mechanics,
Chalmers University of Technology,
S-412 96 Géteborg, Sweden

The two-dimensional scalar problem of scattering of elastic waves under antiplane
strain from an interface crack between two elastic half-spaces is considered. The
method used is a direct integral equation method with the crack-opening displace-
ment as the unknown. Chebyshev polynomials are used as expansion functions and

the matrix in the resulting equations is simplified by contour integration techniques.
The scattered far field is expressed explicitly in simple functions and the expansion
coefficients. The consequences of energy conservation are explored and are used as a
check in the numerical implementation. For incoming plane waves numerical results
are given for the total scattered energy and the far field amplitude.

1 Introduction

The detection of cracks is an important problem in the
nondestructive evaluation of materials. Cracks have thus been
extensively studied in the literature, though mainly in highly
idealized cases. The penny-shaped crack is exhaustively
treated by Martin and Wickman (1983), who also give many
further references, and by Krenk and Schmidt (1982). High-
frequency aspects are considered by Keogh (1985 a, b) and
Achenbach et al. (1978). Nonplanar cracks and partly debond-
ed inclusions are studied by Bostrém and Olsson (1986) and
Olsson (1986).

In the present paper we consider an interface crack between
two homogeneous elastic half-spaces for the case of antiplane
strain. The corresponding problem with an interface crack in a
layered half-space is solved by Neerhoff (1970) and Yang and
Bogy (1985), and Kundu (1986) solves for the transient
response of an interface crack in a layered plate. Our method
of solution is an integral equation method with the crack
opening displacement as the unknown. To derive the integral
equation we follow a procedure similar to that of Krenk and
Schmidt (1982), and we thus avoid the introduction of any
Green’s function. One could instead proceed as Neerhoff
(1979) and derive the integral equation from an integral
representation containing a suitable Green’s function. The
two procedures should be equivalent but the one avoiding the
Green’s function is probably easier to generalize to more com-
plicated cases.

2 Formulation of the Problem

Consider a scattering geometry as depicted in Fig. 1 with
two homogeneous half-spaces y > 0 and y < 0in welded con-
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tact except for an interface crack for 1x| < . Time-harmonic
conditions are assumed throughout and the factor exp(— iwt)
is suppressed. In the upper half-space the shear modulus is ,,
the shear wavespeed is ¢,, and the wavenumber is k; and the
corresponding quantities in the lower half-space are u,, ¢,,
and k,. For antiplane strain the only displacement component
is in the z direction and this component satisfies the Helmholtz
equation so that the displacments %! for y > 0 and u? for y <
0 satisfy

vVl +Kul =0 y>0 ¢}
ViR +kut=0 y<0 )

Along the welded part of the interface the displacement and
traction are continuous:

ul =u? y=0, Ixl>a &)
%L;_'= _f’azyi y=0, Ixl>a 4)
SEPTEMBER 1987, Vol. 54 /503
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where 8 = p,/u, is the shear modulus quotient. Along the
cracked part of the interface the traction vanishes and thus

u'
Ixl<a (5)

=—=0 y= O,
To completely specify the problem we must also give the in-
coming field and the radiation conditions at infinity.

For simplicity we choose the incoming field as a plane wave
of unit amplitude incident from below; more complicated in-
coming fields can then be obtained by superposition. To take
advantage of the known reflection and transmission properties
of the plane wave at the interface we make the following
ansatz:

ut = Tellapx+ho1y) 4 ) y>0 %)
ut = lq¥+ho) 4 Relldoe*—hoa?) + U2 y<0 )
where
hoy = (k1 —g§)V?, Imhy =0
hoy=k3 —at)"?,  Imhg, =0

and the reflection and transmission coefficients are

e Bty ©
hoy + Bhg,
2fhg,
e 9
hoy + Bhg, ©

The fields U' and U? are the extra fields due to the presence of
the interface crack. These crack-scattered fields still satisfy the
Helmholtz equations (1) and (2) and the welded boundary con-
ditions (3) and (4), but instead of equation (5) they fulfill an
inhomogeneous boundary condition on the crack surfaces.

3 The Integral Equation

The crack-scattered fields are now written in the form of
Fourier representations:

vi={"_r@eernidg (10)
=" f@ee-mdg an
where
h =kt —g»)V?, Imh =0
hy= (K} — g2, Imhy=0

In writing the representations (10) and (11) we have taken the
radiation conditions into account. One of the boundary condi-
tions says that
Ut _ au?
dy
and we especially note that this condition holds for @/l x. This
gives

all x

y:0’

h
f1<q>=—i2f2<q>
1

The other boundary condition along the welded part of the in-
terface is that

12

U'=U0 y=0, lxl>a
and this gives
© Bh,+h ) 0 Ixl>a
|7 PR g (e = (13)
el AU(x) Ixl<a

where AU is the so far unknown crack-opening displacement.‘
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Inverting the Fourier transform in equation (13) we can ex-
press the crack-scattered field amplitude f, in the crack-

opening displacement AU:
— hl a .
S AU(x)e "%dx
—a

folq) :_——————27((}'11 T 8hy)

The last boundary condition, equation (5), gives with equa-
tions (6), (12), and (14) v

o Bhyh,

h T‘qu+S dg ———=——
o te o Y 2w (hy + By)

14

igx

S AU(x" Ve~ @ dx’ =0 (15)

—a
This is the sought integral equation for the crack-opening
displacement AU. Once AU is determined, equations'(14) and
(12) give the field amplitudes and equations (10) and (11) give
the crack-scattered fields.
To solve the integral equation we expand AU in a complete
set of Chebyshev polynomials:

cos (n arcsin (x/a))
¢, (x) =

i sin(n arcsin (x/a))

n=1,3,5,...
(16)
n=2,4,6, ...

This set is convenient because it satisfies the correct edge con-
dition (cf Neerhoff, 1979), and have the following property:

a
S é, (x)e~dx="" ] (va) an
—a v
We thus expand
AU(X) = Y, apd, (%) (18)
Inserting this in equation (15) we have
. S Bhh, .
h T’qo"+S dg ———"—— "% J, =0
0 Te ) A iy o L e (0)
Maultiplying by ¢, {x) and integrating over [ —a, a} we get
E Q""’O{"’ = —znThOI/QOJn (q0a) (19)
where the symmetric matrix Q,,,’ is
e Bh 1, .
= | N (o)), (adg 0)
¢ o G+ B "

The integration range in equation (20) can be reduced to a
finite range. For a very similar integrand this has been dis-
cussed by van den Berg (1981) so we do not repeat the details
here. The result is that Q,,,/ can be written as:

o pE-PNE—F
,,,,'=2nn’S [J a)HY (ga
Q 0 -+ — g > (ga)HY (ga)
1 dq
+n7r IlIII:I 2

b BP- PN
+2 ’S [ HY
R R (e By B R
_I—ann/:l—"j-g_
nw .q
inB
+1—+B— wn (21

Here > (<) denotes the larger (smaller) of » and n’. We have
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Fig. 2 The total crack-scattered energy as a function of frequency kya
for an incoming plane wave making the angle ¢ = 30 deg with the inter-

tace and four material combinations: colcy = 1, polpy = 1 (—);
C2IC1 = 1.2, ’l.zl[.l1 = 2(---) 02101 = 1.5, [J.2/}L1 = 5 {); 02IC1 = 1.8,
polpy = 8(=----

2.0 — T T T

0 2 4 5} 8 10

Fig. 3 Same as Fig. 2 but direction of incidence ¢5 = 60 deg

assumed that k, < k,, but a very similar form holds when &,
> k,. For k, = k, and 8 = 1 our problem reduces to that
considered by van den Berg (1981) and our Q,,’ also reduces
to his corresponding matrix.

Once equation (19) is solved for the unknown expansion
coefficients «,,, the crack-opening displacement is determined
and it in turn gives the field amplitude from equation (14)

_— Z ' na,d,(qa) 22
Slg)= 39 (h 5 ;) (g (22)

and the crack-scattered fields from equations (10)-(12)

ﬁ S h, ) dg

Ul=—"" ilgx+hyy) ~ =2 23
E ne) g Tl )

hy . dg
V=—— S —L ite—hp) 2 (24
E gy Jntaae 24)

These integrals have in general to be computed numerically,
but we shall see in the next section that in the far field region
this is not necessary.

4 The Far Fields

In the far field the integrals in equations (23) and (24) can be
computed with the stationary-phase method. Introducing

Journal of Applied Mechanics

4 6 8 10

Fig. 4 Same as Fig. 2 but direction of incidence ¢, = 90 deg
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Fig. 5 The absolute value of the back-scattered tar field amplitude as a
function of frequency koa for an incoming plane wave making the angle
¢g = 30 deg with the interface and four material combinations: c;/cy =
1, polpg = 1¢ ) €olcq = 1.2, polpy = 2(==-); €glcy = 1.5, polpy
= 5 () colcy = 1.8, rolpy = 8(~---- )

polar coordinates x = p cos ¢, ¥ = p sin ¢ with p assumed
large we easily sce that the stationary point occurs at ¢ = k cos
¢. Using equations (8), (9), and (19), the far fields become

VK3 — kicos?e
ksin qS+ BNk} — kicos’o

U'= —BV8x/kp e*1r==Dtan ¢

m
\/ — k3cos’¢q + Bk,sing,
Y nn'd, (kya cosd)J,’ (kya cos do)Qu (25)
2 _ 2 2
U= — BB kyp eltkar—/ian ¢ —— A1 _K2COSP
Vk? — k}cos?d — Bk,sing
k2~ kicos? g,
tang,

Nk} — k3cos?p, + Bkysing,

E nn'J, (kyacos ¢)J, (kya coséy)QrY

nn’

(26)

where we have introduced the direction of propagation of the
incoming wave ¢, by q, = k, cos ¢,. We note that the
reciprocity relations that U' is symmetrical under the ex-
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change k;, cos ¢y < k; cos ¢ and U? under the exchange ¢, 1 2 du
— ¢ are satisfied. (P)= 5 ¢ ImS wout 30 pd¢ 27)

In the far field region it is easy to check the consequences of h . .
energy conservation and this we now do. The mean value jn  Where the star denotes the complex conjugate. As no energy is
created or destroyed inside the circle with radius p we must

time of the total energy flux in the radial direction is .
evidently have
0.25 ; — . : (Py=0 (28)
Introduce now the far field amplitudes F, and F,:
0.20f 1 U'=8x/k,p elc10="F, (o) (29)
—— AN
0.15f RN _ . ~
/N / N\
// \\ ’ N
/ o~ /
/ \\\ A AN / - \I
L - - - ~ s
0.10 - \ L \\ // \\ / - . ’
- . \ A N - \ e s h\
i | \ ~ \ B \ / 4 \ 4
{0 . . AN / o0
7SN ™ N/ FAEERENY 4 i, [T
0.05f Ji SN LTI AN 3 [ )
N4 W A7 N 1) ,//{" //
= Na” NI —
}’ FAEEREN YAl /
0.00 1 1 . . Ve \ romy,
. 4 4 1
0 2 4 6 8 10 i)/ \ L v/
[ r,’
Fig. 6 Same as Fig. 5 but direction of incidence ¢ = 60 deg { '\ R /'
1 /[ ”
[1 /4' Vd
4
| / 4
(‘ /L7
2.0 : — : . . 47
N i
1.
b)
1.
0. L T~
/ N,
7
/ 3 \
I P - T “ \
0. / e > N v
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Fig. 7 Same as Fig. 5 but direction of incidence ¢y = 90 deg | , -

- Fig. 8 The absolute value of the far field amplitude as a function of
angle for the frequency kpa = 2 and the same material combinations as
in Figs. 2-7 and direction of incidence: (a) ¢¢ = 30 deg; (b) ¢g = 60 deg;
(c) 69 = 90 deg
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U2 =~/8x/k,p etk —"/4F, () (30)

where the expressions for F; and F, can thus be read off from
equations (25) and (26). Inserting equations (6), (7), (29), and
(30) into equation (27) and performing some of the resulting
integrals by the stationary-phase method, equation (28) finally
yields

ks 27 .
[ 1R @) 2ag8] 7 17, (8120 + ReIT*Fy ()

+BR*F, (6)]1=0 (€2))

Here ¢, and ¢, are the directions of the transmitted and
reflected plane waves and are thus determined by Snell’s law,
i.e.,

sing, =h{/ky,  cosp,=qy/k,
sing, = —hgy/ky,  cosd, =qo/k,

The energy conservation as expressed by equation (31) should
be compared with the corresponding expression given by
Neerhoff (1979) for the case with an interface crack in a
layered half-space. The energy conservation is a valuable
check in numerical work and we thus use it during the
numerical implementation.

Fig. 9 The absolute value of the far field amplitude as a function of
angle for the frequency koa = 5 and the same material combinations as
in Figs. 2-8 and direction of incidence: (a) 9¢ = 30 deg; (b) o9 = 60 deg;
(c) o9 = 90 deg
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5 Numerical Examples

We now turn to some numerical applications of the forego-
ing. We only compute far-field quantities, but we give both
the total scattered energy .and the back-scattered far field
amplitude as functions of frequency and the far-field
amplitude as a function of angle. The far-field amplitude was
defined in the previous section, cf equations (25), (26), (29),
and (30), and the total crack-scattered energy normalized with
the energy density 1/2 w p k, in the incoming plane wave and
the crack width 2« is :

T 27
o= (5 [ 1F @) 20+ | 1R (9)1200)
kya 0 *
In the case of no contrast between the half-spaces this reduces
to the usual definition of the total scattering cross section. By
means of the condition of energy conservation, equation (31),
the total scattered energy can be written in a form that con-
tains no integrals.

All the computations are easy to perform and one only has
to ascertain that the truncation, i.e., the number of terms in
the summations in equations (25) and (26), is sufficiently high.
The truncations needed depend on the frequency and by trial
and error it is seen that it is in fact enough to take a number of
terms that are slightly larger than max (k,a, k,a).

For the numerical computations, four different material
combinations have been used: ¢,/¢; = l and 8 = pu,/pu; = 1
(a homogeneous space with a crack), ¢;/¢;, = 1.2and 8 = 2,
¢,/¢; = 1.5and B = 5,and ¢,/c; = 1.8 and B = 8. The lower
half-space thus has the larger stiffness and wavespeed. The in-
coming plane wave in the lower half-space propagates in a
direction which makes the angle ¢, = 30 deg, 60 deg, or 90
deg with the interface.

Of the numerical results we first show the total crack-
scattered energy as a function of frequency k,a for the incom-
ing directions ¢, = 30 deg, 60 deg, and 90 deg in Figs. 2, 3,
and 4, respectively. All four material combinations are shown
in each figure: ¢,/¢; = 1 and 8 = 1is shown with a full line,
c,/cy = 1.2 and 8 = 2 with a dashed line, ¢,/¢, = 1.5and §
= 5 with a dotted line, and ¢,/¢;, = 1.8 and § = 8 with a
dashed-dotted line. For the homogeneous cracked space the
total scattered energy should approach 2 cos ¢, (= 1, 1.73,
and 2 in Figs. 2-4, respectively) at higher frequencies and this
is well satisfied. With increasing contrasts between the half-
spaces the crack-scattered energy becomes smaller as the inter-
face reflects some energy even in the absence of the crack.

In Figs. 5-7 the back-scattered far field amplitude is shown
as a function of frequency for the same directions of incidence
and material combinations as in Figs. 2-4. As for the total
crack-scattered energy the values decrease with increasing con-
trast. For ¢, = 30 deg and 60 deg the curves have a periodic
behavior with the peaks appearing when the wavefront of the
incoming wave contains an integral number of half-
wavelengths on the part that can be projected on the crack.

The angular dependence of the far field amplitude is shown
in Figs. 8 and 9 for the same directions of incidence and
material combinations as before and for the two frequencies
k,a = 2 and kya = 5, respectively. Figures 8(a), 8(b), and 8(c)
which differ by the direction of the incoming wave are drawn

(32)
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to the same scales and likewise for Figs. 9(a), 9(b), and 9(c).
As the contrasts between the half-spaces increase the far field
amplitude in the upper half-space grows and develops addi-
tional side peaks. The growth is, however, not associated with
any growth in crack-radiated energy, cf Figs. 2-4, as the
material in the upper half-space becomes softer with increas-
ing contrasts. The additional side peaks can be attributed to
the fact that k,a increases with increasing contrasts. In Figs.
9(a) and 9(b) we notice that the main lobe in the upper half-
space is closer to the normal for larger contrasts quite in accor-
dance with Snell’s law. The main lobe in the lower half-space
is, on the other hand, in the direction of specular reflection in-
dependently of the contrasts.

6 Concluding Remarks

We have seen how by a modification of the integral equa-
tion approach of Krenk and Schmidt (1982) it is possible to
treat an interface crack. Only the two-dimensional case with
antiplane strain has been considered in the present paper.
More general cases can, however, also be solved with the pre-
sent approach. The three-dimensional acoustic (scalar)
problem with a soundhard (or soft) disk at an interface can
thus be solved by the present approach and work in this direc-
tion is in progress. It will also be possible to treat the even
more interesting case with a penny-shaped crack (which could
be fluid-filled) at the interface between two elastic materials.
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Rayleigh-Lamb waves in a homogeneous and isotropic linear elastic plate containing
a distribution of vacuous pores (voids) are studied. Assuming that the plate is of
uniform thickness and that its faces are stress-free, it is found that the waves move,
in general, in two uncoupled families, of which one is symmetrical with respect to
the midplane of the plate and the other antisymmetrical; each of these families is af-

Jected by the presence of voids. If the plate is thin and the frequency is small, the
voids influence only the symmetric waves and, because of this influence, the waves
propagate slower than their classical counterparts. If the plate thickness and the fre-
quency are large, each of the two families degenerates into two uncoupled waves;
one of these is a classical Rayleigh wave and the other is a new wave not encountered
in the classical theory.

1 Introduction

The theory of elastic materials with voids is one of the most
recent generalizations of the classical theory of elasticity. This
theory is concerned with elastic materials consisting of a
distribution of small pores (voids) which contain nothing of
mechanical or energetic significance. The general version of
this theory was obtained by Nunziato and Cowin (1979), and
the linearized version by Cowin and Nunziato (1983). A novel
feature of this theory, over other theories on porous materials,
is that it permits a porous body to enlarge or reduce the overall
volume the body occupies in the absence of body forces. It is
believed that the new theory is of practical utility in in-
vestigating various types of geological, biological, and syn-
thetic porous materials for which the classical theory is inade-
quate. Some problems revealing interesting characterizations
of the theory have been considered by Cowin and Nunziato
(1983), Cowin and Puri (1983), Passman (1984), Cowin (1984
a, b; 1985 a, b), Puri and Cowin (1985), and Chan-
drasekharaiah (1986, 1987). Some basic theorems and proper-
ties of solutions have been obtained by Iesan (1985); the inter-
relationships between this theory and various other continuum
theories have been analyzed by Cowin (1984 b; 1985 b).

The object of this paper is to discuss the propagation of free
plane waves (of the Rayleigh-Lamb type) in a homogeneous
and isotropic elastic plate with voids, by employing the field
equations obtained by Cowin and Nunziato (1983). Assuming
that the plate is of uniform thickness and that the faces are
stress-free, we find that there occur, as in the corresponding
classical problem, two uncoupled families of waves (in
general) of which one consists of symmetrical motions about
the midplane of the plate and the other antisymmetrical mo-
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tions; each of these families is influenced by the presence of
voids. We obtain the frequency equations for the two families
and find that the voids have no influence on the cutoff fre-
quencies of pure shear motions. As limiting cases, we consider
small frequency waves in a thin plate and high frequency
waves in a plate of large thickness. In the former case, we find
that the voids have influence only on the symmetric family and
that, because of this influence, the symmetric family pro-
pagates slower than its classical counterpart; for a typical
(hypothetical) material model (Puri and Cowin, 1985) the
decrease in the speed is found to be about 6.64 percent. In the
latter case, each of the two (symmetric and antisymmetric)
families degenerates into two uncoupled waves, of which one
is a classical Rayleigh type wave not influenced by the presence
of voids and the other is a new wave (caused by the porosity of
the material) not encountered in the classical theory. A com-
parison between the present analysis and its counterpart in
thermoelasticity is made at appropriate places.

2 Basic Equations and Boundary Conditions

In the context of the theory presented by Cowin and
Nunziato (1983), the field equations for a homogeneous and
isotropic material, in the absence of body forces, are given as
follows:

3%u;
BV 20+ (N p) g+ By =p 6t2’ (2.1)
¢ 9%¢
avVig—tp—w —at—‘“ﬁuk,kzpk T (2.2)

In these equations, u; is the displacement vector, ¢ is the so-
called volume fraction field (defined in Cowin and Nunziato,
1983), N, u are the usual elastic constants, p is the mass densi-
ty, a, 8, ¢, w, and k are new material constants characterizing
the presence of voids, and ¢ is time. The notation of Cartesian
tensors is also adopted. In the absence of voids, we have ¢ =
0, and equation (2.1) reduces to the classical Navier’s
equation.

SEPTEMBER 1987, Vol. 541509

t©1987 b
€or

Cop¥r®hstl;vls%e http://www.asme.org/terms/Terms_Use.cfm



The stress tensor 7; associated with #; and ¢ is given by
(Cowin and Nunziato, 1983)

Tijz)\ 6’! uk,k+/_t(uiJ+uj,i)+66ij¢ (23)
If we set

Ui=Dsi+ €k iy (2.4)
then equation (2.1) is satisfied, provided p and q; are governed
by the following equations: '

<v2 -2 aZ) __F 2.5
T b= oa? ¢ 2:3)
<v2 L ) =0 2.6
b2 atz q;i= ( . )
Eliminating ¢ from equations (2.5) and (2.2) we obtain
1 3 32 1 3
o (i o ) o
[[v o <+w at a2 2 P
+6*V2]p=0 2.7)
In the above equations, we have set
A+2
P o= AT B e ®
4 o £
T i 28
w e e B 2.8)

From equations (2.5)-(2.7), it is evident that of the three
unknowns p, g;, and ¢, only p and g, are independent and that
pure shear waves are not affected by the presence of voids. If
in a given problem, p and g; are determined by solving equa-
tions (2.7) and (2.6), then ¢ follows from (2.5).

Substituting for u; from (2.4) in equation (2.3), and using
equations (2.5) and (2.8), we obtain the following expression
for 7, in terms of p and g;:

, 1 @&
o=n o= {2vio o 5} o

+ €irs qs,rj + Ejrs qs,ri] (29)
If the boundary of the body is free of external loads, the

following conditions hold on the boundary (Cowin and
Nunziato, 1983):

7y 1;=0 2.10)
é,; ;=0 @.11)

Here, n; is the unit outward normal to the boundary. By
substituting for 7; from equation (2.9) we may express the
boundary condition (2.10) in terms of p and g;.

Under the assumptions made, equations (2.5)-(2.7) and
equations (2.10), (2.11) serve as field equations and boundary
conditions for the theory considered.

3 Plane Waves in a Plate

Suppose that the body considered is a plate occupying the
Cartesianspace — w < x < oo, ~H=y<H, —oo <7< 0
and that free plane waves propagate in the plate in the positive
x direction causing plane deformation parallel to the xy plane.
Then the displacement vector lies completely parallel to the xy
plane and all the field variables depend only on x, y, and ¢.
Under these conditions, only the z component, g5, of g; is rele-
vant; we denote it by g. We denote the x and y components of
u; by u and v, respectively.

If the waves propagate with frequency 8/2x, we seek, as
usual, solutions for p and ¢ in the form

@, @)=y, o) exp [i(yx—01)] 3.1
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where p, and g, are functions of y and vy is a complex number.
If v = v, +ivy,, then for the waves to be physically realistic,
we should have v, >0 and v, =0; 2n/v, represents the wave
length.

Putting equation (3.1) into equations (2.6) and (2.7), we ar-
rive at the following expressions for p, and g,:

po=A, cosh m,y+A,cosh myy+ B, sinh my

+ B, sinh m,y 3.2)
go = A, sinh myy + By cosh myy 3.3)
Here A; and B, are arbitrary constants,
92
mi=vy*— N 3.4
and m,, m, are (complex) roots of the equation
6 1
(0 = = [ (it + 8] (22— m?)
a «
02
o (1 —iw*0—k*0?)=0 (3.5)
«

With the aid of equations (3.1) and (3.2), equation (2.5) yields

2
o= -—ﬁg—- [ri(A,coshm,y+ B,sinh m,y)+r,(A,coshm,y
+ B,sinhm, y)]lexp (i (yx—0t) )} (3.6)
where
62
ra= m%,z -2+ = 3.7

If the faces y = + H of the plate are stress-free, the boun-
dary conditions (2.10) and (2.11) become 7, = 75, = d¢/0dy
= 0 fory = + H. With the aid of equations (2.9), (3.1)-(3.3),
and (3.6), these conditions yield the following system of equa-
tions:

2iy(m S A} +my8,A4,) + 75043 =0
2iy(m ¢, By +myc,By) +v,¢oB; =0
yole A+ ¢y Ay) = 2iymycy A, =0
Yol$1 By +8,B5) — 2iympsoB; =0
rimsiA|+ry,mys,A,=0

3.8)
rimc, B, +r,myc, B, =0
Here we have set
02
sy, =sinh m, ,H, ¢;,=cosh m;,H, vo=2v" o
8y =sinh myH, ¢y =cosh myH 3.9

From equations (3.8), we see that all the A’s are linked
together, all the B’s are linked together, and A4’s and B’s are
unlinked. It may be verified that for the waves of the desired
type to exist, at least one of the two constants 4, and B,
should be nonzero; if B; = 0, the solution (3.1) corresponds
to waves symmetrical with respect to the midplane (y = 0) of
the plate and if A, = 0, the waves are antisymmetrical. In
general, the solution (3.1) represents a superposition of two
uncoupled families of waves, of which one is symmetrical and
the other antisymmetrical with respect to the plane y = 0.

4‘ Frequency Equation

We now proceed 'to obtain the characteristic equations
determining the phase speeds of symmetric and antisymmetric
families of waves.

If we put

T=vyH, My=myH, M, =m,H
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r
o)
R}, =1- T2 “.1)
then equations (3.4) and (3.7) yield
%)
My=T?-@ =12 (1-——)
bz
Q252 1%
M"l’,2=l‘2— o R%,z =T? (1 2 R%,2> 4.2)

It is evident that V represents the complex phase speed, only
the real part of which is physically relevant.

With the aid of equations (4.1) and (4.2), we find from
equation (3.5) that R, and R, satisfy the equation

Q*Ré+ (1 —-N*—Q9R*—1=0 4.3)
where
N*= o B H (4.4)
H? — io* Qb H — k022 '
and
Q* o« ®b? 4.5)

TP — i Qb H - k* Q2 b7

Eliminating the constants 4; and B; from the system of
equations (3.8) and simplifying the resulting expressions with
the aid of equations (3.9), (4.1), and (4.2), we arrive at the
following two frequency equations:

Qr? - @Y M1 - R)T' - M, (1 - RT3

=412 MM, M, (R} — R3) 4.6)
Here we have put
CoS
Ty,=—"t2 @.7)
$0C1,2

Of the two equations given in (4.6), the one which contains
T7! and T3 !, obtained by eliminating A’s from equations
(3.8), corresponds to the symmetric family of waves. The
other equation which contains 7, and T,, obtained by
eliminating B’s from equations (3.8), corresponds to the an-
tisymmetric family.

In view of equations (4.2), equations (4.6) may be regarded
as equations connecting ¥V and I' as well. Accordingly, each of
these two equations, being transcendental, yields infinitely
many discrete roots for V in terms of T', each root corre-
sponding to a mode of vibration. The motions ~ both sym-
metric and antisymmetric —are obviously dispersive and the
analysis of their behavior in the general case is complicated.
However, it is possible to obtain readily the cutoff frequencies
by setting I' = 0 in the frequency equations (4.6). The cutoff
frequencies so obtained are governed by the following
equations:

() For symmetric family

Q=nm, n=1,2,....0 4.8)

R,(1—R3) tan (2bR,/a) =R (1—R?) tan (QbR,/a) 4.9)
(i) For antisymmetric family

Q:(zn—l)——;r—,n:l,z,....oo 4.10)

R,(1~R%) tan (QbR,/a) =R, (1—R}) tan (QbR,/a) (4.11)

Evidently, the cutoff frequencies given by equations (4.8)
and (4.10) are not influenced by the presence of voids and are
associated with pure shear motions. The cutoff frequencies
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determined by equations (4.9) and (4.11) are associated with
the compressional motions influenced by the presence of
voids. Because of the presence of the material constarnts o*,
8*, and w* in the governing equation (4.3) of R, and R,, the
cutoff frequencies determined by the transcendental equations
(4.9) and (4.11) differ from those occurring in the classical
elasticity theory.

In the absence of voids, we may take R, = 1and R, = 0
(see, equations (4.3)-(4.5)). Then the frequency equations
(4.6) reduce, with the aid of equations (4.2), (4.7), and (3.9),
to

tanh{I‘(l——;—z—) 1/2} x1
tanh{l‘(l —-—;;) 1/2}
4(1——a—V:) 172 <1‘ 2/22 >1/2

iz 4.12)
(-5)

These are well-known frequency equations for Rayleigh-
Lamb waves in classical elasticity. (Apart from the notation,
these equations are identical with equations (12) and (48) of
Lamb, 1917.)

It may be noted that the field equations (2.1) and (2.2) and
the constitutive equation (2.3) resemble the corresponding
equations in linear coupled thermoelasticity; the boundary
condition (2.11) is analogous to the condition of thermal in-
sulation. Cowin (1985b) has discussed some aspects of the
similarities between the theory of elastic materials with voids
and the thermoelasticity theory. In the context of ther-
moelasticity, the problem of Rayleigh-Lamb waves has been
analyzed, among others, by Nowacki (1975). We find that our
frequency equations (4.6) are analogous to equations (15) and
(16) on p. 208 of Nowacki (1975). However equation (3.5) and
its counterpart in thermoelasticity, viz. equation (8) on p. 207
of Nowacki (1975), have different structures.

5 Limiting Cases
In what follows, we analyze equations (4.6) in two limiting
cases.

Case (i) Waves in a Thin Plate. We first suppose that
| < <1, Q—0. In this case, which obviously corresponds to
small values of A and ¢, we find from equations (4.2) and (4.3)
that

Ry=(1-N)""%, R,—oo.
Here
L B
pad*t
Equations (4.6) now yield the following roots:

N=a*B 6.1

(i) For symmetric family

b2 12
_ 5.2
a*(1-N) ] (5-2)

For antisymmetric family
b2 :I 172
a? )

Evidently, the antisymmetric family is nof affected by the
presence of voids; its speed, given by equation (5.3), is iden-
tical with that obtained in the classical theory (see equation
(50) of Lamb, 1917).

V=2b [1 -

(i)

V=2pT" [—;— (1 - (5.3)
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On the other hand, the symmetric family is affected by the
presence of voids; while its speed in the classical theory is

bZ 172
a? )
(see equation (15) of Lamb, 1917), in the presence of voids the
speed is modified to

b2 172

a’? )

where a* =a(l — N)'/%; see equation (5.2) above. It is known
(Puri and Cowin, 1985) that the constant N satisfies the ine-
quality 0 < N < 1, with N = 0 holding in the absence of
voids. Consequently, we have V¥ < ¥, in the presence of
voids. Thus, symmetric waves of small frequency in a thin
elastic plate with voids are slower than their classical
counterparts.

The values of the material constants characterizing the
presence of voids are not known as yet for any material. In
their analysis of plane waves in an unbounded elastic material
with voids, Puri and Cowin (1985) have considered a typical
(hypothetical) material model for which ¢ = 3873 m/s, b =
1937 m/s, and N = 0.2778. For this model, we find that V} =
3132.0918 m/s. For the corresponding classical model (N=0),
we get V, = 3354. 6933 m/s. Thus, in this model, the reduc-
tion in the speed of small frequency symmetric waves in a thin
plate, due to the presence of voids, is about 6.64 percent.

Puri and Cowin (1985) have shown that the constant a* =
a (1—N)!/2 represents the speed of predominantly elastic low
frequency waves in an unbounded elastic material with voids.
As such, the expression for V} obtained above is structurally
consistent with the expression for V, valid in the classical
theory.

In the linear thermoelasticity theory, it is known that small
frequency dilatational waves propagate with speed a, =
a (1+¢€)"2, where e > 0 is the thermoelastic coupling constant
(Nowacki, 1975, p. 108). From the frequency equation (15) on
p. 208 of Nowacki (1975), it may be shown that the counter-
part in thermoelasticity of our equation (5.5) above reads

thus:
b2 ) 12
a%

This expression is also structurally similar to equation (5.4)
valid in the classical elasticity theory, and we have V** > V.
Thus, while the presence of voids decreases the speed of small
frequency symmetric waves in a thin elastic plate, the presence
of the thermal field increases the speed; in both the cases the
qualitative behavior of the waves remains unchanged.

Case (i) Waves in a Plate of Large Thickness. We now
suppose that |T'| > b/a @ |R, ,|. In this case, which obviously
corresponds to large values of H, we find, with the aid of
equations (4.2), that the two equations in (4.6) reduce to one
and the same equation given below:

szz V2 2
v+ mimty M3+ =1 | (2-)
=AM, M\ M,(M, + M) 5.7

Accordingly, in this case, both symmetric and antisym-
metric motions behave alike. We find that equation (5.7) is
identical, apart from the notation, with the frequency equa-

5.4

v,=25(1-

VE=2b (1— (5.5)

Vs**=2b(1— (5.6)

tion for surface waves in a halfspace with voids, obtained by.

Chandrasekharaiah (1986).
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For ¢ — oo, equations (4.3) and (4.2) yield

M, = T (1-V/a*)"?, M, = T (1-V*/V})2,
M, = T (1-V2/b*)\2 (5.8)
where
o* o
Vie——=— 5.9
] k* ok ( )

With the aid of expressions (5.8), equation (5.7) leads to the
following equation:

(=32 (05 (=) (-5) [0
(5.10)

Evidently, each of the two families (symmetric and antisym-
metric) now degenerates into two uncoupled waves. One of
these is the classical Rayleigh wave not influenced by the
presence of voids and the other is purely a volume fraction
wave, caused by the presence of voids, propagating with speed
V,. Thus, the effect of the presence of voids in this case is just
to exhibit new waves not encountered in the classical theory;
we note that their speed V), is identical with the speed of high
frequency volume fraction waves occuring in an unbounded
elastic material with voids (Puri and Cowin, 1985).

In the corresponding situation in thermoelasticity, it may be
shown, from equations (15) and (14) on p. 208 of Nowacki
(1975), that the presence of the thermal field does not exhibit
any new wave; there occur only classical Rayleigh waves
uninfluenced by the thermal field.
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Introduction

A negative slope is found in the constitutive equations for
phenomena such as erosion in penetration, shear banding and
other damage mechanisms. Yet, the understanding of the
behavior of continua which are governed by such constitutive
equations is very limited. In fact, Hadamard (1903) discarded
the possibility of such continua by stating that the wavespeed
is imaginary, so that the continuum cannot exist. Numerical
solutions for such materials are also quite strange. For exam-
ple, Belytschko et al. (1984, 1985) have recently shown that in
spherical geometries, strain-softening models can lead to
numerical solutions characterized by many large peaks in
strain, and that the locations of these peaks depend very much
on the mesh size. However, constitutive models with strain
softening are so prevalent and important in practice that their
behavior must be understood.

The only closed-form solutions for problems in which the
stress tends monotonically to zero are those of Bazant and
Belytschko (1985), who presented a transient solution for a
one-dimensional rod problem. These solutions exhibited a
localization of the strain softening to a domain of measure
zero, a discontinuity in the displacement and a singularity in
the strains at the point of strain softening. The argument of
Hadamard was shown to be irrelevant since the strain soften-
ing does not occur in a finite domain. However, the energy
dissipation in the strain softening domain was shown to
vanish, which raised questions as the applicability of this con-
stitutive model to damage.
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after the strain-softening portion, the strains remain finite and the strain-softening
point moves through the rod.

Vo Vo

L L

Fig. 1 Problem description: one-dimensional rod of length 2L with
velocities prescribed at both ends

We consider here two different stress-strain laws in which
the stress does not become a zero in the strain-softening
branch of the stress-strain law. In the first material law, the
slope of the stress-strain law after the onset of strain softening
remains nonpositive; we call this law strain softening/perfect-
ly plastic. In the second material law, the slope of the stress-
strain law is negative for an interval and then reverses; we call
this law strain softening-rehardening. It is found that if the
stress decreases monotonically to any nonzero positive value
after strain softening is initiated, a singularity appears in the
strain, and the displacement is discontinuous. However, with
the rehardening law, the strain remains finite and the strain
softening point traverses through the material.

Very few closed-form or numerical-transient solutions with
strain softening in which the slope of the stress-strain curve re-
mains nonpositive have appeared in the literature. Some
works relevant to this one are Bazant (1976), Aifantis and Ser-
rin (1983), Wu and Freund (1984), Sandler and Wright (1984),
Belytschko et al. (1984, 1985), Willam et al. (1984), and
Schreyer and Chen (1984). For materials with rehardening, ex-
cellent theoretical studies have been reported by James (1980).

Probl_em Formulation

Consider a bar of length 2L with a unit cross section and
mass p per unit length as shown in Fig. 1. The axis of the bar
coincides with the coordinate x; the origin of the coordinate
system is the midpoint of the rod so the interval of x is [- L,
+ L]. The equation of motion is
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a T(€) ! a T(€)
E+

Fig. 2 Stress-strain laws for problems 1 and 2

da
ox

where o is the stress, u(x,?) the displacement and superposed
dots are time derivatives. The stress-strain law is taken to be

=pli M

Fi]
&=E(o,e,é)a—§ @

v=1 3

In the elastic part of the response, E>0 and equations (1)-(3)
can be combined to yield

2
2 ‘;XZ =i c2=% @
Initially, the bar is undeformed and at rest so )
u(x,0)=v(x,00=0 —-L=x=<L (5a)
The boundary conditions are
v(L,y=0v,H(¢) (5b)
v(—L,))=—v,H(?) 5¢0)

where H( ) is the Heaviside step function, v, is a prescribed
constant velocity, and ¢ is the time.

Solutions

The solution to the above system is elastic until the stress
associated with the onset of strain softening is reached (we will
not be concerned with any purely elastic solutions). Strain
softening always occurs first at the midpoint, where the
stresses of the two elastic waves are superimposed and would
reach a stress of twice the intensity of the initial waves if the
material remained elastic.

The procedure of constructing a solution once strain soften-
ing is attained depends on the following hypothesis: strain
softening is limited to a single point x; (a set of measure zero)
and at that point the strain instantaneously increases at least to
where the stress attains a minimum value along the stress-
strain curve, so after strain-softening e =¢, (see Fig. 2).

Remark 1. This hypothesis was demonstrated in Bazant
and Belytschko (1985). While this step may need more
rigorous proof, it enables all of the governing equations to be
satisfied; furthermore, it is borne out by numerical solutions.

Problem 1: Strain Softening-Rehardening. In the first
problem, the stress-strain law is shown in Fig. 2(a). The stress-
strain law can be characterized as follows:

initial conditions: 6=¢=0; S=o0,

algorithm: if e>e¢, and S>0, and é>0

514/ Vol. 54, SEPTEMBER 1987

S ® T
11
@
c
O,
c
©
X
€3 _
Vo (1)
C
€.
X=-L X=0

Fig. 3 Wavefronts in problem 1 and the strain distribution «(f)

then 6=F~¢, S=¢
otherwise 6=E*¢, S=0

(6a)
(6b)
In the above, S is a state variable for the material. An alter-
native algorithm can be written in difference form:

difference algorithm:

oY = gold o B+ Ae (60)
if ¢™¥ > T'(e"%) then, replace above by o™V = T (V) (6d)
Ete for e<e,

T(e)= 0, +E~ (e—e;) fore,<e<e, (6¢)
o, +E* (e—¢,) fore,<e

It is assumed that Ev,/c>0,/2, so that when the two waves

meet at x=0, strain softening is initiated, so that equation

(6a) applies. Since it is hypothesized that at the strain soften-

ing point the strain jumps instantaneously, the stress then in-

stantaneously takes on a value which we will call o;, 0,=0,.
We then have 2 boundary-value problems (BVP):

BVP(A)-L=x=<0:

L
Equations (4) and (5a), ¢(0,0) =0, —~ =t=<t, (7a)
BVP(B) Ox<L:
L
Equations (4) and (58), 6(0,f) = o, —=<i=<l (7b)
c

where f; is a time to be determined as part of the solution.
Since these two BVPs are symmetric with respect to the origin,
we consider only BVP(4).

It will be shown in the following that a solution to this
problem can be found if o, assumes any value in the range

o=l =g, ®

see Fig. 2. We will parametrize this family of solutions by the
strain in the initial reflected wave, the strain in domain 2 in
Fig. 3, which is denoted by e,.

The structure of the solution is shown in Fig. 3. In domain
1, behind the initial elastic wavefront, the velocity, stress, and
strain are given by

. [ Ev
=—-v, €=—- 2

®
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(subscripts on the left-hand variables designate the domain to
which the variables pertain).

It will be shown that the reflected elastic wave moves faster
than the wave associated with strain softening, so that we have
elastic behavior in"domain 2; hence

]
E

- Also, as can be seen from Fig. 2(a), since o, = g, the stress-
strain law gives

€=

- (10)

g,=0,+E(e;, —€*) 40))
and since o, = 0y,
(12)
where ¢* =0,/E. The remainder of the solutions will be con-
structed by using the jump conditions

[4]=5le] [o]=ps>[€] (13)

where [ ] designates a jump and s is the velocity of the
discontinuity.

From the velocity jump condition between domains 1 and 2,
we obtain

€ =e"

U —uy=cle;—¢) (14a)
which, upon the use of equations (9), gives
. 20,
u2=C(62— c ) (14b)

The displacement field in domains 1 and 2 is then given by

(15)

where §=/—(L~x)/c and <f> =fH( ). Hence u(0,f) =
(ce, —2v,)<t—L/c>. Therefore, if the displacement field is
to remain continuous at x=0, another wave must emanate
from that point; the only exception is the unusual situation
where ce, =2v,, which will be examined later. The speed of
this wave will be denoted by § and it represents the interface
between domains 2 and 3 in Fig. 3.
The velocity-strain jump condition gives

2x
u(x,t)= ~UO<E—T> +(ce, ~v,)<E>

S(e3—ey) =13 — Uy =20, —Ce, (16a)

where the last equality is obtained by noting u; = 0 because of
symmetry and using equation (145). The stress jump condition
gives

(16b)
and the stress-strain law in the strain softening domain gives
(16¢)

Equations (16) are solved as follows: we can put equation
(16¢) in the form

03— 0y =pSi(e; — €,)

03— 0y =E(e3—¢)

03—~ 0, =pC*e; —€, — €, +€*) an
and using equations (16b) and (17) yields
§2(e3—€)=C2e; — €, — €5 +€*] (18)

Using equation (16a) to eliminate s from equation (18) yields a
quadratic equation for e,

2 2
6%—63(262+€b—€*)+€2(62+6b—€*)—( :a_62> =0 (19

which gives a one-parameter of solutions for ¢,

2, +€,—¢€* [ 1 2v 2712
e=———-——+——e—e*2+< o—e) ] 20
3 ) m (ep—€*) c 2 20)
in terms of the parameter ¢,. Only the solution with the
positive sign on the radical has been selected in the above since
it is necessary that e; >¢,; this inequality is violated with the
negative sign.

Journal of Applied Mechanics

Combining equations (16b6) and (16¢) to eliminate the
stresses and using equation (16a) to then eliminate ¢;, we ob-
tain the following equation for §

s\ 2 s
(—c—) +2A4 (—C—) —-1=0 (21a)
where
g Cleo—€e) 21b)
2(2v, —ce;y)
Hence
s=c(—A+vV1+A4%) (22)

and it follows immediately that if 4 >0, then by the triangle
inequality s<c¢. The condition that 4 =0 is satisfied if

2v, —ce, >0 23)
which must be satisfied if strain softening is to be initiated.

Thus we have a one-parameter family of solutions for this
problem in which the parameter ¢, is restricted by

a
*<e =<2 (24)
An interesting case, which we will see is usually obtained in
numerical solutions of these equations, corresponds to e, = ¢*.
Equations (20) then becomes

€y +e* [(eb—e*)2 <21)o *)2]1/2
= -+ —_
€ 5 + 2 € (25)
The strain €; can then be shown to be bounded by
1 2v,
—2—(262+eb+e*)563 S——;—+ (ep —€*) (26)

Note that if 2v,—ce*, equation (215) shows that A —oo and
from equation (22), s—0. :
The solution for — L<x< —s is then

u(x,)= ~uo<$—%> -F(ce*—vo)<£> 27a)

v, 2x « Yo
ezTH(E——-C—)+(e ——C—>H($) F27b)

For —s=x=<0 '
u=exH<E> 27¢)
e=eH<E> 7d)

The character of the solution is shown in Fig. 3. A noteworthy
feature which distinguishes it from an elastic-plastic solution is
the unloading wave emanating from the center.

Remark 2. Although the point of strain softening moves
in the solution, this does not contradict the statement in Ba-
zant and Belytschko (1985) (for the case in which ¢, =0 and
E =<0 in the softening domain) that the strain softening/elastic
interface must be stationary. In the case considered here with
g,#0 and E becoming positive again after softening, the
strain softening occurs instantaneously and the point subse-
quently becomes elastic. Thus, the interface s(f) can be con-
sidered to be between two elastic domains.

Remark 3. Note that if equation (16a) is satisfied, >0 as
required, since e¢; >e¢,.

Remark 4. The solution poses some peculiar mathematical
difficulties, for at the points x= +s the stress takes on the
values in the range o, < ¢ <o, twice in one point in time; thus
whether it is differentiable, and whether o,, in the governing
equation (1) is defined, is not clear.

Remark 5. The propagation of the jump discontinuity and
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-Fig. 4 Strain and displacement distributions at time t= 15 for problem
2 for the case when ¢5, =0.3

subsequent loading may require that g3 =T(e;3)>0,. Under
certain conditions this requirement is not met.

Solution 2. The same BVP is solved with the stress-strain
law shown in Fig. 2(b). The constitutive algorithm is as
follows:

initial conditions: o=e=0 S=0,, (28a)
ife=S=g,andé¢>0, ¢=0 (28h)
ifo,<S<o0,, o=Sandé>0, G=E"¢ (29a)
otherwise o=E"*¢ (29b)

The difference algorithm of equation (6d-e) with T(e)
redefined as in Fig. 2(b) may also be used.

In constructing the solution for this material law, we note
that the stress at the strain-softening point becomes g, after
the jump in the strain, so the elastic solution in domains 1 and
2 becomes

e, =¢€*, 0,=0 (30a)

u(x,t)=—vo<£-zcx—> +(ce* —v,)<E> (300)

The size of the strain-softening domain is characterized by s
with s(=0)=0, and from (30b), the elastic solution at s=0is
given by
L
u(O,t):(ce*—Zvo)<t——c—> @31

If strain softening has occurred, ce* —2v,<0, so since the
stresses in both the elastic and strain-softening domain are oy,
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Fig. 5 Strain and strain displacement distributions at time t=15 for
problem 2 for the case when o, =0.8

there is no mechanism for developing a wave to eliminate the
displacement discontinuity. The only way to satisfy the boun-
dary value problems (7) is to allow a discontinuity in the
displacement at x=0 and an associated infinite strain. Hence
equation (305) holds in the left-hand plane with s=0 and the
magnitude of the displacement discontinuity is 2 ce* —4v, and
the strain field is given by

E(X’t)z%H(" L:x> - (%—eg)H(t— LC_")

L
+(2ce* —4v,)8 (x)H(t-—-—E—) for x=0.

(32)

where 6( ) is the Dirac delta function.

The energy dissipation due to nonlinear material behavior in
the region —s=<x=xs, where s tends to zero, results strictly
from the Dirac delta term in equation (32) and is given by

W=20,(ce* ~20,) 33)

This agrees with the result of Bazant and Belytschko (1985)
when o, —0, i.e., the dissipation vanishes when the stress goes
to zero in the strain-softening domain. When ¢, #0, a finite
dissipation of energy can be achieved, but it is solely due to the
plastic response and equivalent to that of an ideal plastic
material with yield stress g,,.

Figures 4 and 5 show the strain and displacement fields for
problem 2 in the left-hand plane. Both the analytic solution
and the finite element solution are shown. In these examples,
c=1, Ev,/co,=0.6, and o, =(0.3, 0.8) in Figs. 4 and 5,
respectively. For the finite element solution, 40 elements were
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Table 1 Parameters for problem 1 Figs. 6-8

e, =1.0 =10
e, =1.2 o, =0.2
v, =0.8 L=50
no. of elements for (0=x=<L)=80
¢ =1.0

Courant number ~0.7
§ (for closed form solution) = 0,704
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Fig. 6 Strain for example of problem 1

used on the left-hand plane and the Courant number was 0.6.
Whereas the analytic solution predicts an infinite strain at
x =90, the strain in the finite element solution is finite but much
larger than the surrounding strains. The analytic and finite ele-
ment solutions otherwise agree quite well except at the
wavefront generated by strain-softening (at x=5 in the
figures).

Figure 6 shows the strains in the right-hand plane for a finite
element solution for problem 1; the corresponding analytic
solution with e, =¢* is also shown. The problem parameters
are listed in Table 1. Several features are noteworthy: (i) the
finite element solution exhibits the unloading wave (at which
¢=0.2) which precedes the strain-softening wave s; (ii) the
finite element solution correctly captures the wave speed s; (iii)
the strains behind the wave s(¢) are extremely noisy, which
probably reflects the difficulty the numerical solution has in
reproducing the complex stress path associated with the
wavefront (see Remark 4).

The noise significantly exceeds that found in finite element
solutions of elastic wave propagation problems (see Holmes
and Belytschko, 1976). Figure 7 shows the same solution with
a five-point ‘‘averaging’’ digital filter described in Holmes and
Belytschko (1976) applied to the strains and stresses. The
filtering technique more clearly brings out the similarities of
the finite element and analytic solutions. Figure 8 shows the
displacements at 3 times, which again illustrates the presence
of the unloading wave and the excellent agreement of the
closed form and numerical solutions.

Capturing the unloading wave in a numerical solution does
require some care. We used a time-step control so that during
a time step no element can pass more than 10 percent beyond
the point (e, 0,,) in the stress-strain law. Attempts to obtain
the same fidelity by reducing the Courant number (time step)
to about 0.1 were unsuccessful because at such low Courant
numbers the wavefronts are excessively dispersed.

A convergence study was made in the L,-norm for this solu-
tion using meshes of 40 to 320 elements. The rates of con-
vergence were quite sensitive to the time step and amount of
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Fig. 8 Displacements for example of problem 1

artificial viscosity. The rates of convergence varied from #%¢
to A'3, which is substantially below the A? rate in linear, static
problems for this element.

Discussion and Conclusions

Closed-form transient solutions have been developed for
rods with strain softening, a negative slope in the stress-strain
curve. Two types of stress-strain curves were considered, one
where the stress increases again and one where it remains con-
stant after the strain softening. Finite element solutions were
also obtained for representative problems. The following con-
clusions are drawn:

1 If the stress remains constant after the strain softening, a
discontinuity appears in the displacement.

2 If the stress increases after strain softening, no discon-
tinuity appears in the displacement, but the strain-softening
point moves through the rod with jump discontinuities in the
stresses and strains at a speed that is slower than the elastic
wavespeed.

3 Finite element solutions reproduce the salient features of
these solutions but exhibit excessive noise and slow rates of
convergence.

4 When the stress remains constant, the displacement
discontinuity is associated with a finite dissipation of energy;
when the stress monotonically decreases to zero, the failure of
the material associated with the discontinuity in displacements
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requires no energy to be dissipated because it occurs on a set of
measure zero.
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generality in constitutive response and taking into account the phenomenon of neck-
ing. Jumps in stresses are ruled out on the basis of material stability postulates and a
previous approach (by Pan, 1982) is discussed. It is noted that for elastic-perfectly

plastic solids, sliding velocity discontinuities occur under restrictive and exceptional
conditions (when both the surface and its normal are stress characteristics) for
generalized plane stress as compared to plane strain. Necks may form along (stress)
characteristic directions with the relative velocity vector orthogonal to the other
Samily of characteristics.

1 Introduction

A variety of problems of physical interest involving the
deformation of elastic-plastic solids may require the admission
of discontinuities in the gradients of stresses and velocities
(weak discontinuities) or in these quantities themselves (strong
discontinuities). Such discontinuities may occur within regions
that are currently deforming plastically or at elastic-plastic
boundaries. These possibilities have received wide attention
for rigid-perfectly plastic solids in plane strain (Hill, 1950) and
in generalized plane stress (Hill, 1952) in the presence of either
the isotropic Huber-von Mises or Tresca yield conditions in
the plastic range. It is well known that for such solids, strong
discontinuities in stress and velocity cannot be simultaneously
present, and that velocity jumps occur across characteristic
surfaces. It has been noted by Hill (1952) that when a rigid-
plastic generalized plane-stress theory is employed in the study
of the extension of thin plates, two types of strong discon-
tinuities must be considered. These arise because of the neglect
of elastic deformation and the averaged nature of generalized
plane stress. A consideration of the second of these factors has
led to the mathematical idealization of the experimentally
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observed phenomenon of localized necking in thin sheets
(Nadai, 1950).

In a recent paper, Drugan and Rice (1984) investigated
strong discontinuities across quasi-statically propagating sur-
faces in elastic-plastic solids under general three-dimensional
conditions when all displacement components are assumed to
be continuous. One important conclusion of their work is that
all stress components are always continuous, a result that
follows from certain material stability postulates.

Pan (1982) has also discussed quasi-statically moving strong
discontinuities for elastic-perfectly plastic Huber-von Mises
materials under generalized plane stress. He assumes that a
strong discontinuity can be replaced by a transition layer of
elastic material in which all stress components are assumed to
vary continuously. He subsequently argues that all stress com-
ponents are continuous across propagating surfaces, by using
the specific nature of the Huber-von Mises locus and arriving
at a contradiction.

In the present work, we reexamine quasi-static discon-
tinuities for the more general case of an anisotropic hardening
solid, using an integral form of the maximum plastic work ine-
quality and the usual assumptions in the theory of generalized
plane stress (Section 2). It is demonstrated in Section 5 that the
use of the maximum plastic work inequality leads to full stress
continuity for a broad class of solids, which includes some
hardening materials and anisotropic behavior. Pan’s assump-
tions and the limitations of his approach are discussed in Sec-
tion 5. A complete analysis of all possible velocity jumps, in-
cluding sliding discontinuity and localized necks, is carried out
in Section 6 with some generality in constitutive behavior.
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Fig. 1

Elastic-plastic body with discontinuity surface ©

2 The Generalized Plane-Stress Problem

Consider an elastic-plastic body occupying an open cylin-
drical region R of height # (see Fig. 1). Let the boundary dR of
the above region be composed of two traction-free planar sur-
faces S, and S, and a lateral surface L.

Consider further a fixed orthonormal coordinate system
{07, e{, e;, e;} such that e4 is parallel to the generators of R.

Generalized plane stress conditions require that the height
of the cylinder (also referred to later as the thickness of the
cylindrical plate) be small as compared with any other dimen-
sion of the cylinder, and that the prescribed tractions t be such
that:

t=0o0ro;=00nS, and S,

and
2.1

Here o; are the components of the symmetric Cauchy stress
tensor, Greek subscripts have the range 1, 2 while Latin
subscripts take the yalues 1, 2, and 3. (This convention will be
adopted through the following development.)

In what follows, field quantities such as ¢, ¢, u, and v will
represent thickness averages of the stress and strain tensors
and the displacement and velocity vectors, respectively. It is
also assumed that,

t3=0,f,=1t%(x;,x;)onL.

(2.2)

The above assumptions result in solutions of the generalized
plane stress problem which, in general, will not satisfy the ex-
act three-dimensional field equations as discussed in detail by
Timoshenko and Goodier (1970) and Hill (1950). This is
because some of the compatibility equations are not generally
satisfied, and errors are involved in using the averaged quan-
tities in the constitutive law and the yield condition. However,
if the plate thickness is sufficiently small, the generalized plane
stress solution is expected to provide an accurate
approximation.

Let I be a planar surface, parallel to the x; — xj plane,
dividing the region R in two open subregions R* and R~ such
that

o;;=00nR.

R=R*UR-UL.

We will define the normal n(X) to T at a point £ € T as the out-
ward normal of the closed subregion R~ (R* = R* UX) at
the same point X

In what follows, the surface £ will be viewed as a potential
surface of strong discontinuities (discontinuities in stresses
and strains) and will be allowed to translate quasi-statically
with a normal velocity Vn.

Since the approximate theory of generalized plane stress
treats the thickness of the plate as vanishingly small, Hill

(1952) points out that every quantity whose gradient is of
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Fig. 2 Local coordinate system translating with the surface

order (1/h) in a zone of breadth comparable to h should be
modelled as a discontinuity. Thus, the experimentally ob-
served formation of necks (Nadai, 1950) in thin plates sub-
jected to tension (rapid variation of thickness of the plate in
narrow zones) would be modelled as discontinuities in the out-
of-plane displacement component u;.

The jump in a field quantity g(x), across the surface I, will

be denoted by:
} 2.3)

[g]l=g" (X) —g~ (%) where
All field quantities will be referred to, with respect to an or-
thonormal frame {0, e,, e,, e,} transiating with the surface &
and such that 0 € £, e; = e; and e; = n; see Fig. 2.
Inplane displacement components u,, are required to have
the following smoothness properties:

U, €C(R) and
u,eC'(R-X),

with the understanding that du,,/dx; need not be continuous
across L. Then, according to the Hadamard compatibility
relations (Hill, 1961) for jumps in the derivatives of a con-
tinuous function,

du,
[ 3%, ] =N,7g on L.

g¥(X)=1lim g(Xxen(X)) XL and ¢>0
e—0

3 Smoothness Considerations

3.1

3.2)

where A, are arbitrary functions of position on X. The out-of-
plane displacement component u; will in general be allowed to
suffer a jump across I, as discussed in Section 2. Thus:

uz;€CYRHNCHR ™), (3.3)

with the understanding that on I, u; and its gradient need not
be defined. On the other hand, [u5], the jump in the limiting
value of u; from R~ to R*, will be assumed to be a con-
tinuous and continuously differentiable function of position
on L.

It is now possible to extend the Hadamard compatibility
relations (3.2) for the treatment of jumps in the derivatives of
discontinuous functions. This extension was first discussed by
Thomas (1957). The following simpler version was later pro-
vided by Hill (1961),

9 3
[ “3 ]=)\3n,-+——¢ on E. (.4)
ox;

0x; ;
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where A, is an arbitrary function of position on  and ¢ is an
arbitrary continuous function, together with its gradient on I
and in one neighborhood, say R ~, with the additional restric-
tion that

¢=[uslonXk.
One choice of ¢ in R+ would be to consider ¢ continued

analytically along the normals. Any other choice would merely
change \;, which is given by
Ny =[Vusen]— Voen.
Relations (3.2) and (3.4) allow definition of jumps in the
strains across L, consistent with the assumptions of the ap-
proximate theory of generalized plane stress.
Within the contexts of a small strain formulation,
1
eijo(ui,j+uj,i), (3.5)
and the jumps in the inplane strain component ¢,, can be ex-
pressed by equation (3.2) as:
1
[exs] =—2—()\an5 +Ngh,) on L. 3.6)
On the other hand, the jump in the out-of-plane strain compo-
nent e;; can be expressed by equations (3.2) and (3.4) as:
a9
=NH3+——on L. 3.7
[es;] 313 axs 3.7

where ¢ ¢ C'(R*) and ¢ = [u;] on L.

4 Material Idealization

Within the context of the small-strain flow theory of
plasticity, the total strain rate tensor can be decomposed into
elastic and plastic parts:

é=é+éf onR, “.1)

where the dot denotes differentiation with respect to time. The
elastic strain rate tensor €é° is related to the stress rate tensor ¢
through a constant, positive definite four-tensor H (the in-
verse of the elasticity tensor C). H is assumed to possess the
usual major and minor symmetries. For an anisotropic elastic-
plastic solid, é¢ is given by:

é¢=HéonR. 4.2)

Attention will be focused on the class of materials obeying
Drucker’s stability postulate. A particular form of this
postulate known as the maximum plastic work inequality can
be expressed as:

(60— 0*)eé" =0. 4.3)

v f(o, €¥) = 0, and f(o*, €¥) =< 0, where f(o, &) is the yield
function. An important implication of the above postulate is
the normality of the plastic strain rate é” to the yield surface
leading to a flow rule of the form,

& =\P, 4.4)

where A\ = 0 and P = V, f. A and P are scalar valued and
symmetric tensor valued functions of g, respectively. In the
following section, an integral form of (4.3) will be used in con-
junction with equations (4.1) and (4.2), as well as the com-
patibility conditions for the jumps in total strains (3.6), (3.7)
to define the jumps in the stresses and the plastic strains pro-
duced during the passage of a discontinuity I through a
material point.

5 Stress Continuity Across the Propagating Surface

In this section it will be demonstrated that all stress com-
ponents are continuous across the surface X, propagating
quasi-statically through the thin plate. It will be shown that

Journal of Applied Mechanics

this is true even if the out-of-plane displacement u, suffers a
discontinuity across L. The following proof is based on the
maximum plastic work inequality and the positive definiteness
of H. It is an adaptation for plane stress of the proof given by
Drugan and Rice (1984) for the general three-dimensional
case. In the present analysis, only the in-plane displacement
components u, are assumed continuous, and the proof is
adapted to suit the assumptions of the theory of generalized
plane stress. Also, unlike the discussion by Pan (1982) and
consistent with the assumptions of generalized plane stress
(Hill, 1952), our discussion treats necks as jumps and not as
narrow transition layers,

If inertia terms are neglected, the balance of linear momen-
tum requires that across the quasi-statically moving surface &
the traction be continuous. Thus

[¢,]=lons}=00nL.

With respect to the local orthonormal coordinate frame {0,
e, ,, €;} moving with I, n; = §,; and the above conditions
become:

[0y, ]=00nZL. 6.1

Equations (2.2) and (5.1) imply that the only stress component
that can suffer a nontrivial jump is g,,. The plastic work W?
accumulated discontinuously at a material point due to the
passage of the surface L is given by:
P
we= |

P
P o+de.

5.2)

It should be observed here that some error is involved in using
the averaged stress and strain quantities of generalized plane
stress in the above integral. The above integral is evaluated ac-
cording to the assumptions of Section 2. On applying equation
(2.2), we find that the plastic work accumulation in equation
(5.2) reduces to

P_
Eotﬁ
WP — SJ’,; Gopdels. (5.3)
Using equation (5.1), the above becomes:
P_
2
WP = — o leh] - 200leh + | 1 ondel. (5.4)
€2

Also, by using the fact that ny; = 8,4, equation (3.6) implies
that:

(5.5)

By setting def” = de — de¢, using the continuity of e,, across £
equation (5.5) and integrating by parts, equation (5.4)
becomes

[ex]=0o0nZXor [¢5,]= —[ef,] on L.

%
WP = —onlehl-2ulei] - | ) 5.6
€22

e
0y, deS,.

The integral in equation (5.6) can now be evaluated by using
equations (2.2), (5.1), and the constitutive law, to give:

€22 1
JLgy octs= == Hoan(ois+ o)l th)
In addition, from equations (2.2), (5.1), and (5.5),
[e52]= —[e5] = — Hyplop] on L. (5.8)
Thus, equations (5.6) and (5.7) give:
1
WP = —oy[efi] - 201, [eh] _T(sz +op)leh]
or,
WP — 1 + [P 5.9
= ——- (o + o) leg]. (.9

It should be observed that the restrictions imposed on the path
in stress space in the evaluation of the integral in equation
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(5.6) are the plane stress conditions and the continuity of trac-
tions across L. This effectively implies a straight line path in
stress space from ¢4, to g5;.

The integral form of the plastic work inequality (4.3) can
now be used by setting ¢* = ¢* where f(o*, ") =< 0. Thus,
¢* is constrained to remain always at or inside the yield sur-
face during passage of L. Thus, by our using equations (2.2),
(5.1), and (5.9): )

R_
S y
Py
€

which, by equation (5.8), gives

1
(05 —0f)def= “—2—(025 +op)leh] + 05 (5] =0

1 1
—51023)[65,) <0 or ——([0,])* Hyzzz <0. (5.10)

(5.10) now requires that [o5,] = 0, since Hyp,y, > 0.

Remarks. The following remarks are relevant:

1. Under generalized plane stress conditions, all stress
components are continuous across the slowly prop-
agating surface L, even if the out-of-plane displacement
uy suffers a discontinuity.

2. The present discussion applies to general anisotropic
elastic-plastic hardening solids obeying a flow rule of
the associated type. The proof of full stress continuity is
based on an integral form of the maximum plastic work
inequality and the positive definiteness of the elastic
potential.

3. An earlier discussion by Pan (1982) is limited to elastic-
ideally plastic solids of a Huber-von Mises type under
generalized plane stress conditions., His argument,
which does not make use of the maximum plastic work
inequality, follows from Hill’s statement (Hill, 1950)
that the stress state from o3 to o3, can be bridged only
by a succession of elastic states. This assumes a smooth
variation of stresses in a ‘‘transition layer.”” Such an
assumption is questionable for generalized plane stress
since, as pointed out in Section 2, any field quantity
whose gradient is O(1/k) in a zone of breadth com-
parable to 2 should be modelled as a discontinuity.
Even if this assumption is accepted, Pan’s argument
clearly does not apply to arbitrary yield surfaces or
general hardening solids. For instance, in elastic-
perfectly plastic solids characterized by a Tresca yield
condition when the neck (discontinuity in #,) coincides
with a principal stress direction and ¢,; = =+ ¢,, the
stress component o,, can have any value between 0 and
+ o, and still lie on the yield surface (Hill, 1950).
Hence, A in equation (4.4) is not necessarily zero in the
transition from ¢* to ¢~ (Hill, 1952), and the argument
fails. Also, for any type of hardening solid, the con-
sistency condition requires the stress state to lie on the
yield surface during the process from ¢* to ¢~ and no
elastic unloading is possible.

6 Discontinuities in Strains and Velocities

In this section, the earlier result pertaining to continuity of
stresses across L will be used to provide restrictions on the
nature of admissible jumps in strains and material particle
velocities across L for a general anisotropic hardening solid.

Attention will then be turned to plastically incompressible, .

generally anisotropic, elastic-perfectly plastic solids with
smooth but otherwise arbitrary yield surfaces. Specialized
results will be given for Huber-von Mises $olids at the end of
the discussion.

General Considerations. The jumps in the in-plane velocity

component v, are given (Hill, 1961; Drugan and Rice, 1984)

by:
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du,,
[v,]=— V[———] on L,
ax,

where Vn is the normal velocity of L. Making use of equations
(3.2) and (3.6) the velocity jumps may be expressed as:

[v)]= = VIeyl o
[v,]=—2V]e;0]

Full stress continuity and equation (4.2) require the elastic part
of the strains to be continuous across L.

6.1)

n . (6.2)

[ef]=0o0n L. 6.3)
The above, and equation (5.8), therefore imply
[e5]=00nE. 6.4

As a result, the expression for the positive plastic work ac-
cumulation in equation (5.9) becomes

WP = —ay,[ef] - 20,6120, (6.5)

and the jumps in the velocity components v, and v, are given
by:

(V1= ~ VIefi] o
[v,]= ~2VIef3]

The plastic work WP? can now be expressed in terms of velocity
jumps as follows:

nk. (6.6)

1
WP=7(011[01]+012[021)20- 6.7)
No specific restrictions on the constitutive model other than
the general assumptions made in Section 4 have been imposed
in the derivation of equations (6.1)~(6.7).

For the specific class of plastically incompressible solids:

[e531= —[efi]— el on L. (6.8)
which, by use of equation (6.4) simplifies to:
[e}3]1= ~[ef]on L. (6.9)

Equation (6.9) serves to determine the jump in the out-of-
plane plastic strain component €, in terms of the jump in the
inplane plastic strain component ¢}; for plastically incom-
pressible solids.

If the displacement component 4 happens to be continuous
across L as in (Drugan and Rice, 1984), then ¢,, and hence €,
would also be continuous. Equations (6.8) and (6.6) will then
imply that ef, and v, should also be continuous across I.
Thus, it follows that for a plastically incompressible solid,
when the surface I does not coincide with a neck (jump in u5),
only a sliding velocity discontinuity (jump in v,) is
permissible.

Elastic-Perfectly Plastic Solid. For such solids, the yield sur-
face is represented by

Sf(e)=00nR, (6.10)

where f(o) depends symmetrically on ¢ and o7. It will also be
assumed here that the yield surface is smooth (has a con-
tinuous normal).

Under such circumstances the flow rule takes the following
form:

¢ =APonR, 6.11)

where A=0 is an undetermined scalar function of position,
and

P@)=V,f(e)onR 6.12)
is a symmetric tensor-valued function of ¢. Under conditions
of generalized plane stress, equations (6.10) and (6.12) should
be used in conjunction with the constraint (2.2). Inside regions
that are currently deforming plastically, it can be shown from
the two inplane equilibrium equations, the yield condition,
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the plasticaily deforming side

and the plane stress assumption (2.2) that along stress
characteristic directions the direct components of P, should
vanish (Hill, 1950).

It is also clear that, P; should be continuous across L from
assumed smoothness of the yield surface and the requirement
of full stress continuity. Then, from equation (6.11) the jumps
in the plastic strain component ef;- becomes

(6.13)
where g = [}7 @\=0 is an undetermined scalar function of

position on .

Since [e£,] = 0 across I, equation (6.13) implies that either 5
= 0 or Py, = 0 or both. If y = 0, equation (6.13) requires all
strain components to be continuous. Thus, the necessary con-
dition for nontrivial jumps in strains to exist across L is that
P,, should vanish on X. In other words, I should coincide
with a stress characteristic direction of its plastic side.

This condition is less restrictive than the necessary condition
for nontrivial jumps in the plastic strain components derived
by Drugan and Rice (1984) when al/ displacements were con-
tinuous across X. The corresponding necessary condition
derived by them states that P, = P3; = Py; = Oon L.

From the above, the following important observation can
be made. Consider at least one side of & (which coincides with
a neck, say R*) to be currently deforming plastically. If, in
addition, L coincides with one of the stress characteristic
directions, say direction A4 (see Fig. 3), then the velocity com-
ponent along the other characteristic direction B, is con-
tinuous across . Thus,

[Vz]=0onZ. (6.14)

The above result follows by first observing that since I coin-
cides with a stress characteristic direction, P,, vanishes on .
Also, if the other characteristic direction makes an angle 6 (6
# + 7/2) with the x; axis, then by the fact that Pp; = 0 and
the transformation relation, we have

[ef1= —9P;onL.

P
L for P, #0.
12
In addition, combining equations (6.6) and (6.13) and noting
that P, # 0, we see that the following is true:

tan 6= — (6.15)

P
2PI;2 [v,] on L. (6.16)

[v1=

Journal of Applied Mechanics

The velocity jump [v,] along the other characteristic direction
will be given by

[vg]=cos 8([v,] + [v,]tan §), 6= :l:%,

which vanishes by use of equation (6.15) and (6.16). This
general result was also noted by Pan (1982) for the special case
of an isotropic Huber-von Mises solid and it also holds for sta-
tionary necks in a rigid-plastic solid (Hill, 1952).

If in addition P, = 0, both the stress characteristics merge
along L(6 = + n/2) and as a result £ becomes a ‘‘parabolic
line.”” Equations (6.6) and (6.13) then imply that if P, = 0,

[v,]=0o0n L. 6.17)

Thus, when £ coincides with a ““parabolic line,”’ the tangential
velocity is continuous and only the normal velocity has a
jump.

When £ coincides with a neck and the two characteristic
directions do not merge along L (see Fig. 3), then the ac-
cumulation of plastic work (6.7) due to the passage of L
becomes:

WP:iV(—"“P‘;;i"“P”)[vz]zo. (6.18)
Also, the fact that g;¢] = 0 implies that
0Py =0. (6.19)
By equation (2.2) and P,, = 0 along L, (6.19) becomes:
0, Pyy +20,P5 =0. (6.20)
Inequalities (6.18) and (6.20) result in
717 2[;21]2 20, P, #0. (6.21)

When the two characteristics merge along X(6 = = n/2 and

Py, = P, = 0), it follows from equations (6.7) and (6.17) that
J11

— [v»,1=0. 6.22

v [v] (6.22)

Isotropic Huber-von Mises Solids. The above results can

now be specialized for an isotropic elastic-perfectly plastic

solid that obeys the Huber-von Mises yield condition. For

such a solid, the yield condition states

1
f(a)=7 S.S—73=0o0n R, (6.23)
where § = ¢ — 1/3 tr o1 is the deviatoric stress tensor and 7,, is
the yield stress in pure shear. For such a solid,

P(o)=V,f(6)=SonR. (6.24)
All the results and corresponding remarks from equations

(6.3)-(6.22) hold for this solid with P replaced by 8. In par-
ticular, equation (6.16) takes the form (Pan, 1982):

S .
[v,]1= 231,12 [v,] if S}, #0, (6.25)
and equation (6.18) reduces to
1 T%
WP=—< )[v2]>0. (6.26)
V\ o

Summary of Results. The results of Section 6 can now be
summarized as follows:
(a) For a general anisotropic hardening solid that is also
plastically incompressible, the following is true: When
. the propagating surface L does not coincide with a
neck (full displacement continuity), only a jump in the
tangential velocity component (sliding discontinuity)
is admissible,
If, however, the solid is perfectly plastic, L coincides
with one characteristic direction (P, = 0). In addi-

(&)
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tion, full displacement continuity together with plastic
incompressibility also give P3; = P;; = 0. This states
that the direction normal to I is also a characteristic
direction, Unlike plane strain, this occurs under plane
stress conditions only under exceptional cir-
cumstances (Hill, 1950). In particular, for Huber-von
Mises solids this is true when the surface coincides
with a plane of maximum shear stress, and the latter is
equal in magnitude to the yield stress in pure shear.

(c) For a general anisotropic elastic-perfectly plastic
solid, when a surface coincides with a neck (discon-
tinuity in u;), both tangential and normal velocities
have jumps. This requires that the neck should lie
along one characteristic direction. Then the compo-
nent of the velocity along the other characteristic
direction (not generally perpendicular to X) is con-
tinuous (see equation (6.14)). Thus, necks cannot
form if the plastically deforming side of the surface is
in an elliptic state of stress.

(d) For an elastic perfectly plastic solid, if in addition to
(¢), Py, = 0, both the characteristics merge along the
neck, and this results in a parabolic stress state. Then,
the tangential velocity is continuous and only the nor-
mal velocity has a jump. For the special case of a
Huber-von Mises solid, P, = S;; = 0, and the
characteristic surface coincides with a principal stress
direction.

7 Remarks and Applications

The jump conditions discussed here have some relevance to
the stress and strain fields near the tip of a quasi-statically
growing crack in an elastic-plastic solid under generalized
plane stress conditions. For instance, in the elastic-perfectly
plastic Huber-von Mises material (Rice, 1982) a ‘‘constant
stress’’ (asymptotic) plastic sector cannot occur direclty
behind a ‘‘centered fan’’ plastic sector because the condition
for positive plastic work accumulation (6.21) will be violated
at the interface. This renders the asymptotic solution for the
plane stress stationary crack by Hutchinson (1968) unaccept-
able when the crack begins to grow. From the preliminary
asymptotic analysis by Rice (1982), it then follows that only an
“‘elastic unloading” sector can occur behind the centered fan.
Hutchinson’s stationary crack solution also has a jump in the
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inplane stress component between two constant stress sectors.
This is also inadmissible when the crack begins to propagate.

No solution for this problem, which satisfies all the condi-
tions set forth in the present work, has yet been constructed.
An open question that arises, for which detailed experimental
and numerical studies may provide an answer, is whether
necking occurs near the growing crack tip. Otherwise, except
in special circumstances (e.g., a fan angle of 90 deg), no strong
discontinuities near the growing crack tip can be admitted. In
view of the fact that the (fully yielded) stationary crack tip
solution (Hutchinson, 1968) has a strong discontinuity, one
wonders whether the condition of full continuity in both stress
and velocity near the propagating crack tip may be too restric-
tive to satisfy.
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A Continuum Model for Void
Nucleation by Inclusion Debonding

A cohesive zone model, taking full account of finite geometry changes, is used to
provide a unified framework for describing the process of void nucleation from in-
itial debonding through complete decohesion. A boundary value problem simulating
a periodic array of rigid spherical inclusions in an isotropically hardening elastic-
viscoplastic matrix is analyzed. Dimensional considerations introduce a
characteristic length into the formulation and, depending on the ratio of this
characteristic length to the inclusion radius, decohesion occurs either in a ““ductile”
or “‘brittle’’ manner. The effect of the triaxiality of the imposed stress state on
nucleation is studied and the numerical results are related to the description of void
nucleation within a phenomenological constitutive framework for progressively

A. Needleman
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Providence, Rl 02912

cavitating solids.

1 Introduction

The nucleation of voids from inclusions and second phase
particles plays a key role in limiting the ductility and toughness
of plastically deforming solids, including structural metals and
composites. The voids initiate either by inclusion cracking or
by decohesion of the interface, but here attention is confined
to consideration of void nucleation by interfacial decohesion.

Theoretical descriptions of void nucleation from second
phase particles have been developed based on both continuum
and dislocation concepts, e.g., Brown and Stobbs (1971),
Argon et al, (1975), Chang and Asaro (1978), Goods and
Brown (1979), and Fisher and Gurland (1981). These models
have focussed on critical conditions for separation and have
not explicitly treated propagation of the debonded zone along
the interface. Interface debonding problems have been treated
within the context of continuum linear elasticity theory; for
example, the problem of separation of a circular ¢ylindrical in-
clusion from a matrix has been solved for an interface that
supports neither shearing nor tensile normal tractions (Keer et
al., 1973). The growth of a void at a rigid inclusion has been
analyzed by Taya and Patterson (1982), for a nonlinear
viscous solid subject to overall uniaxial straining and with the
strength of the interface neglected.

The model introduced in this investigation is aimed at
describing the evolution from initial debonding through com-
plete separation and subsequent void growth within a unified
framework. The formulation is a purely continuum one using
a cohesive zone (Barenblatt, 1962; Dugdale, 1960) type model
for the interface but with full account taken of finite geometry
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changes. Constitutive relations are specified independently for
the matrix, the inclusion, and the interface. The constitutive
equation for the interface is such that, with increasing inter-
facial separation, the traction across the interface reaches a
maximum, decreases, and eventually vanishes so that com-
plete decohesion occurs. Since the mechanical response of the
interface is specified in terms of both a critical interfacial
strength and the work of separation per unit area, dimensional
considerations introduce a characteristic length.

Arbitrary inclusion geometries and quite general matrix and
inclusion constitutive relations can be incorporated into the
formulation. The specific boundary value problem analyzed
here is one simulating a periodic array of rigid spherical inclu-
sions in an isotropically hardening elastic-viscoplastic matrix.
The aggregate is subject to both axial and radial stresses and a
circular cylinder surrounding each inclusion is required to re-
main cylindrical throughout the deformation history in order
to simulate the constraint of the surrounding material. By con-
sidering histories with different ratios of radial to axial stress,
the effect of stress triaxiality on nucleation is studied. The
numerical results are related to the description of void nuclea-
tion within the phenomenological constitutive framework of
Gurson (1975, 1977).

2 Interface Model

Attention is directed toward an interface supporting a
nominal traction field T (force/unit reference area) which, in
general, has both normal and shearing components. Two
material points, A and B, initially on opposite sides of the in-
terface, are considered and the interfacial traction is taken to
depend only on the displacement difference across the inter-
face, Au 4. At each point of the interface, we define

U, =n°Autyp, U, =teAuyy, uy=beAu,, 2.1
and

T,=nT, T,=tT, T,=b-T (2.2)
SEPTEMBER 1987, Vol. 54/ 525
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Fig. 1 Normal traction across the interface as a function of u,, with u;
=up=0

In equations (2.1) and (2.2), n, t, b form a right-hand coor-
dinate system chosen so that positive u, corresponds to in-
creasing interfacial separation and negative u,, corresponds to
decreasing interfacial separation.

The mechanical response of the interface is described
through a constitutive relation that gives the dependence of
the tractions T,, T;, and T, on u,, u,, and u,. Here, this
response is specified in terms of a potential ¢(u,, u,, u,),
where

u

¢(un 9ulsub) = SO [Tndun + Ttdut + deub] (23)
As the interface separates, the magnitude of the tractions in-
creases, achieves a maximum, and ultimately falls to zero
when complete separation occurs. The magnitude of the trac-
tions is taken to increase monotonically for negative u,.
Relative shearing across the interface leads to the development
of shear tractions, but the dependence of the shear tractions
on u, and u, is taken to be linear. The specific potential func-
tion used is

d)(un yutaub)
27 1 2 4 /u 1 /u,\?
et (5) -5 () (F) ]
4 ™\ 3\s/ " 2\
+ 1 (u,
2 *\5
- () ()]
+—al—) |1-2 +
2 °‘< 5 5 5
for u, = 8, where o,y is the maximum traction carried by the
interface undergoing a purely normal separation (¥, = u, =
0), § is a characteristic length and « specifies the ratio of shear
to normal stiffness of the interface. When u,, > 68, ¢ = ¢y
where ¢, is the work of separation.

The interfacial tractions aré¢ obtained by differentiating
equation (2.4) to give ’

r= e ([ -2(5)+ (3)]
ra(§) 7 [(5) 1] () [(5) 1)
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2.4)

2.5)

e T o))+ (2)']) o
e 2 e ()22 ()]}

foru, <=éand 7, =T, =T, = 0 whenu, > 6.

The motivation for choosing a potential of the form (2.4) is
to obtain a response of the type shown in Fig. 1 where the nor-
mal traction, T, is plotted as a function of u,, withu, = u, =
0. The particular functional form (2.4) was chosen for
analytical convenience; other forms can readily be used in the
present framework. As can be seen in Fig. 1, the maximum in-
terfacial stress is achieved at u,, = 6/3 and complete separa-
tion occurs when u, = 8. The work of separation (in Fig. 1,
the area under the curve between u,, = 0and u,, = 8)is

byep = I0ax/16 (2.8)

Withu, # u, % 0, T,, T,, and T, all vanish when u, = 650
that, in general, § serves as a characteristic length. Further-
more, due to the existence of a potential, equation (2.8) gives
the work of separation regardless of the path. Equation (2.8)
is regarded as defining the characteristic interface length 6 by 6
= 16 ¢,/ 9 0y Although 6 has dimensions of length, it
does not necessarily correspond to any physical distance.

The interface description adopted here is a pheno-
menological one characterized by the three parameters o,;,,, 0
and «. In the numerical examples parameter values represen-
tative of iron carbide particles in spheroidized carbon steels
will be used. Based on the results of Argon et al. (1975),
Goods and Brown (1979), and Fisher and Gurland (1981), the
order of magnitude of 8 can be estimated for this case; o, =
103 MPa and ¢, is in the range of 1 to 10 Jm~2 so that § =
10-° to 1078 m.

There does not appear to be any similar basis for specifying
a value of the shear stiffness parameter «. In the calculations
carried out here, the value of « is arbitrarily set to 10, the
presumption being that the interface exhibits a stiffer response
for relative sliding than for the normal displacement leading to
separation. However, as will be illustrated subsequently, the
numerical results in the specific cases analyzed are not very
sensitive to the choice of a.

3 Finite Element Formulation

The finite element analysis is based on a convected coor-
dinate Lagrangian formulation of the field equations with the
initial unstressed state taken as reference. All field quantities
are considered to be functions of convected coordinates, x/,
which serve as particle labels, and time ¢, This formulation has
been employed extensively in previous finite element analyses,
e.g., Needleman (1972) and Tvergaard (1976), and is reviewed
by Needleman (1982).

Attention is confined to quasi-static deformations and, with
body forces neglected, the principal of virtual work is written
as

S TV8E dV + S SpdS= S T'éu;dS 3.1)

4 int Sext
Here, 77 are the contravariant components of Kirchhoff stress
(= = Ja, with ¢ the Cauchy stress) on the deformed convected
coordinate net, V, S, and S, are the total volume (inclusion

~plus matrix), external surface and interfacial surface, respec-

tively, of the body in the reference configuration, and

T = (7 + 750l ), 3.2)

1
Eij=——2— (u;, j+u;; +ubuy, ) (3.3)

where v is the surface normal in the reference configuration, u;
are the components of the displacement vector on base vectors
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Fig. 2 Axisymmetric model of a material containing an array of
spherical voids. Due to the assumed symmetry, only the shaded
quadrant is analyzed numerically.

in the reference configuration and (); denotes covariant dif-
ferentiation in the reference frame.

For the specific boundary value problem considered here,
we use a cylindrical coordinate system with radial coordinate
x!, circumferential angle x2, and axial coordinate x3. As
sketched in Fig. 2, we consider spherical particles of radius 7,
located along the axis of a circular cylinder with an initial
spacing of 2b, between particle centers. The cylinder has in-
itial radius R, and attention is confined to axisymmetric
deformations so that all field quantities are independent of x2.
Furthermore, the circular cylindrical cell surrounding each
particle is required to remain a circular cylinder throughout
the deformation history and within each cell symmetry is
assumed about the cell center line so that only the shaded
region is analyzed numerically. As discussed by Tvergaard
(1982), this axisymmetric configuration can be considered an

Journal of Applied Mechanics

approximation to a three dimensional array of hexagonal
cylinders.

The boundary conditions for the axisymmetric region
analyzed numerically are

=0, T=0, 72=0, onx}=0 3.4
wW=U,=¢, b, T'=0, T2=0, onx*=b, (3.5
u'=U,, T3=0, T°=0, onx'=R, (3.6)

Here, () = 8()/0t and ¢, is a prescribed constant while U, is
determined by the analysis. With these boundary conditions,
the deformed circular cylindrical cell has radius R = Ry, +
U,, and height 2b = 2b, + 2Uj;.

The lateral displacement rate, U; is determined from the
condition that the average macroscopic true stresses acting on
the cell follow the proportional history

L, _ L
=1 =p 3.7
Ly Ly
with p a prescribed constant and
RObO{ 1 Sbo
YR P .
" Rb Ub, Jo [T]X1=Rodx 3-8)
RE (2 [*o 1 gyl
} :?{R“%So [T3]X3=box dx } 39

The matrix material is characterized as an elastic-viscoplastic
isotropically hardening solid. The total rate of deformation,
D, is written as the sum of an elastic part, D¢, and a plastic
part D?, with

1+

De= E” f-—% (D1 ¢ 10)
. 3

Dr=—— G.11)

where 7 is the Jaumann rate of Kirchhoff stress, I is the identi-
ty tensor, 7:I is the trace of 7, é is the effective plastic strain
rate, E is Young’s modulus, » is Poisson’s ratio and

1 3

'=ro— (DL, B=— i (3.12)
é=¢la/g(a)m,

2(8) =0y(é/eg + 1)V, €o=0y/E (3.13)

Here, é = [édt and the function g (é) represents the effective
stress versus effective strain response in a tensile test carried
out at a strain-rate such that é = ¢,. Also, o, is a reference
strength and N and m are the strain hardening exponent and
strain rate hardening exponent, respectively.

Expanding equation (3.1) about a state of approximate
equilibrium gives

AtS | [VSEy + rVitduy, Jav

+ AtS [S"™u,éu, + S™ (u,0u, +u,bu,)

Sint

+ S”a,éu,]dS=AtS Ti6u,;dS — [S , TISE, dV

Sext

+SS_ 6¢dS——S :F'au,.ds] (3.14)

nt Sext

where S¥ = 82¢/3u;du;. In equation (3.14), the integral over
S;n has been specialized to the case of axisymmetric deforma-
tions with the b direction identified with that of the cir-
cumferential angle so that u, = 0. The term in square brackets
on the right-hand side of equation (3.14) is an equilibrium cor-
rection term that vanishes when the known state is an exact
equilibrium state.
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Fig. 3 The 16 x 24 finite element mesh used in the calculations. Each
quadrilaterai consists of four linear displacement “crossed” triangular
elements.

The set of equations for the unknown displacement rates is
obtained by combining equations (3.10) and (3.11) and then
using the relation between the Jaumann and convected stress
rates in equation (3.14). The finite element mesh used in the
numerical calculations is shown in Fig. 3. The mesh has 16
quadrilaterals around the inclusion and 24 quadrilaterals in
the radial direction. Each quadrilateral consists of four
“‘crossed’”’ triangles. The circular inclusion is approximated by
a polygon consisting of linear segments that are the sides of
the elements along the interface. The method for evaluating
the integrals along S;,, in equation (3.14) is similar to an ap-
proach used in surface diffusion calculations by Needleman
and Rice (1980). The integration scheme uses four Gauss
points within each linear segment and the interfacial tractions
are evaluated at the Gauss integration points rather than at the
finite element nodes. This permits partial debonding within a
linear segment. ‘

The deformation history is calculated in a linear incremental
manner and, in order to increase the stable time step, the rate
tangent modulus method of Peirce et al. (1984) is used. This is
a forward gradient method based on an estimate of the plastic
strain rate in the interval between ¢ and ¢ + Af. The incremen-
tal boundary value problem is solved using a combined finite
element Rayleigh-Ritz method (Tvergaard, 1976).

In most cases, the prescribed overall strain rate, é,, is taken
constant and equal to the reference strain rate é;. However,
equilibrium solutions do not necessarily exist to the boundary
value problem so posed. For a certain range of interface
characterizations, equilibrium solutions only exist if U,
decreases during decohesion. In such cases, the boundary
value problem is modified so that equilibrium solutions are
sought for increasing interfacial separation and the prescribed
velocity condition in equation (3.5) is replaced by #; = con-
stant along x3 = by; é,, then becomes an unknown determined
by the solution procedure.

4 Numerical Results

In the numerical calculations carried out here, the inclusion
volume fraction and geometry, as well as the matrix material
properties, remain fixed; only the interface characteristics are
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Fig. 4 Contours of constant plastic strain, ¢, in the deformed con-
figuration of the quadrant analyzed numerically. The rigid inclusion is
shaded. The volume fraction of inclusions is 1.04 percent. The interface
is characterized by oy, = 30p, 8/rp = 0.01, « = 10.0 and the stress
triaxiality parameter, p, in equation (3.7) is 0.5. (a) ¢, = 0.040; (b) ¢, =
0.121; (c) ¢, = 0.169; (d) e, = 0.240.

varied. The inclusion geometry is specified by b,/R;, = 1 and
ro/R, = 0.25, giving an inclusion volume fraction of 1.04 per-
cent. The matrix material properties are £ = 500 gy, » = 0.3,
N = 0.1, and m = 0.01. In most calculations, the value ¢,
= 3 g, is employed which is a plausible value for iron carbide
particles in a spheroidized steel, e.g., with a yield strength of
350 to 450 MPa and an interfacial cohesive strength in the
range 1000 to 1400 MPa (Argon et al., 1975; Goods and
Brown, 1979; Cialone and Asaro, 1979; and Brownrigg et al.,
1983).

Figure 4 shows contours of constant plastic strain, €, at
various stages of the nucleation process. While the matrix and
inclusion remain bonded, the main strain concentration occurs
along the inclusion surface at about 45 deg from the tensile
axis. Debonding does not begin at the axis of symmetry; it
begins at the end of the strain concentration nearest the sym-
metry axis. The crack rather rapidly propagates to the axis of
symmetry and then a spherical cap void opens. Already, at the
stage of deformation shown in Fig. 4(@), the maximum normal
displacement is on the symmetry axis and there are ‘‘dead”
zones at 0 deg and 90 deg. As the decohering region pro-
pagates toward the midsection, the deformation pattern
changes to one where the maximum straining is near the
midsection.

Curves of effective stress, L,, versus axial strain, ¢, = /n(1
+ U;/by), are plotted in Fig. 5 for three values of 8/r;, where,
for the axisymmetric configuration analyzed, we define

1
Lo=ID-Lil, D= (5425) @.1)
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Fig. 5 Curves of aggregate effective stress, L, versus axial strain, ¢,
for a 1.04 percent volume fraction of inclusions with p = 0.5 in equation
(3.7) and using three intertace characterizations. In all three cases o,y
= 3og and & = 10.0; (4) 8/rg = 0.01;(B) 8/ry = 0.008;(C) 8/ry = 0.002. For
comparison purposes, corresponding curves for a 1.04 percent volume
fraction of perfectly bonded inclusions and for a 1.04 percent volume
fraction of initial voids are also shown.

With regard to iron carbide particles in spheroidized carbon
steels, these values of 8/r, correspond to particle sizes of the
order of 1 micron (10~% m).

The variation of §/r, can be regarded either in terms of a
variation in ¢, at fixed particle size or as a variation in parti-
cle size at fixed work of separation. A sufficiently small value
of 8/ry gives rise to ‘‘brittle’’ interface behavior, while larger
values lead to a more ductile mode of separation. For com-
parison purposes, the corresponding curves for a rigidly bond-
ed inclusion and for an initial void are shown.

As debonding progresses, the overall stress-strain behavior
changes from that characteristic of a matrix reinforced by
rigid inclusions to one weakened by an equal volume fraction
of voids. For the larger two values of §/r,, this transition takes
place gradually and with increasing extension. As &/r
decreases, the stress drop becomes more abrupt and, for the
case with 6/r, = 0.002, the stress drop cannot be affected with
continued plastic loading. Even though explicit elastic
unloading is not incorporated into the material description,
the material response is essentially linear elastic during this
abrupt stress drop and, as can be seen in Fig. 5, the stress drop
occurs with the initial elastic slope. Initial debonding occurs in
the element nearest the axis of symmetry, in contrast to the
situation for a more ductile interface, where debonding inx-
itiates off the axis. The stress drop occurs before initial de-
bonding, when the traction across this interface segment is on
the descending branch of the traction versus displacement
curve in Fig. 1. After initial debonding, the stress increases,
although, as can be seen in Fig. 5, there are slight oscillations
(which may be an artifact of the numerics) in the overall stress-
strain curve as debonding propagates along the interface.

As illustrated in Fig. 4, void nucleation is a process that oc-
curs over a range of strain. A void nucleation strain, ¢y, can
be defined in various ways, with the appropriate definition
depending on the context in which it is to be used. For exam-
ple, the void nucleation strain can be identified with the strain
at which initial debonding takes place or with the strain at
which complete separation occurs. In the phenomenological
constitutive framework of Gurson (1975, 1977), a void created
by inclusion debonding has been regarded as equivalent to a
void occupying the same fraction as the inclusion being
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Fig. 6 Curves of normalized logarithmic plastic volume change,
In(VP V), versus axial strain, ¢,, for a 1.04 percent volume fraction of in-
clusions with p = 0.5 in equation (3.7) and 6,5 = 3 0g, @ = 10.0 and
blrg = 0.04. Numerical resuits are shown obtained from a coarse 8 x 12
mesh as well as results obtained using the 16 x 24 mesh shown in Fig.
3. The normalized logarithmic plastic volume change, In(VP1V), versus
axial strain, ¢, curve for a 1.04 percent volume fraction of initial voids is
shown shifted by an amount ¢y along the strain axis.

abruptly introduced into the material at ey. To define a
nucleation strain in this context, the normalized logarithmic
plastic volume change, /n (V?/V), is calculated via

Z Ry 1-2
In (_> i (—13-) +2In <—> 2y,
v be R/ T E

The expression (4.2) is approximate because the effect of the
inclusions is not accounted for in the elastic volume change
term, but this is not of significance for the present purpose.

In Fig. 6, plastic volume change versus axial strain curves
are plotted using two different finite element meshes; one is a
coarse 8 X 12 mesh, while the other is the 16 X 24 mesh
shown in Fig. 3 and used in all the remaining calculations
reported on here. The results in Fig. 6 are for a rather “‘duc-
tile’” interface; 6/r, = 0.04. Initial debonding takes place at ¢,
= 0.068 with the 16 x 24 mesh and at ¢, = 0.08 with the
coarse mesh. On the other hand, complete separation occurs
somewhat earlier for the coarse mesh; at ¢, = 0.29 as com-
pared with ¢, = 0.34 with the finer mesh. The more rapid
separation with the coarse mesh is expected since the last
points to debond are in the low strain region near the x! axis
and the strain depression is resolved better in the fine mesh
calculation, In the 16 X 24 mesh calculation complete de-
bonding has occurred in all elements except the last one at ¢,
= 0.31. The strain interval over which debonding occurs
depends on the value of 6/ry. With 6/ry = 0.01, but all other
parameters as in Fig. 6, initial debonding takes place at ¢, =
0.034 and complete separation at ¢, = 0.18.

A plastic volume change versus axial strain curve is also
shown in Fig. 6 (using the 16 x 24 mesh) for an initial void of
the same size as the inclusion. The curve of /n(V?/V) versus
axial strain for the void is shifted an amount ¢,. The value of
¢x for which the In (¥7/V) versus ¢, curves nearly coincide at
the larger volume changes shown (i.e., volume changes of the
order of 1 percent) is taken as the nucleation strain. The fine
mesh calculation gives a nucleation strain of 0.19, as shown,
while the coarse mesh calculation implies ey = 0.17.

This definition of nucleation strain is inherently imprecise.
The sensitivity to the particular volume fraction at which the
values of /n ( V?/V) are matched depends on the ‘‘ductility’’ of

4.2)
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the interface, with more ductile interfaces being more sensitive
to the value of In( V7 /V) chosen. In Fig. 6 where 6/r, = 0.04,
the above values of ¢y were based on matching the response at
In(V?/V) = 0.015. Using In(¥?/V) = 0.01 gives nucleation
strains of 0.172 and 0.176 for the 8 X 12 and 16 X 24 meshes,
respectively. With 6/r, = 0.01, but all other parameters as in
Fig. 6, defining ey based on In(¥?/V) = 0.015, 0.01, and
0.005 leads to 5 = 0.084, 0.082, and 0.079. ’

Some calculations were carried out to explore the
dependence of the nucleation strain, as defined above, on in-
terface properties. A series of calculations were carried out us-
ing three values of §/r, i.e., for three sizes of inclusion. The
model predicts a definite size effect and the results will be
discussed in connection with void nucleation criteria in the
context of Gurson’s (1975, 1977) constitutive framework.
There is a stronger dependence of nucleation strain on inter-
facial strength than on size. To illustrate this, two sets of inter-
face parameters were chosen that have values of ¢, in (2.8)
60 percent of that for the case with o,,,, = 3 64 and 6/ry =
0.01; in one case o, = 30, and 8/r, = 0.006, while in the
other case o, = 1.8 g5 and 6/ry = 0.01. These give rise to
nucleation strains of 0.060 and 0.024, respectively, while in the
reference case ¢y, = 0.084.

The role of the shear stiffness parameter, «, was in-
vestigated for the case p = 0.4, 0,5, = 30y, 8/rg = 0.02. With
a = 10.0, the nucleation strain is 0.23. Increasing o to 50 in-
creases the nucleation strain to 0.25, while with o = 1, ey =
0.20. In fact, taking o = 0 in this case gives a nucleation strain
of 0.18. Hence, for the geometry and loading conditions here,
the interface shear stiffness plays a relatively minor role. This
may not be the case for other inclusion geometries and for im-
posed stress states with a large shear component.

5 Void Nucleation Criterion

Within the constitutive framework for progressively
cavitating solids introduced by Gurson (1975, 1977), the voids
are represented in terms of a single parameter, the void
volume fraction, f. The evolution equation for the void
volume fraction includes contributions from both void growth
and void nucleation,

fzfgrowth +fnucleation (5.1)

The void growth contribution is determined from the plastic
flow rule using the condition that the matrix material is
plastically incompressible whereas the void nucleation con-
tribution is specified separately. Although various void
nucleation criteria can be formulated within this framework,
two have been used in practice (Gurson, 1975, 1977;
Needleman and Rice, 1978). One is a plastic strain criterion
for which

fnucleation = Dé (5 2)
while the other is the stress-based criterion
fnucleation = B(Ee + 2/1 ) (5.3)

In equation (5.3), L, is identified with the matrix effective
stress appearing in the Gurson (1975, 1977) flow potential. As
long as the void volume fraction is zero, as it is prior to nuclea-
tion, the matrix effective stress and the macroscopic effective
stress are equal. In (5.2), D is considered a function of é, while
analogously in equation (5.3), B is taken to be a function of
(Z, + Ej) so that the quantity (£, + L;) plays the role of a
nucleation stress.

Analyses of localization, carried out within the Gurson
(1975, 1977) framework, indicate that equations (5.2) and
(5.3) can lead to quite different predictions of macroscopic
ductility (Needleman and Rice, 1978; Saje et al. 1982). What is
of particular significance in this regard is that the hydrostatic
stress dependence of void nucleation in equation (5.3) leads to
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Table 1 Nucleation strain and stress for various values of stress tri-
axiality. The interface is characterized by oy, /og = 3, « = 10 and é/ry
= 0.02.

p Sn/Ze €N (Twfon | (B4 cBu)n/oo
¢ =035
0.250 0.667 0.56 1152 | 2137
0.333 0.833 033 1.627 2.102
0.400 1.00 0.23 1555 2.009
os00 | 1a | o012 | 1443 2117
0.625 2.00 0.048 1.268 2.156
Ave. 2.122

Table 2 Nucleation strain and stress for various values of stress tri-
axiality. The interface is characterized by oyp,50/0g = 3, « = 10 and é/rg
= 0.01.

» i/ e N (Ze)n /oo (. +cZr)n/o0
c=035 c=039

L 0.250 0.667 0.50 1.723 2.1254{ 2171
0.333 0.833 0.27 1.594 2058 2111
0.400 1.00 0.17 1.509 2.038 2.098
0.500 1.33 0.084 1.388 2.036 2.110
o2 | 200 | 0.024 1192 2.027 2122
Ave. 2.057 2122

Table 3 Nucleation strain and stress for various vaiues of stress tri-
axiality. The interface is characterized by oyax/og = 3, & = 10 and éirg
= 0.04.

» Za/Ze ey (Be)w/aa (Ze + By /oo
¢ =035 c=0.314
0.250 0.667 0.61 1.752 2.161 2.118
0.333 0.833 0.40 1.664 2.149 2.099
0.400 1.00 0.31 1.605 2.167 2.109
0.500 1.33 0.19 1.501 2.201 2.129
| 0.625 2.00 0.070 1.322 2.248 2.152
Ave. 2.185 2122

a strong nonnormality in the plastic flow rule which promotes
early flow localization.

In order to explore the predicted hydrostatic stress
dependence of the void nucleation strain, e, calculations
were carried out for various values of the stress ratio p in equa-
tion (3.7). In each case ¢y is defined in the manner sketched in
Fig. 6. Tables 1 to 3 illustrate the hydrostatic stress
dependence of e, for interfaces characterized by three values
of 6/ry. The other interface parameters are kept fixed at o,
= 300 and o = 10.

For low stress triaxiality, £,/E, = 0.667, the nucleation
strain varies between 0.50 and 0.61 as &/r; is increased by a
factor of four, from 0.01 to 0.04. At higher values of the stress
triaxiality, the absolute magnitude of the variation in ey is
smaller, but the relative variation is greater; for example,
when X, /Z, = 2.00, the nucleation strain increases from 0.024
to 0.070 as 6/ry is varied over the same range. With & regarded
as fixed, this corresponds to a decrease in nucleation strain
with increasing particle size at fixed volume fraction.

Also shown in Tables [ to 3 is the outcome of correlating the
results in terms of an effective nucleation stress, written as

Yy=L,+ck, 5.4

where I, and I, are obtained from equation (4.1) at e, = ep.

For the case 6/r, = 0.02, ¢ = 0.35 leads to a mean nuclea-
tion stress, Ly, of 2.122 o,. If equation (5.4) held precisely,
the value of Ly would be independent of p in Table 1. The
maximum deviation from the mean is 1.5 percent and this oc-
curs for the lowest nucleation strain where the work hardening

Transactions of the ASME

Downloaded 03 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



is highest; more significant is the deviation from the mean for
L£,/L, = 0.667 since this occurs at large strains where the
work hardening rate is low.

Tables 2 and 3 show the results of calculating nucleation
stresses for 6/r, = 0.01 and 6/r, = 0.04 in two ways; one
calculation uses a constant ¢, while in the other calculation c is
chosen so that the average value of I is the same for all three
cases. A somewhat better correlation is obtained by varying ¢
suggesting that more “‘brittle’’ interfaces (larger particles) may
be characterized by a more strongly hydrostatic stress depend-
ent nucleation stress. ‘

With ¢ = 1 in equation (5.4), the nucleation stress appear-
ing in equation (5.3) is recovered, and with ¢ = 1and £,/E, =
0.667 a nucleation stress of 2.887 is obtained; at L,/E, =
1.00, Zy (c=1) = 3.109 and at L,/E, = 2.00, Ly (c=1) =
3.806. Although it is interesting to note that these values, par-
ticularly for the cases with lower stress triaxiality, are
reasonably close to o,,,, use of ¢ = 1 in equation (5.4) gives
rise to a strongly hydrostatic stress dependent nucleation
stress. Values of ¢ less than unity in equation (5.4) can be
thought of as due to part of the remote hydrostatic stress being
““converted’’ to local shearing stresses around the inclusion,
the magnitude of which are limited by the work hardening
capacity of the material.

6 Concluding Remarks

The cohesive zone interface model developed here provides
a unified description of void initiation from initial debonding
through complete separation and subsequent void growth.
This cohesive zone model is particularly attractive when, as is
often the case, interfacial strengths are relatively weak, say of
the order of several times the yield strength of the matrix
material. Then the very high stress gradients associated with
cracks in homogeneous bodies do not develop and standard
finite-strain finite-element methods can be extended to incor-
porate the interface integrals. The model is a purely con-
tinuum one, so that discrete dislocation effects are not ac-
counted for, but the formulation provides a framework for
analyzing the effects of matrix and inclusion material proper-
ties, inclusion size and shape, and imposed stress state and
loading rate on the nucleation process.

Dimensional considerations introduce a characteristic inter-
face length into the model and numerical results exhibit a duc-
tile to brittle transition in the mode of separation. For suffi-
ciently large inclusions (relative to the characteristic length)
equilibrium solutions do not exist for increasing extension
during debonding. The interface debonds in a ‘‘brittle’” man-
ner, with an abrupt stress drop. One can speculate that if this
were to occur at a particular weak inclusion, the stress drop
could lead to load shedding to nearby inclusions. The in-
creased stress could then precipitate further nucleation,
leading to another stress redistribution and so on, so that a
profusion of voids are nucleated over a rather narrow strain
interval. In actuality, in such a case, debonding would occur
dynamically and dynamic effects may well play a significant
role in the mechanics of the stress redistribution. By way of
contrast, the smooth load drop associated with a more ‘‘duc-
tile’” interface (smaller inclusions) suppresses this mechanism
of void profusion. In this regard it is important to note that
the range of strain over which voids nucleate can affect stabili-
ty against flow localization; void profusion over a narrow
range of strain is potentially destabilizing (Needleman and
Rice, 1978; Saje et al., 1980). '

Journal of Applied Mechanics

The onset of nucleation at various levels of triaxiality of the
imposed stress state has been correlated, within the framework
of Gurson’s (1975, 1977) constitutive relation for progress-
ively cavitating solids, in terms of a critical nucleation stress.
This critical nucleation stress depends linearly on the
hydrostatic tension, but with a coefficient that is less than
unity.
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An Elastic-Viscoplastic Model for
Metals Subjected to High
Compression

Specific constitutive equations are proposed for a material exhibiting isotropic-
elastic response in its reference configuration, strain-rate, temperature and density
dependent plastic flow with isotropic and directional hardening, and thermal
recovery of hardening. The shear modulus is temperature and density dependent and
it wvanishes when the temperature reaches the density dependent melting
temperature. These equations include modifications, relative to those proposed by
Rubin (1986), which are appropriate to describe metals subjected to high
compression. The constitutive functions characterizing pressure are determined by
comparison with a Mie-Griineisen equation of state which includes functions that
are obtained from common shock-wave experiments. To examine some of the
Sfeatures of these equations at high compression we consider an example of
homogeneous uniaxial strain and show that the deviatoric stress may be quite large

M. B. Rubin

Faculty of Mechanical Engineering,
Technion—1srael Institute of Technology,
Haifa 32000, israel

at ultra high compression rates and high compression.

Introduction

Recently, Rubin (1986) considered a rather general class of
constitutive equations modeling elastic-viscoplastic behavior
of metals. Restrictions on these equations were obtained to
ensure consistency with the thermodynamic procedures
proposed by Green and Naghdi (1977, 1978). In addition,
specific constitutive equations were proposed for a material
exhibiting isotropic-elastic response in its reference
configuration, strain-rate and temperature dependent plastic
flow with isotropic and directional hardening, and thermal
recovery of hardening. These specific equations represent a
generalization to the nonlinear region of the works of Bodner
and Partom (1972) and Bodner (1984, 1985).

The objective of this paper is to discuss specific constitutive
equations which characterize the elastic-viscoplastic behavior
of metals subjected to high compression. Modifications of the
specific equations proposed by Rubin (1986) are presented
which are motivated by the interest in shock-wave plate impact
experiments (Clifton, 1983) which are used to obtain material
properties at high strain rates. Among other modifications, we
note that the Helmholtz free energy (equation 1(a)) is modified
to include a temperature and density dependent shear modulus
which vanishes when the temperature reaches the density
dependent melting temperature. The flow rule (equation 16(a))
and the requirement of plastic incompressibility are also
modified. We emphasize that these modified equations are
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within the scope of the general equations considered in Rubin
(1986) so it is not necessary to reexamine their consistency with
the first law of thermodynamics. However, the various
restrictions associated with the second law of thermo-
dynamics must be reconsidered.

An important feature of these constitutive equations is the
equation for stress (3a) which is a hyper-elastic equation
relating stress to deformation quantities. In particular, stress
is not calculated using a hypo-elastic equation for a stress rate
as is common. For a recent review of the state of hypo-elastic
equations see Reed and Atluri (1985).

In the following sections we record the modified
constitutive equations and discuss each of the modifications.
Then, we show how some of the constitutive functions can be
estimated by comparing with a Mie-Griineissen equation of
state (equation (24)) which is used often to analyze shock-wave
experiments. To examine some of the features of these
equations at high compression we consider an example of
homogeneous uniaxial strain and show that the deviatoric
stress may be quite large at ultra high compression rates and
high compression.

Specific Constitutive Equations

In this section, we record the modified constitutive

" equations and discuss each of the modifications (relative to the

equations proposed in Rubin, 1986). We refer all quantities to
the reference configuration because the relevant quantities
referred to the reference configuration are trivially invariant
under superposed rigid body motions. An important
manifestation of this invariance property is that the evolution

- equations may be formulated without introducing special

invariant rates like the Jaumann rate.
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Here, we consider a finite body with material points which
are located by their position vector X in the reference
configuration. A motion of the body is defined by a
sufficiently smooth vector function x, which assigns position
x=x(X,#) to each material point X at each instant of time ¢.
The model under consideration here may be characterized by
specific constitutive equations for the specific (per unit mass)
Helmholtz free energy y, the entropy flux P (per unit area in
the reference configuration), and the specific internal rate of
entropy production £ which take the form!:

200¥ = —2poh () — (0 —0o)/\ () +/oL3) + 200¥",  (1a)
C-C;\3 I
200" = iine, = (—32-) 2, (16,0)
3 I
K(1;,0)
qu_((; )I{lch, (1d)
poBE = —PeG+pyht’, (le)
Iy=detC, I,=detC,, (1,8
p=p(l,0), G= 9 14
B pi3,U), = aXa ( ai)

In these equations: F=0x/dX is the deformation gradient;
C=FT"F is the Cauchy-Green deformation tensor; C, is the
plastic deformation tensor which will be defined later through
a flow rule; 4 is the absolute temperature and 0, is its reference
value; G is the temperature gradient with respect to X;
I, =(py/p)? is a pure measure of total dilatation with p being
the mass density in the present configuration and p, being its
reference value; I, is a pure measure of plastic dilatation; f is
a shear modulus and p, is its reference value; K is the heat con-
duction coefficient; &£’ is related to plastic dissipation; and h,
f1, f> are functions to be specified.

The part ¢’ in equation (1) of the Helmholtz free energy
represents the strain energy of elastic distortion and has been
modified (relative to Rubin, 1986) by introducing the scalar o
defined by equation (1¢). The quantity « is a pure measure of
elastic distortion which is insensitive to changes in total
dilatation I; or plastic dilatation 73, (i.e., C may be replaced
by a*C, and C, may be replaced by 52C,, without changing the
value of «). Furthermore, the quantity « attains the value uni-
ty when there is no elastic distortion and C differs from C, by
only a uniform dilatation (C=a2C,).

The entropy flux P in (1d) is also modified (relative to
Rubin, 1986) to be consistent with the assumption of Fourier
heat conduction in the present configuration. That is, equa-
tion (1d) is consistent with

1 K(13,0) a0

p g q g > g ax

where p is the entropy flux and q is the heat conduction vector,

each per unit present area; and g is the temperature gradient

with respect to x. In equations (1) and (2a) we have included

dependence of the heat conduction coefficient X on the dilata-

tion I; for generality in dealing with high compression
situations.

By considering general constitutive equations of the type (1)
restrictions may be obtained (Rubin, 1986) to ensure con-
sistency with the first law of thermodynamics. In particular,
the symmetric Piola-Kirchhoff stress S, the specific entropy 7,
and the rate of plastic dissipation p,0f’ are related to
derivatives of the Helmholtz free energy y. These restrictions,
together with an expression for the specific internal energy e
may be summarized in the form:

(2a,b)

I"rhe prime used here should not be confused with the use of prime in a
different context in Rubin (1986).
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S= ZPOT, (3(1)

ay dh
2pgn = —200'%—'=2907+f1 (I3)+200n, (3D)

5
200m" = f—gg-ena, Ge)
2pge =2po(¥ +0n) =2p(e, +¢’), (3d)

dh

2p0e1(13.0) =200 (05— h) + 065 T 450, Ge)

20
2p0¢" = (,1—0 ag )ma, G/

’ a‘// -
pOGE i ) aC 'Cp’ (3g)
P

where a superposed dot denotes material time differentiation
holding X fixed, and A sB = r(ABT) denotes the inner product
of two tensors.

The Cauchy stress T and the symmetric Piola-Kirchhoff
stress S are related by the expression

T=1I; “FSF” @

For many applications, and in particular for metals which are
isotropic in their reference configurations, it is desirable to
decompose the Cauchy stress T into a pressure p and a
deviatoric part T’. Using equation (4) it follows that both T
and S admit the unique decompositions

T=-pl+T’, T’ 1=0, (5a,b)
S=—pl{fC~1+8’, §'+.C=0, (5¢,d)
T'=1I; “FS'F7, (5e)

where I is the identity tensor. Note that 8§’ is the counterpart
of T’ even though it is not a deviatoric tensor. An interesting
manifestation of the kinematic separation of pure dilatation I,
from pure elastic distortion « is that the stress 8 naturally
separates into the form (5¢). To see this we substitute equation
(la) into equation (3a) to deduce that

p=pI3,0)+p’, (6a)
dfl de ]l
=lo- ~ %2 |, 6b
A e (60)
o
r_ 2 I 6
I 613fna’ (6¢)
s =18 =i (Gg=r) G - C '] (6
C.C,' /7

Furthermore, it may be shown that the rate of plastic dissipa-
tion may also be written in the form
. 1
pofE’ =(C,1CO)S’ °E,, E,,=——2—(C,,~I), (7a,b)
where E, is the plastic strain.

This constitutive assumption for stress was motivated by the
physical notion that a plastic material flows somewhat like a
fluid. In this regard, we observe that if the shear modulus 3 in
equation (6d) vanishes then equations (5a,c) yield constitutive
equations for an ideal fluid (T = —pl) with S proportional to
C-1!. Motivated by this result we sought a form for the
kinematic variable « in equation (lc) which led to the result
(6dy with S being proportional to C~! and C, . The quantity
S’ and the deviatoric Cauchy stress T’ are controlled by the
amount of elastic distortion. Specifically, these quantities
vanish when elastic distortion vanishes («=1) and the elastic
deformation is characterized by a pure dilatation (C:aZCp).
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Furthermore, it is of interest to note that if equation (6d) were
rewritten in terms of the total strain E=(1/2)(C—1I) and the
plastic strain E,, (equation 7(b)) then S’ cannot be expressed as
a function of E—E, only. This means that the quantity E-E,
does not have the meaning of elastic strain in the same sense
that it does in the linear theory.

Substituting equation (6d) into equation (5¢) we may write

T'=I7%6", pu=pl7”, ~ (8a,b,c)

(8d)

T =pT" =pa’,
. 3 -
o' =FS FT= [(_E—:-(:p__l>FCp IFT—I]-.

From equation (8d) we observe that 6’ depends only on elastic
distortion and is independent of both total and plastic dilata-
tions. Consequently, the effective shear modulus y in equa-
tions (8a,c) contains the complete dependence of T’ on dilata-
tion. Further, from equation (8c) we observe that the effective
shear modulus depends on the total dilatation I; even if j is in-
dependent of /. We emphasize that the results (6) are a direct
consequence of the first law of thermodynamics. Therefore, if
the shear modulus has a nontrivial dependence on I;
(0/1/81;, #0) then the pressure must depend on the elastic
distortion through p’ in equation (6¢). In other words, p”’ is
the pressure response to elastic distortion.

In the study of shock waves in solids it has become common
to assume that the pressure depends on the dilatation I; and
temperature § only, even if the shear modulus has a nontrivial
dependence on I;. In view of the discussion above, this
assumption is valid only when p’ can be neglected. For these
constitutive equations p’ is second order in elastic distortional
strain. Consequently, for most applications at low, medium,
and high strain rates p’ is negligible relative to p,. However,
for large elastic distortion which can occur at ultra high strain
rates, p’ may be significant (see the example in the last
section).

Steinberg et al. (1980) have proposed a model for the shear
modulus, which depends on pressure, density, and
temperature, and a model for melting. They show consistency
of their model with certain theoretical limits and certain ex-
perimental data which are referenced in their paper. Here, we
present different models for the shear modulus and melting
which also appear to be consistent with these theoretical limits
and experimental data.

In their model Steinberg et al. (1980) propose that the shear
modulus depends linearly on pressure and temperature, and
nonlinearity on density. Since pressure is usually assumed to
depend linearly on internal energy and internal energy is usual-
ly assumed to depend linearly on temperature, this is
equivalent to assuming that the shear modulus depends linear-
ly on temperature ¢ and nonlinearly on the dilatation [, which
is a special case of equations (14) and (8c). For our purposes,
we also assume that when the temperature reaches the melting
temperature 6,,(/;) the shear modulus vanishes and the
material ceases to support shear stress. Here, we propose the
form

f=pofs ()4 for §>0, (%a)
p=0 for 60, 9b)
g Im)—0

Op0 —00s 9¢c)

where the melting temperature may be characterized by

(Steinberg et al., 1980)
051 (13) = Oproexpl2a; (1 — )15 Tom 1), (10

In equation (10), T, and @, are constants related to the
Griineisen gama I'" which is given by

') =Ty—a;(1-I}). (11)
To ensure that at melting (§ =0,,, §=0) there are no discon-
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tinuities in the shear stress, entropy and internal energy, we re-
quire

df,

—()=0. 12a,b
J4(0), a0 0)=0 (12a,b)
Consistent with these conditions, we specify
()]
= 1-——)1, 13
fi=exp| (- (13)

where g, and g, are nonnegative constants. For small (< <1)
values of ¢, this function f; exhibits nearly linear dependence
on temperature and drops rather abruptly to zero near melting
(9=0), which is consistent with the observed dependence of
the shear modulus. The simplest form for the function f; in
equation (9a4) which is consistent with the effective shear
modulus p in equation (8¢) approaching the Thomas-Fermi
limit (u—15%? as I;—0) becomes

SaIy) =17 18, (14)

In addition to the restrictions (3) various statements of the
second law of thermodynamics must be satisfied. For the
specific constitutive equations proposed here, these statements
are satisfied provided that? (see Rubin, 1986)

6—-6,>0 wh [0 h h(O)]
- en N,
1 ever 7

dh
- [0 0= rw)] >0, (150)

K(I,,0) 20, &£ 20. (15b,0)

Equation (15a) requires the specific heat at constant volume
and zero elastic distortion to be positive; (15b) requires heat to
flow from hot to cold; and (15¢) requires plastic dissipation to
be nonnegative.

From equations (6d) and (8a,d) it is observed that deviatoric
stress vanishes when C is parallel to C,; but not necessarily
equal to C,, as was required by the equations in Rubin (1986).
This distinction is essential when considering metals at high
compression. To see this we observe that when a material is
severely compressed the dilatation I, =det C=(py/p)? is ap-
preciably different from one. However, the notion of plastic
incompressibility suggests that /5, = det C, =1. Consequently,
if C=C, then the material cannot be both severely com-
pressed and plastically incompressible. Motivated by this
observation we modified the flow rule to take the form:

. (I;13C-C,)
C,=gA, A=—2__—~ P 16a,
» =8 II;73C—C, | (16a.5)
1- /[ZR (I;,0)]2\ 3.0
o2 (A7) g
1 s 1 )
Jy=——T' T = p2J, =—p25" +4, (16d)
2 2
| .-
JZ——Z—I;H‘r’-(r’: I71(CS’+S'C) (16e)
Z_=R+By B:B'U, (16f’g)
S
=— 16A
ST (16h)

In equations (16) D, is a constant; Z is a scalar measure of
hardening which is additively separated into isotropic harden-
ing % and a scalar measure of directional hardening §; 8 is a
tensor measure of directional hardening (which models the

2 obtaining the restriction (15a) we have interpreted thermal equilibrium to
be a state with zero elastic distortion, so that « =1 and plastic deformation rate
vanishes.
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Bauschinger effect); and |A|l=(A+*A)" denotes the magni-
tude of the tensor A. Further, the quantities Z, &, 8, 8 are non-
dimensional quantities which should not be confused with
similar unbarred quantities used in Rubin (1986).

The modified flow rule (16a) states that plastic deformation
C, evolves in the direction of total deformation C. This en-
sures that plastic deformation evolves towards a value which
will make the deviatoric stress T’ in equations (8) vanish. In
equation (16a) plastic incompressibility is not enforced in a
strong sense by requiring /5, to vanish as was done in Rubin
(1986). Instead, plastic incompressibility is enforced in a weak
sense by requiring plastic deformation to evolve towards a ten-
sor whose determinant is unity [det(/;/*C)=1]. In general,
this allows small deviations of I;, from unity. Further, it is
worth mentioning that it is possible to model plastic com-
pressibility of geological materials by replacing 753 in equa-
tion (16b) with a function of /3 and I,,.

For definiteness, let the reference conﬁguratlon be a stress
free configuration which is specified by

x=X, C=I, Cp=I, 6=0,, (17a,b,c,d)
’-(:22, B:O’ (17e‘]‘)
v=0, =0, S=0. (17g,h,0)

It follows from equations (la,b,c), (3a-c), (6), and (17) that
we may specify

A)=0, £1)=0, —f%—a) 0, (184.6,0)
h(6,)=0, k {(6,)=0 18d
=0, —5= o) =0. (18d.e)

Using equations (1¢) and (65~d), we deduce that the stress-free
configuration attainable after an arbitrary plastic deformation
is characterized by

|,

0=0(I;) =00+ ar, | ar,

C=~C (19a,b)

§73]

where « is an arbitrary scalar. We emphasize that unloading
from a given plastic state may require additional plastic defor-
mation to attain equation (1956) since, unlike the total defor-
mation C, plastic deformation C, is not necessarily derivable
from a displacement field and hence is not necessarily
associated with an attainable configuration.

The function g in equations (16a,c) is consistent with a
kinetic equation of the form

IC, |1=g(I3,0,J,,2) (20)

and causes yield-like behavior in the sense that Cp is
vanishingly small for small values of J, and increases rapidly
when J, attains a value of the order of (ZR)2 The quantity D,
in equation (16¢) corresponds to the maximum value of plastic
shear strain rate (say, E¥,='%C%,). This requirement that
IC | be bounded from above has particular significance at
ultra high strain rates which are much larger than D, since the
predicted material response is nearly elastic (see the example in
the last section). An important modification of g in equation
(16¢) relative to g in Rubin (1986) is that Z in Rubin (1986) has
been replaced by 4ZR. The effect of this modification is that
at melting J, does not necessarily vanish even though J, does.
This means that at melting plastic deformation will continue
to evolve towards total deformation so that the stress free con-
figuration (apart from density changes) will never be.far from
the present configuration. Furthermore, in equation (16¢), the
quantity ZR controls the normalized shear strength of the
material and »n controls the strain-rate sensitivity of the
material. For high compression applications it is possible that
n and R will be functions of I; and 6 instead of n being a func-
tion of # only and R being unity as was taken in Rubin (1986).
The dependence of R and n on [, effectively introduces a
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dependence of plastic flow on pressure. In this regard, we note
that even if R and #n in equation (16¢) are independent of the
total dilatation I and J, is relatively insensitive to changes in
I, the effective flow stress (3.J;)”* will depend on the dilata-
tion I; through the dependence of the shear modulus i (see
equation (164d)).

The hardening variables & and 8 are determined by evolu-
tion equations of the form: .

-7
me )7 -0-4,02 (“52) ", ew
1
0 - - - ‘- L&
B=myoubE NZU - B) - A,0)Z, (Z—ﬁ) v, @)
i
B
V*W. (21C)

The first terms in these evolution equations represent harden-
ing and the second terms represent thermal recovery of
hardemng In equations (21) m; and m, are constants deter-
mining the rate of hardening; Z,, Z3, and Zz are nondimen-
sional constants representing the saturation values of % and §,
and the annealed value of &, respectively; and the constants r,,
ry, and functions 4,(6), A4,(6) control the rate of thermal
recovery. The constants Z,, Z,, Z, together with the reference
value &, of & are normalized values of Z,, Z,, Z;, «, in Rubin
(1986) and are defined by
Z-'l__.Z._l’ ZZ= ZZ, Z_3= Z3 s E0= X0 N
Ho Ko #o ko
where p, is the reference value of the shear modulus 4. When
the material melts the quantity py9%’, which represents the
rate of plastic dissipation, vanishes and hardening ceases.

In the following, we briefly discuss how the nonlinear
theory presented above may be reduced to one consistent with
the usual linear theory. For the linearized theory quadratic
terms in the quantities E, E, and (6 - 0,) are neglected. With
this approximation it can be shown that equations (1), (3), (6),
(7), (16), and (21) reduce to the usual linearized equations and
are equivalent to those in Bodner (1985) provided that

(22a,b,¢,d)

af, .~ fy . ko
A (1) =3kyay, —3-137(1)—7, (23a,b)
d*h C,
) (90)_ (230)
11(1’00):/-’-0’ n=n(0), =1’ (23d,€J)

where &, ay, C, are the reference values of the isothermal
Bulk modulus, the coefficient of linear thermal expansion and
the specific heat at constant volume, respectively. The condi-
tion (23d) is satisfied by the specifications (9)-(14).

Finally, we note that unlike the linearized form of plastic
dissipation (7a), the nonlinear form of (7a) is different from
the usual expression for rate of plastic work (S-E ). We em-
phasize that in most developments the form for plastxc dissipa-
tion is assumed, whereas here the expression (74) is a direct
consequence of the first law of thermodynamics. At present it
does not seem possible to prove that (7a) satisfies the restric-
tion (15¢) for all thermodynamic processes. Consequently, we
suggest monitoring the value of £/ and limiting any calcula-
tion to that range for which £’ remains nonnegative con-
tinuously. We note, however, that for the linearized theory §*
is nonnegative for all processes.

Determination of Certain Constitutive Functions

In this section we show how the constitutive functions 4, f;,
/> in equation (la) may be estimated by comparison with a
Mie-Griineisen equation of state of the form

= pp (I3) = pols “T (L)le, — e ()], (24)
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which relates those portions p, and ¢, of the pressure and in-
ternal energy which depend only on the dilatation /; and
temperature 0. In equation (24), py, €4, I' are functions of I;
only; p; and e, are determined by Hugoniot shock-wave data
using the fluid approximation which neglects deviatoric stress;
and I is the Griineisen gamma.

To determine the function 4 in equation (la) we observe
from equations (3d,e) that the specific heat C, at constant
deformation C and zero elastic distortion (e=1) is given by

de d*h

0 lcact =6———d02 =C,(0). (25)
Integration of (25) subject to the conditions (18d,e) yields
h(@):Sa S)\ C”(T)dex, (26)
00 90 T

which shows that 4 is determined once the specific heat is
measured. When the specific heat is constant, equations (26)
and (3b,e) yield

[
h=C,|0tm(——) — (0—0p)], 27
| ”(00> 0] @70
7}
2ogn=200C,0n(5-) +Ai G+ 200", @TB)
0
2p0€; =2pC, (0—00) + 6y f1(I3) + /2 (I5). (27¢)

Since the specific heat of a solid is nearly constant we specify
h, n, €, by equations (27) and note that this specification is dif-
ferent from that in Rubin (1986).

To determine the functions f;, f, we solve equation (27¢) for
0 — 6, and rewrite (6b) in the form

I dfy > dfy
- YN g [____
P ( c, ar, /"7

1 d
b OS], (8)

2p, di,

Comparison of equation (28) with equation (24) yields two dif-
ferential equations of the forms

df
dI; =poC,I5'T' (1), (29a)
df, T
£ =G
dl, +213 2 =G(13), (29b)
_ 0T - -
G(I;)= - Tf1+13 (pol3y *Tey —Pr), (29¢)
3

to determine the functions f; and f,, subject to the conditions
(18a, b). The condition (18c) is satisfied because both ¢,(1)
and pg(1) vanish. Using the expression (11) for the Griineisen
gamma, equations (29a,b) may be integrated to obtain

Ji3)=p,C, f(13), (30a)

SU3)=Tobnls — a,[tnl; + 2], (30b)

p=1-13, (30¢)

Solly) = “e_‘/zf(h)gll G(N)e /Mg, (30d)
3

Finally, we assume that for a planar shock the shock veloc-
ity U is a linear function of the particle velocity u, such that

U=C0+S1u, (31)
where C, is the low pressure wave speed and s, is a constant.
Then, using the fluid approximation (deviatoric stress is
neglected) the jump conditions yield

D= POC%¢>
TR

Cj¢?

EH:—WI (32(1,17)
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Table 1 Uniaxial strain data for the compression ¢ =0.5 (6 =300 K,
far0 = 1220 K, pg = 27.6 GPa)
a = 104 5_1 a = 108 5—1 a = 1012 5“1
4
- -22 -306
(cre) 222 7
t'
1 -0.432 -3.95 -67.0
(GPa)
P 222 223 239
(Gpa)
pl
0.529 x 1073 0.0461 19.0
(GPa)
o 6 2 730
1060 1270
(K)
eM
© 6610 6610 6610
«-1 |14.2x 107 1.22 x 1073 0.687
Iép -t | 815 x 107% | 0.487 % 1072 17.8 x 107C
¥ 99.3 98.6 100
(GPa)

Uniaxial Strain

In this example we calculate the stresses and temperature
produced by homogeneous uniaxial strain at high (10%, 10%)
and ultra high (10'?) compression rates. Referring the position
vectors x and X to the base vectors e;(i=1,2,3) of a fixed
Cartesian coordinate system we take

xi=(1-aX,, x=X,, x3=X;,
a=10%""%, 1081, 1012571,

where a is the constant rate of loading.
Since the loading is very rapid we assume that the process is

adiabatic and neglect heat conduction and thermal recovery of
hardening so that

K=0, A;=0, A,=0. (34a,b,0)

It follows that the temperature may be calculated by the
balance of entropy equation which reduces to

(33a,b,0)
(334)

o =po&’. (35)
Here, we consider typical material properties of Aluminum
which are specified by

o =27.6 GPa, p,=2.71Mg/m3, C,=5.38km/s,(36a,b,c)
Ty=197, a; =15, a,=0.2, a;=0.01, (36d,e, f.8)
s, =1.35, C,=0.8627J/gK, (364,
0,=300K, 0,,=1220K, (36/,k)
Dy=10%s""1, %;=1.63x10"2, Z =3.62x10-2%, (36f,m,n)
my =220(GPa)~!, m,=0, Z,=0, (360,p,q)
R=1, n=no(%>, ny=5.0. (36r,s,)

Since no set of consistent data is available these values have
been collected from different sources and are representative of
different aluminum alloys. Specifically, from Bodner (1984)
we took the values of D, ny (Table 3, p. 49), and m, (Table 1,

.p. 47). The values of pq, I'y, a1, a,, a3, 8y, O, Ry, Z, are con-

sistent with the data in (Steinberg et al., 1980, p. 1499) with a,,
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Fig. 2 Deviatoric Cauchy stress t{{ and pressure p versus the com-
pression ¢ for the compression rates a=10", 10 101

ay characterizing the temperature dependence of the shear
modulus. The values %, and Z, predict the appropriate initial
and saturation flow stresses in uniaxial tension at a strain rate
of about 10~% s—1, The values of p,, Cy, 5, were taken from
Pugh (1970, p. 692) and the value of C, was taken from
Carslaw and Jaeger (1973, p. 497). Furthermore, directional
hardening was neglected (m1,, Z, vanish), the value of R was
taken to be unity for simplicity, and the functional
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Fig. 3 Temperature [/ versus the compression ¢ for the compression
rates a=10%, 108, 10"% 5

dependence of n on 6 was chosen to be consistent with obser-
vations that the strain rate sensitivity increases with increased
temperature. The remaining constants are not specified
because they are not needed for the calculation.

For this process we have neglected directional hardening
(8 = 0) so the flow rule (16a), the evolution equation (21a) and
the balance of entropy (35) reduce to four equations to deter-
mine the quantities C§;, C4, (C4; = C%,), % and 6. These equa-
tions were integrated numerically subject to the initial condi-
tions

Cp =C8 =1, 0=0,. (37a,b,0)

Table 1 summarizes the values of various parameters at the
end of the high compression (¢ = 1 — I§* =0.5) for three values
of the compression rate a. In this table ¢,; and ¢{, are the com-
ponents of the Cauchy stress and Cauchy deviatoric stress,
respectively, in the e, direction, «—1 is a measure of the
change in elastic distortion, and I3, ¥ —1 is a measure of plastic
volume change. From this table we observe that relative to the
values of ¢,; and p, the values of #{; and p’ are insignificant
for a=10%""!, are minimally significant for ¢=10% s~! and
are quite significant for a=10'2s~!. For the high compression
rates (104, 10%) plasticity is important whereas for the ultra
high rate (10'?) the material response is essentially elastic. This
is because the ultra high compression rate is four orders of
magnitude larger than the maximum value of plastic strain
rate. Consequently, even though the plastic strain rate is quite
large (~108) the compression time is too short for C, to
evolve appreciably towards I; ¥ C. This is manifested in the
large value of the change in the elastic distortion o — 1 and the
low value of the temperature 8. The values for # are higher for
the high rates (104, 108) then for the ultra high rate (10'2) since
at the high rates there is sufficient time for plastic dissipation
to increase the material temperature. It is also worth noting
that the plastic volume change (1‘3/;, —1) remains small for all
compression rates. Furthermore, in each of these calculations
the plastic dissipation p,0¢’ was monitored and found to be
non-negative for the entire process, which is consistent with
the restriction (15c¢).

k=R,
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Figures 1, 2, 3 show graphically the values of ¢, #{;, p’, 0
for values of the compression ¢ from 0 to 0.5 and for three
values of the compression rate a. The values of p’ for the high
compression rates (10*, 108) are not plotted in Fig. 2, because
they are too small. '

In typical plate impact experiments (see Clifton, 1983; or
Steinberg et al., 1980) the particle velocity increases rapidly
from zero to a constant value during loading. It follows that
compression rate increases from zero to a maximum and back
to zero during this loading. Since our calculations are for con-
stant compression rate they qualitatively correspond to an
average loading rate. More specifically, the viscoplastic
behavior of our model would predict a relaxation of the
deviatoric stress as the compression rate reduces to zero but
this is not exhibited in our calculation because the compres-
sion rate is constant.

In summary, we recall that when the shear modulus has a
nontrivial dependence on the dilatation /; then the pressure is
not a function of /; and the temperature § only. Specifically,
the pressure also includes a dependence on the elastic distor-
tion through the function p’ in equation (6¢). When the com-
pression rate is smaller than the maximum value of plastic
strain rate (~ Dg) then plasticity limits the increase of elastic
distortion and both the deviatoric stress 7{; and the pressure p’
are small relative to the value of ¢, at large compression.
However, for ultra high compression rates (> Dg) the material
response is essentially elastic and both the deviatoric stress /],
and the pressure p’ become significant at large compression
since the elastic distortion is also large. We emphasize that the
numerical results presented here are qualitative in the sense
that the functional dependence of ¥ in equation (1) on «,
the functional dependence of R and # in equation (16¢) on I,
and 6, and the value of D, in equation (16c), are not known
for aluminum at ultra high compression rates.

Finally, the results of this paper suggest that, in order to in-
terpret data from shock-wave experiments which typically

538/ Vol. 54, SEPTEMBER 1987

span the full range of compression rates from zero to ultra
high, it is essential to determine ¥’, R, n, and D,.
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Relaxation

A method is described for enforcing the incompressibility constraint in large-
deformation solid mechanics computations using dynamic relaxation. The method is

well-suited to explicit time-integration schemes because it does not require the solu-
tion of a system of linear equations. It is based on an analogy with thermoelasticity
involving manipulation of the natural state of a solid.

1 Introduction

The imposition of kinematical constraints is difficult when
numerical methods relying on explicit time-integration are
used. The difficulty arises because of the inherently local
nature of the algorithm. The motion of each node in each time
step is computed solely from known data at nodes immediate-
ly surrounding it in the previous time step. This property of
explicit time-integration greatly simplifies the coding of such a
method, since it is unnecessary to solve large sets of linear
algebraic equations. However, the imposition of global con-
straints becomes more difficult, since a given node does not
receive information about distant nodes which could affect its
own motion through the constraint,

An example of such a constraint is that of incompressibility
in the deformation of a solid. Various means of enforcing in-
compressibility are available for implicit methods and other
methods (see Needleman, 1978, for a summary of these ap-
proaches for finite elements). The penalty method is probably
the most common approach. There are also algorithms for
finite elements involving a variational formulation requiring
pressure to be regarded as an additional degree of freedom.
One approach to modeling incompressible bodies with an ex-
plicit integration scheme is to use the constitutive relation of a
“‘slightly compressible’’ material, a material that is very stiff
with respect to volume changes. Unfortunately, the use of
such a slightly compressible constitutive law causes the stable
time step to be controlled by high-speed dilatational waves
which are an artifact of the compressibility. Therefore the
slightly compressible approach is inefficient with explicit in-
tegration. All of the above methods have both advantages and
disadvantages which will not be dealt with further here. In
general, the available numerical methods for incompressible
solid mechanics introduce either considerable added complexi-
ty over the compressible case or require much additional com-
puter time.

The purpose of this paper is to present a simple method for
enforcing the incompressibility constraint in a dynamic relaxa-
tion method which uses a Lagrangian finite-difference for-
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mulation (Silling, 1985). The method is based on an analogy
with thermoelasticity in that it involves manipulation of the
natural state of the material locally in each zone. It is therefore
called the pseudotemperature method. The primary advan-
tages of the method are that it allows the main benefits of the
dynamic relaxation approach to be retained, namely simplici-
ty, reliability, and flexibility with regard to constitutive rela-
tions. A numerical stability analysis described below shows
that the pseudotemperature method does not unduly limit the
stable time step, which for the compressible case is controlied
by the Courant condition. Implementation of the method re-
quires only minor modification of a computer program
designed for compressible materials. Another advantage of
the pseudotemperature method is that the incompressibility
condition is satisfied with increasing accuracy as a run pro-
gresses, and would be satisfied exactly in the limit of an in-
finite number of time steps. This is not true of the penalty
method or of slightly compressible models. While the present
application is for a finite-difference code, extension of the
method to finite-element programs using dynamic relaxation
appears straightforward.

The primary disadvantage of the pseudotemperature
method is that some viscous damping of the kind used in
dynamic relaxation is necessary for numerical stability.
Therefore, extension to truly dynamic problems is not current-
ly possible. The method has found applications in a variety of
problems in rubber elasticity, soil mechanics, and the study of
phase changes in solids. Some of these results are described in
Section 4 below.

2 Basic Numerical Method

This section describes the basic computer program for com-
pressible materials which has been extended according to the
techniques described in the next section to model incom-
pressibility. The basic computer program is CHIMP (Silling,
1985), a method for plane-strain compressible finite elasticity.
The program uses the Green’s theorem differencing method,
which is widely used in codes such as HEMP (Wilkins, 1969).
The differencing method is summarized below. A detailed
discussion has been provided by Herrmann and Bertholf
(1983). CHIMP uses the first Piola-Kirchhoff stress and per-
forms all differencing in the reference configuration. In this
respect it differs from HEMP and related codes, which
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Fig. 2.1 Integration path used in Green’s theorem method for differ-
encing stress gradient components

generally use the Cauchy stress tensor and perform differenc-
ing in the current configuration. The CHIMP method is more
convenient for purposes of finite elasticity, although the
HEMP method is more convenient for incremental plasticity.
The applicability of the pseudotemperature method is not at
all dependent on this choice.

The region is discretized into a mesh with nodes indexed by
(i, j). Time steps are labeled by the index n, with n = 0
representing the initial condition. Each node has associated
with it a fixed position vector x/ in the reference configura-
tion and a time-dependent position vector y»/" in the current
configuration. The quadrilateral region between each set of
four adjacent nodes is a zone, labeled by (i + Y2,/ + ).
Node-centered quantities, in addition to x and y, include the
velocity vector v and the acceleration vector a. Zone-centered
quantities include the first Piola-Kirchhoff stress tensor ¢ and
the deformation gradient tensor F.

Denote the components of ¢ in the plane by o,5. (Greek
subscripts have the range 1, 2.) The Green’s theorem dif-
ferencing method leads to the following approximation for the
o component of V,+¢ at node (J, /) at time step n:

dag\ "I epy it Ve (xi j+ L xit L)
dxg T 240 0 v v

+GL_BVZ’j+%’"(x;'1’j—X£Y’j+1) (1)

P=Ya, j=Ya, 1 (i, J— 1 i1, ]
+agg Y (x5 x5 )
Pt Va, J= Vo, (41, J g, =1
+Ua621 : (xv ! Xy )}

where ¢4, is the two-dimensional alternator symbol defined by
€ = —€y = 1,6, = €y = 0; and A"/ is the equivalent node
area, equal to one-half the area of the shaded quadrilateral in
Fig. 2.1. For a node lying on a boundary of the mesh, the
areas and stress components of the missing zones are set to
zero in the above difference formula. See the discussion by
Herrmann and Bertholf (1983) for a more detailed analysis of
the boundary conditions.

The difference formula (1) is obtained by one-point integra-
tion of the following form of Green’s theorem applied to the
quadrilateral region D enclosed by the curve C as shown in
Fig. 2.1:

d¢
SD o, dA=¢g, §)C ddx, Q)
where ¢ is any sufficiently smooth field on D, in this case the
components of a. :
An elastic constitutive relation of the form

a=h(F) 3)
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is assumed, where h is a tensor-valued stress response function
and F is the deformation gradient tensor, defined by

Ve
=t @
dxg
These components are evaluated by the following difference
formula:
( aya > i+ %, j+VYa,n
dxg

off

= B (b I+ — i+ L Jy (pir L+ Ln _ yi oy
2Ai+Vz,j+'/z Y Y @ o

_(x;+1,j+l__xf'y,j)(y2j+1,n_y2(+l,j,n)}. (5)

The origin of equation (5) is similar to that of equation (1), but
with the four zone edges taken as the contour for Green’s
theorem. The integrand is the mean value of y, along a zone
edge.

Dynamic relaxation is a standard method which involves the
modeling of an equilibrium boundary-value problem as the
large-time limit of a damped dynamic problem. This method
was first introduced by Day (1965). A thorough discussion of
this method has been provided by Underwood (1983), and the
following summary is partly based on this source. A discre-
tized version of the equation of motion is most conveniently
represented as a form of Newton’s second law:

Eal" +fisay +ody =mi/alin + Bmivh ine 4, ©®

where @ is a damping constant, mj;/ is the nodal mass, vl /" + "%
is the velocity vector, a®## is the acceleration vector,
and £/, £y, and f5£7 are the nodal forces due to internal
stress gradients, body forces, and boundary loads, respective-
ly. The force on the node from internal stresses is given by

1, j,n
o= Al (_a"“ﬁ) ¢
dxp

which is evaluated using the difference formulas (1). The
quantities f34y7 and £}/ are found by multiplying the body
force density field or boundary traction field by the nodal area
or length.

The difference approximations used in equation (6) for ac-
celeration and velocity are the following:

ai, Jan— (Vi’ Jn+¥% _ Vi, Jin— ‘/z)/hn (8)

&l

and
vi, Sn+Ye (yi, Sint+1 __yi, Jin )/hn+ %) (9)

where A" and A7 " are the time steps, related by

hnz_;__(hn—’/z +hn+’/z). (10)
The discretized equation of motion (6) is solved for y’/#+! for
each node using equations (8) and (9). The difference
representation is an explicit differencing method, since y* /#+1
depends only on quantities which are known from time step ».
The difference formula (6) differs slightly from the usual
one for dynamic relaxation in that the damping term uses the
velocity value centered at n + Y% rather than »n, which appears
in the inertial term. This inconsistency causes an increase in
truncation error, but it is used here because it makes the
stability condition for the pseudotemperature method simpler.
Of course, the error in the time-differencing is of no concern
in dynamic relaxation provided the method is stable. A suffi-
cient condition for the numerical stability of the method is the

Courant stability condition:
W'+ <min {e/c}i+‘/z,j+‘/z,n'

Ht

an
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Here ¢ is the local speed in the reference configuration of
whatever type of infinitesimal wave moves fastest. The zone
width € is the minimum of the lengths of the zone edges and
diagonals. In order to accommodate meshes in which ¢ varies
widely, CHIMP equalizes the stable time step throughout the
mesh by assigning a suitable fictitious mass density (Welsh,
1967) which influences the local value of c.

For the quickest approach to an equilibrium solutlon the
damping coefficient 3 is chosen in such a way as to provide
critical damping of the fundamental mode of the mesh.
Hourglassing is controlled using small resistive forces found
from an algorithm similar to the one proposed by Hancock
(1979), although in CHIMP the algorithm is based on
displacement rather than velocity.

3 Pseudotemperature Method for Incompressibility

CHIMP uses a new algorithm which enforces incom-
pressibility by adjusting the hydrostatic pressures in the zones
in such a manner that the zone volume change tends to zero
for large times. So far the method has been used only for
large-deformation elasticity, although extension to other types
of materials appears straightforward.

If a material is incompressible, then the constitutive relation
(3) must be modified to include a pressure term:

o=h(F)—-PF-T,det F=1 (12)

where P is a scalar field and F~7 is the inverse of the transpose
of F. Since the first Piola-Kirchhoff stress ¢ is related to the
Cauchy stress 7 by

=oF7/J, J=det F,

(12) is equivalent to
r=hF)F" - P1, det F=1. (14)
The incompressible stress response function h in equations
(12) is defined only on the set of unimodular tensors (det F =
1). In the pseudotemperature method, h is formally replaced

by a compressible stress response function h* with the follow-
ing properties:

(13)

(a) h*(F)=h(F) whenever det F=1;
(b) h* must repesent the response of a physically
reasonable material.

Assume that the mesh is initially in a stress-free state. The
calculation proceeds using h* as if the material were com-
pressible. However, the computation of stress in each zone is
modified in a special way. A new zone-centered scalar field 6 is
introduced and stored in an array. In each zone in each time
step, 0 is adjusted according to how far the zone is from satis-
fying incompressibility:
9i+ Vo, j+ V2,0 1,

0i+‘/z,j+'/z,n=0i+‘/z,j+‘/z,n—l+a(1_Ji+‘/1,j+‘/z.n), n=>1

(15)
where o is a dimensionless nonnegative constant. For each
zone in each time step, a scalar quantity p is computed:

pi+ Vi, j+ Va.n =k(0i+ Vo, j+ Va,n _J7'+ Yo, j+ ‘/z,n)

(16)

where k is a constant. The stress tensor for a zone is then com-
puted from

ai+ Yo, j+Va,n =h*(Fi+ a, j+ '/z,n) — (JpF‘T)"Jr Va, j+ ‘/z,n' . (17)

p does not by itself give the hydrostatic pressure, since there is
a contribution from Tr h* FT,

Changes in 6 have the effect of adjusting the natural state,
or unstressed state, -of the zone in a manner similar to
temperature in thermoelasticity. For this reason 6 is called the
Dpseudotemperature, Note that if J < 1, the zone gets “‘hotter”’

Journal of Applied Mechanics

according to equations (15). This induces an increase in
pressure through equation (16), leading to an expansion of the
zone in subsequent time steps. The effect is to drive Jto 1 in
the limit of large time.

Two new constants have been introduced, « and k. These
are set through considerations of numerical stability and con-
vergence rate, i.e., the number of time steps needed to attain a
solution sufficiently close to the conditions of equilibrium and
incompressibility. The remainder of this section presents a
derivation of stability conditions for these parameters by a
von Neumann stability analysis. A detailed look at this
analysis is of interest because many related methods, especial-
ly those in which P is manipulated directly (as opposed to the
indirect effect of pseudotemperature) have much more severe
stability conditions.

Consider an infinite mesh which is uniform and rectangular
in the reference configuration. Let ¢, and ¢, be the zone spac-
ings in the x, and x, directions. Let the mass density in the
reference configuration be p,. Assume that the mesh
undergoes a homogeneous deformation, possibly a large one,
with principal stretches A; and \,. These principal stretches
are assumed to be in the x, and x, directions, respectively.

The von Neumann stability test (see Richtmeyer, 1967) at-
tempts to detect whether any of the vibrational modes of the
mesh, if excited by a small disturbance, grows nonphysically
with time. A full two-dimensional treatment of this type is
prohibitively complex. However, a reliable stability condition
may be derived by making a reasonable assumption about the
mode that is the first mode to exhibit nonphysical growth as A
is increased. The assumption is that this most sensitive mode
corresponds to a dilatational wave in the direction of one of
the principal stretches. This assumption is reasonable because
one would expect pseudotemperature to affect only dilata-
tional modes, rather than shear modes, since its effect is felt
only through the hydrostatic pressure. Further, in isotropic
materials, the fastest dilatational waves occur in the direction
of one of the principal stretches.

The above assumption allows the stability analysis to be car-
ried out as though the mesh were one-dimensional. Consider
an arbitrary node (/, /). Assume a motion of the form

Vb =Ny d +

ljn

(18)
=Nyx}/
where lu»/"| << ¢,. Following the usual procedure for von
Neumann stability analysis, assume

b = prgV —Ixi 19)
where ¥ > 0 is the wave number and v is a complex constant
which characterizes the growth rate of a vibrational mode.
(Here the superscript in v signifies exponentiation.) A con-
stant time step A is assumed.

The first aim is to express the difference formulas entirely in
terms of u values. Under the present assumptions, the dif-
ference formulas (1) and (5) simplify to (omitting the ; labels)

(ui,n+1 _Zui,n +u""‘")+6h(u""’“ _ui,n)
h2
= (al+‘/z R 01;‘/2,n) (20)
Po€y

After linearizing the constitutive relation (17) and again using
the difference formula (5) for the deformation gradient, one
finds

2
o€

1

alﬁ-l/z,ll:a_”_l_ (ui+1,n_ui,n)__)\2pi+'/z.n (21)

where 4,; is the stress associated with the homogeneous defor-
mation. ¢; is the speed of dilatational waves in the x, direc-
tion, relative to the reference configuration, through a com-
pressible solid characterized by h* which has been subjected to
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the homogeneous deformation. Combining equation (21)
with its analogue for time step » — 1 leads to

2
it git =1 ) (ui+hn — i+ ln=1 _yin 4 yin-1)
€) !
i+,
— N (p' (22)

Using equations (15), (16), and the appropriate expressions for
the J terms yields

_pi+ ‘/z,n—l)

pi+ Ya,n _pi+ Yan—1 _ k{a(l — )\l)\z)

2 [(1_I_a)(ui,pz_ui+l,n)+ui+l,n-—l_ui,nfl]} (23)

Combining equation (20) with its analogue for the previous
time step while using equations (22) and (23) provides an equa-
tion in which displacements are the only variables:

(L+BRYubm+ 1 4 (=3 28RYu + (3 +BA)ub" 1 — yhn—2

_ra { ( 2y

2
€1 Po

—(1+a)+ l) (u"“'" —2uin +u"“‘") (24)

2%,

_ ( 22 + 1) (ui+1,n—l —oyin—1 +ui—1,n—l)}
PoCY

Note that values for four different time steps appear in equa-
tion (24). Using the complex representation (19) and making
use of the identity cos « = (exp(V — 1«) + exp(—+ — 1x))/2 in
equation (24) yields a cubic equation for the complex number
v

(1+Bh)?

kN3
+ [—3—2[3h+(2—200s K)( . CZZ (1+a) +1)02]Uz
o+1

+ |3+ 8h—(@2—2c0s k) k)‘%z +1)ct|v—1=0 (25)
C

Py
where the C is the Courant number, C = hc,/¢;.

The condition for stability is that {v| =< 1 for all vibrational
modes. The cubic equation (25) has no root v whose modulus
exceeds unity for any mode if both of the following conditions
hold:

(26)

( 9
Poct

+1)Clsl

and

a<fh. 27
The stability conditions (26) and (27) are generalized to two
dimensions by replacing ¢; by ¢, the maximum wave speed in
any direction; A\, by A, the maximum principal stretch; and ¢,
by e, the zone width previously defined. Making these
substitutions and using the definition of C, the stability condi-
tion is found to be

n+i —
h sh,=

i+Va, j+Va,n
] 28)

€
min ¢
i SN+ kN pg
(27) must also be satisfied once A”** is chosen.
Inspection of (28) shows that one can adjust the relative ef-

fect of pseudotemperature on the stable time step by defining
a separate value of k for each zone at the start of the run:

=K(p002/)\2)i+ Yo, j+ 12,0 (29)

where K is a preassigned nonnegative number. In practice, a
specific value for the time step length is found from A"*% =
sh,,, where s is an ad hoc safety factor, 0 < s < 1, and #,, is

ki+ W, j+ Vv

found from (28). The safety factor accounts for the approx-

imate nature of the above stability analysis.
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The stability condition (28) reduces to the usual Courant
condition for the case of no pseudotemperature, & = 0. Also
note that (27) implies that the pseudotemperature method
would be unconditionally unstable in its present form in the
absence of damping.

In summary, if the k and # values are generated by equa-
tions (29) and (28), and if « satisfies (27), then the condition
for stability is satisfied. In order to maximize the convergence
rate, o and s should be chosen as large as possible such that
(27) holds and s < 1. Values of " = 0.98 A"*" and s = 0.9
usually work well, although a smaller value of s is sometimes
necessary. Note that o and A"+ * must be recomputed at each
time step. The constant K determines the stiffness of the
material with respect to volume changes. As was shown above,
too large a value of K would reduce the time step unaccep-
tably. On the other hand, a very small a value of K would
make the pseudotemperature method ineffectual. Based on ex-
perience a value of K = 0.5 appears to result in good con-
vergence rate for most problems.

In applications involving very large distortions, the stability
criterion (28) may become so restrictive as to make the calcula-
tion inefficient. In this case, one can reassign all the mass den-
sities and k values using equation (29) as is done initially in a
run. In this event it is best to set all the node velocities to zero
in order to avoid creating kinetic energy.

When applying the pseudotemperature method to a specific
incompressible material, the user must provide a compressible
constitutive relation h* subject to the restrictions discussed
earlier. There is considerable flexibility in this choice, and con-
stitutive relations of the form used in Section 4 for the neo-
Hookean material generally work well.

The user must also provide ¢, the maximum sound speed in
any direction as a function of F relative to the reference con-
figuration. The exact value of this quantity for an elastic
material is

(30)

c= max
Po

where m and n are arbltrary unit vectors in the plane. The
computation indicated in equation (30) can be tedious, but ex-
perience has shown that a simplifying assumption leads to a
reliable estimate of ¢ which is much easier to compute. One
assumes that the maximum wave speed is that of a dilatational
wave in the direction of one of the principal stretches. Then

oh;;
c=max(c;,C,) =max <J— J— 2
Po 3F11 anz

The case of one or both of the partial derivatives in equation
(31) being negative corresponds to an unstable material, since
such a material would possess an imaginary wave speed in
some direction. If for some zone in some time step one of the
derivatives is zero or negative, the zone’s effect on the stable
time step may be ignored, since in practice the zone always
reverts to a materially stable condition within a small number
of time steps anyway.

The use of pseudotemperature does not affect the trunca-
tion error of the difference formulas (1) and (5), since the
value of J used in equations (15) and (16) is consistent with
these formulas. Since only the large-time limit of the dynamic
relaxation is of interest, any effect of pseudotemperature on
the error in the time integration scheme is unimportant except

@31

_ as it affects numerical stability, an issue which has been dealt

with above.

4 Sample Problems

This section presents results of application of the
pseudotemperature method to two problems in incompressible
finite elasticity. The first problem, the closure of a wedge-
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Fig. 4.1 Gap closure problem: (a) Reference configuration; (b) Deform-
ed configuration

shaped gap in a circular disk, demonstrates the capability of
the method to predict singular solutions. The second problem
is that of a rubber cylindrical rod being squeezed between two
rigid walls, which demonstrates the method when contact
boundary conditions are used.

4.1 Gap Closure Problem. An unstressed circular disk of
radius r, contains a wedge-shaped gap, as shown in Fig. 4.1.
Using a polar coordinate system with # = 0 on the horizontal
axis, the gap is oriented so that the disk occupies the interval
~v/2 = 6 < y/2 where v is a constant, 0 < y < 27.

The disk is composed of a neo-Hookean material, an in-
compressible hyperelastic solid whose Piola stress response
function may be written

h(F)=p(F~-F-T), det F=1 (32)

where p is a positive constant. The corresponding Cauchy
stress tensor is 7 = uw(FF7 — 1) — P1.

Let (p, ¢, ¢) be the polar coordinates of the image of a parti-
cle initially at (r, 0, z). Assume plane strain, { = z. The
boundary conditions are such that the gap is welded shut and
the outer circular boundary is traction-free. This problem
belongs to a class of problems involving wedge-shaped regions
investigated by Singh and Pipkin (1965) and separately by
Klingbeil and Shield (1966). Its tractability stems from the fact
that the constraint of incompressibility completely determines
the deformation. The requirement of incompressibility implies
that only one deformation with polar symmetry is possible:

o= (y/2m)\%r, ¢ =2m0/y. 33)
Since the deformation is now determined, the stress field is
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— —— — numerical
exact

pressure

STRESS

-4+
Fig. 4.2 Comparison of CHIMP results and exact values for normal
Cauchy stress components and pressure in gap closure probiem

also determined through (32) except for the scalar field P.
Because of polar symmetry and the isotropy of the material,
the Cauchy shear stress components 7,4, 7y, and 7, all
vanish, and the nonvanishing components are independent of
¢. Therefore, the scalar field P may be found by integrating
the Eulerian from the equilibrium equation in the deformed
configuration. After applying the traction boundary condition
at the outer edge, one finds that the nonzero components of
the Cauchy stress fields are given by

2y o
Tpp (0) =“(—7__E)10g -;0—,

2y 0
o0 (o) =0 (=20 (1+10g ),
v Yy 2« Po

2T
7 (0) =u(1 —%) +u<—7——%)10g p%, 0<p=p,
where p, = (y/2m)12r,.

CHIMP was used to model this problem for the case y =
47/3,ry = 1, u = 1. The mesh for this problem used 13 rows
of constant radius and 12 columns of constant angle. Ex-
ploiting symmetry, a mesh modeling only one quadrant was
used, with the x, axis becoming a lubricated wall. The edge of
gap was modeled as another lubricated wall, with its angle a
ramp function of time. The ramp took about 100 time steps to
reach the fully closed position.

The compressible Piola stress response function used for the
pseudotemperature method was

G4

h*(F):p{F+(J2~2)F—T},J:detF>0 (35)
The resulting Cauchy stress tensor is 1 = u {(FFT — 1)/J +
(J — 1/J)1}. To evaluate ¢ as discussed at the end of the
previous section, the deformation gradient tensor is written as

A O
= [ ]
0 N

in which the coordinate frame has the x, axis parallel to the
direction of maximum stretch. (It is not necessary to find this
direction.) The general form (36) continues to hold when a
small dilatational wave in the x, or the x, direction is super-

(36)
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Fig. 4.3 Rubber cylinder compression problem: (a) Undeformed; (b)
Deformed

posed on the large homogeneous deformation, but in the case
of a wave \| or A, is time-dependent. Equations (35) and (36)
imply

o =hH(F) =p (N + AN —2/0). (37
Thus
ant
¢, = L 9hh =Ji(1 +A3+2/0). (38)
po 0N Po

¢, is found from equation (38) with all the subscripts 1 and 2
interchanged. Then ¢ = max (c,, ¢;). The principal stretches
A\; and A, are found from the relations

J =N\, and Tr(FFT) =N} + \. (39)

The left-hand sides of (39) are easily computed from F in any
basis, since they are invariants.

The pseudotemperature parameters were ¢ = 0.9 and K =
0.5. The entire simulation was run for 700 time steps. Figure
4.2 compares the numerical results against the exact solution
derived above for 7,,, 7,4, and pressure as a function of p.

4.2 Compression of a Rubber Cylinder Between Rigid
Walls. A circular cylindrical rod composed of a neo-Hookean

544/ Vol. 54, SEPTEMBER 1987

material is compressed between two rigid lubricated walls. The
final distance between the walls is the radius of the cylinder.
The CHIMP mesh for this problem employed 12 radial lines
and 13 circular lines (see Fig. 4.3 (a)). The walls were initially
spaced at the diameter of the cylinder and brought together
over a period of 300 time steps. The pseudotemperature
parameters were o = 0.9 and K = 0.5. The entire simulation
was run for 1000 time steps. Figure 4.3 (b) shows the deform-
ed mesh. The analogous problem for walls with a “‘rough”
surface, which prevents motion of the boundary of the
cylinder after contact with the wall is initially made, has also
been modeled successfully.

5 Summary

Pseudotemperature has proven to be a useful means of im-
posing the constraint of incompressibility when computing
large elastic deformations using a dynamic relaxation method.
It has the advantage of requiring minimum disruption to the
architecture of a computer code designed for compressible
materials. It also has the property of enforcing incom-
pressibility with greater and greater accuracy as a calculation
progresses. The above discussion of stability shows that
suitable values of the scalars o and K may always be chosen,
provided viscous damping is present.

Future work will include application of this approach to
other constraints, such as the presence of inextensible fibers.
Attempts are also being made to extend these ideas to fully
dynamic calculations.
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Plane Strain Dislocations in Linear
Elastic Diffusive Solids

Solutions are obtained for the stress and pore pressure due to sudden introduction of
plane strain dislocations in a linear elastic, fluid-infiltrated, Biot, solid. Previous
solutions have required that the pore fluid pressure and its gradient be continuous.
Consequently, the antisymmetry (symmetry) of the pore pressure p abouty = 0Ore-
quires that this plane be permeable (p = 0) for a shear dislocation and impermeable
(dp/dy = 0) for an opening dislocation. Here Fourier and Laplace transforms are
used to obtain the stress and pore pressure due to sudden introduction of a shear
dislocation on an impermeable plane and an opening dislocation on a permeable
plane. The pore pressure is discontinuous on'y = 0 for the shear dislocation and its
gradient is discontinuous on'y = 0 for the opening dislocation. The time-
dependence of the traction induced on'y = 0 is identical for shear and opening
dislocations on an impermeable plane, but differs significantly from that for
dislocations on a permeable plane. More specifically, the traction on an im-
permeable plane does not decay monotonically from its short-time (undrained)
value as it does on a permeable plane; instead, it first increases to a peak in excess of
the short-time value by about 20 percent of the difference between the short and
long time values. Differences also occur in the distribution of stresses and pore
pressure depending on whether the dislocations are emplaced on permeable or im-

J. W. Rudnicki

Department of Civil Engineering,
Northwestern University,
Evanston, IL 60201

permeable planes.

Introduction

The presence of an infiltrating fluid that can diffuse in
response to an inhomogeneous mean stress field can introduce
time-dependence into the response of an otherwise linear-
elastic solid. Although a linear theory is obviously an approx-
imation to actual behavior, this theory is rich enough to pro-
vide insight into the nature of coupling between deformation
and diffusion and guidance into more complicated nonlinear
problems. Moreover, there is often insufficient data to war-
rant the construction of a more elaborate theory.

The equations describing the response of a linear elastic,
diffusive solid were first formulated by Biot (1941a) within the
context of a fluid-saturated porous elastic solid. More recent-
ly, Rice and Cleary (1976) reformulated these equations in a
way that is often more convenient. Solutions to these equa-
tions have been widely used in consolidation theory (e.g. Biot,
1941b; Biot and Clingan, 1941) and, more recently, in study-
ing the role of coupling between deformation and diffusion of
ground water on earth faulting (see Rudnicki, 1985, for a
review). The equations have also been applied to biological
materials (e.g., Kuei, 1977; Mow and Lai, 1980). Indeed, the
formulation is sufficiently general to describe the linearized
response of any solid containing a diffusing species that can be
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characterized by a relation between two scalar variables, for
example, pressure and fractional volume change in the case of
groundwater. The formal analogy of these equations to com-
pletely coupled thermoelasticity has also been noted (Biot,
1956; Rice and Cleary, 1976; Rice 1979).

This paper considers the problem of plane strain (edge)
dislocations in a linear elastic diffusive solid. Booker (1974),
using the stress function formulation of McNamee and Gibson
(1960a,b) and integral transforms, obtained the solution for a
shear (gliding edge) dislocation in the special case that both
solid and fluid constituents are incompressible. Rice and
Cleary (1976), using a complex variable formulation, derived
the solution for arbitrarily compressible constituents. These
solutions correspond to the case in which the glide plane of the
dislocation (the plane containing the dislocation line and the
Burger’s vector) is permeable to the diffusing species.
Although neither author emphasizes this feature, it results
because the mean stress and pore pressure are antisymmetric
about the glide plane. If the pore pressure is continuous, then
it must be zero on the glide plane. Another possibility,
however, is that glide plane is impermeable to the diffusing
species. Now the pore pressure can be discontinuous on this
plane.

The stresses and displacements for an opening (climbing
edge) dislocation can also be obtained from the results of Rice
and Cleary (1976) although they do not explicitly display this
solution. In this case the boundary condition on the pore fluid
pressure corresponds to no flow across the plane containing
the Burger’s vector and the dislocation line. Again, however,
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there is another possibility: no change in pore fluid pressure
on this plane. Now, the symmetry of the mean-stress and pore
pressure requires that the gradient of the pore fluid pressure be
discontinuous.

In this paper, Fourier and Laplace transforms are used to
derive the stresses and pore fluid pressure due to sudden in-
troduction of a plane strain shear dislocation on an im-
permeable plane and of a plane strain opening dislocation on a
permeable plane. These solutions are compared and con-
trasted with those obtained by Rice and Cleary (1976).
Although applications of these solutions are not explored
here, Rudnicki (1986) has discussed the implications of the
shear dislocation solutions for slip on an impermeable fault in
the earth’s crust. The dislocation solutions provide only crude
models of sliding or opening cracks, but solutions for more
realistic geometries can be constructed by superposition or by
implementing the fundamental dislocation solutions in a
numerical procedure.

This paper first concisely describes the governing equations
and obtains the solution for the doubly transformed stresses
and pore pressure. Then the boundary conditions for the dif-
ferent solutions are presented. The inversion of the transform-
ed solution for the shear dislocation is discussed in detail, but
inversion of the opening dislocation is similar and, conse-
quently, is only outlined. Finally, the interrelations of these
solutions with those obtained by Rice and Cleary (1976) are
discussed.

Governing Equations

The governing equations for linear elastic, fluid-infiltrated
solids were first derived by Biot (1941a), but the description
here follows a convenient rearrangement of these equations by
Rice and Cleary (1976). In this theory, the presence of the dif-
fusing species is incorporated via two variables in addition to
the usual ones of linear elasticity. Here, these are taken to be
the pore fluid pressure p and the mass content of diffusing
species per unit volume of porous solid m. For plane strain
deformation in the xy plane (no displacement in the z direc-
tion) the displacements in the x and y directions, u, and ,, do
not depend on z. The nonzero strains are

1
ap == (/05 + g /0x,) O

where («, 8) = (x, y). These strains and the alteration of m
from an ambient value m,, are related to the total stresses g,.,
0,y and o, and to the pore fluid pressure p as follows:

2Ge,p =045 — V{04 + oyy)6aﬁ +[3(v,—v)/B(1+v,)]p 6043 2)

= 3p, (v, —7)
° 2GB(1+w,)

In equations (2) and (3) G is the shear modulus; » and », are
Poisson’s ratios governing drained (long-time) and undrained
(short-time) response, respectively; B is Skempton’s coeffi-
cient, the ratio of an increment of pore fluid pressure to an in-
crement of mean normal compression during undrained
response; p, is the density of the homogeneous diffusing
species; and 8,4 is the Kronecker delta (6,54 = 1, if « = 8 and
o, = 0, otherwise).

For deformation that is slow enough so that any alterations
in pore fluid pressure are equilibrated by mass diffusion, the

[oy + 0y, +3p/B(1+p,)] 3)

response is said to be drained and, since p = 0 in this case, -

equation (2) reduces to the usual elasticity relation. Deforma-
tion that is too rapid to allow time for diffusion is said to be
undrained. In this case, m = m,, and solving for p in equation
(3) and substituting in equation (2) again yields the form of the
usual elasticity relation with », replacing ».

The final constitutive equation is Darcy’s law which, in the.

absence of body forces, states that the mass flow rate in the «
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direction per unit area, ¢,, is proportional to the gradient of
pore fluid pressure:

gy = —pok Op/ox, 4)
Here « is a permeability often expressed as k/u where & has the
units of area and p is the fluid viscosity.
. For plane strain deformation, the governing field equations
can be written as follows in terms of the stresses o,5 and pore
pressure p:

d0,,/0x +da,,/dy=0 o)
80,.,/dx+d0,, /8y =0 ©)
V(0 +0,,+29p) =0 ¥)
(cV2=0/0) [0y + 0, + (29/p)p] =0 8)

where V2 (.. .) = [(3%/3x?) + (3%/3yH] (.. .), ¢ is a dif-
fusivity, p = (v, — »)/(1 — »)

and
1=3(,—»)/2B(1+v,) (1-»).

Equations (5) and (6) express equilibrium of total stresses in
the absence of body forces and equation (7) expresses com-
patibility of strains. The diffusion equation (8) is the result of
combining Darcy’s law (4) with an equation of fluid mass con-
servation and using equation (7). Comparing equation (8) with
(3) reveals that the quantity in square brackets in equation (8)
is proportional to the alteration of fluid mass content. Hence,
as emphasized by Rice and Cleary (1976), the fluid mass con-
tent m satisfies a homogeneous diffusion equation although
the pore fluid pressure, in general, does not. Rice and Cleary
(1976) have given a full discussion of these equations and have
tabulated values of material parameters inferred from
laboratory tests on rocks (also see Rudnicki, 1985) and Rice
(1979b) and Rice and Rudnicki (1979) have given some
estimates of » and », for conditions near faults in the earth’s
crust.

The equations (5)-(8), subject to boundary conditions to be
discussed in succeeding subsections, will be solved using the
Fourier transform on x and the Laplace transform on ¢. The
Laplace transform of a function f(x, ¢) is defined by

Fxsy=| " exn(-stfeenat ©)
and the inversion is denoted by
- 1 -
S0 =L Fes)) =5 Foesrepends o)
L JBr

where ¢ = (—1)!2 and Br denotes the Bromwich contour. The
Fourier transform is defined by

Foos)= " Foosiexp(—uo)dx )
with inversion
f(x,s>=F-l[f<«,s>1=ﬁSf Jles)expluoyde  (12)

Applying the Fourier and Laplace transforms to equations
(5)-(8) yields the following results:

o

LK Gt (;"y:o (13)
4o

LK Gy + ;yyy—zo (14)

1s)
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(16)

a? .
(20 10+ 5, + 1/ =0
where n%(x) = &% + s/c. These equations are identical to those
obtained by Rice and Simons (1976) except that —wV/c in
their expression for n? (k) is replaced by s/c. Consequently,
the solution of these equations can be obtained directly from
their results and is as follows:

1
— (O 0y,) =A e 4 Be (17)
7 ﬁ: —pnA e—Mm&y B g—n(x)y (18)
1 ~ P —m(x)
—Z—(Oyy—O'xx)=[C+m(K)y Ale v
B
——b:/-g[xz-’rnz(/()]e*"(")’ (19)
Oy =—lwx m=1 (k) C+uw y Ale "
B —n(k)y
+T§‘7? 2LKn(K)e (20)

where A, B, and C are functions of « and s to be determined,
and m2(x) = «?. Note that the doubly transformed solution
for the fluid mass content per unit volume m is proportional to
B e~"9_To insure convergence of the inversion integrals in y
> 0, m(«) and n (k) are subject to the following restrictions:

Re[m(x)1=0 @n
Re[n(x)]=0 (22)

where Re[. . .] stands for ‘“the real part of [. . .].”

The functions 4, B, and C can be determined from the
boundary conditions which are discussed in the next
subsection.

Boundary Conditions

The introduction of a shear (gliding edge) dislocation at the
origin corresponds to cutting the negative x axis, displacing
the top to the right and the bottom to the left by the same
amount, then bonding the cut elastic plane back together. The
resulting discontinuity in the x displacement is described as
follows:

U (x,y=0",0) —u, (x,y=07,1)
=R2x(1—-»,)b,/GIH(—x)H(¢) 23)
where H(. . .) denotes the unit step function and the notation
y = 0% indicates that u, is to be evaluated as the x axis is ap-
proached from above or below. The magnitude of the discon-
tinuity is measured by b, and the factor 27(l — »,)/G has
been introduced with a view to simplifying later expressions.
Because the displacements are antisymmetric with respect to
the plane y = 0, the problem can be formulated in the upper
half-plane, y = 0, with equation (23) rewritten as
U (x,0",8y=[w(l —»,)b,/GIH(—x)H (t) 24)
Because of antisymmetry and continuity of total tractions on y
= 0, the normal stress on this plane ¢, is zero:
0y, (x,0%,£) =0 (25)
If the pore fluid pressure p is continuous, then antisym-
metry requires that it be zero on the plane y = 0:

p(x,0%,0=0 26)

Journal of Applied Mechanics

This is the problem for which the solution has been given by
Rice and Cleary (1976) (and earlier by Booker, 1974, for in-
compressible constituents corresponding to B = 1 and », =
0.5). Because dp/dy is not zero on y = 0 in this case, flow
across ¥y = 0 occurs according to equation (4). Another
possibility is, however, that the plane y = 0 is impermeable to
the diffusing species. As discussed by Rudnicki (1986), this
can occur for an earth fault because clay gouge or finely
ground material is present in the fault zone. In this case no
flow can occur across y = 0 and the boundary condition en-
forcing this constraint is the following:
P (x0t0=0 @7)

ay
Because the solution to the field equations is written in
terms of stresses, it is also convenient to express the boundary
condition (24) in terms of the stresses. Differentiating (24)

with respect to x yields

ou,
dx

where 6 (x) is the Dirac delta function. Because ¢,, = du,/dx,
equation (28) can be substituted into equation (2) and the
result, after using equation (25), is

—27(1 —p)b, 6 (X)H(t) =0,,(x,0,¢) + 29 p(x,0,)

(x,0*,1) = — [(1 = v,)b, /G5 (x)H(t) (28)

29

where p and 7 are defined following equation (8). If the plane
y = 01is permeable and equation (26) is satisfied, the second
term vanishes. In this case, the change in fluid mass content on
y = 0is proportional to ¢, (x, 0, #). Because m satisfies the
homogeneous diffusion equation, the solution is that for a
fluid mass dipole (Carslaw and Jaeger, 1959) given by Rice
and Cleary (1976). If the fault plane is impermeable and equa-
tion (27) is appropriate, the resulting boundary condition on
m is not so simple and this is a source of the additional com-
plexity in this solution by comparison with that for the
permeable plane. )

The boundary condition for an opening (climbing edge)
dislocation corresponds to introducing a discontinuity in the y
displacement on the negative x axis. This problem can again be
formulated in the upper half-plane, y = 0, by noting that the
displacements are now symmetric about y = 0. The boundary
conditions can be written as follows:

Uy (x,0% ) =[x(1—»,)b,/GIH(—x)H (1) 30)
Gy (%,0%,8) =0 (€1)]

where, again, the constant factor multiplying b, has been in-
troduced to simplify later expressions.

If the derivative of the pore pressure in the y direction is
continuous, then the symmetry of the problem requires that it
be zero on y = 0. Now, however, an alternative boundary
condition is equation (26). In this case the fluid mass flux is
discontinuous on y = 0. This boundary condition models a
thin high permeability layer in which the easy flow of fluid
maintains the pore fluid pressure at its ambient value. This
boundary condition may also be appropriate when opening is
accompanied by injection of fluid mass.

In the next section the solution for the shear dislocation
with an impermeable boundary at y = 0 (equation (27)) will be
completed. The following section treats the opening disloca-
tion with a permeable boundary at y = 0 (equation (26)).
Because the conversion of the boundary condition (30) to a
condition on the stresses is accomplished more easily in terms
of the transformed quantities, this task is deferred to this later
section.

Shear Dislocation on an Impermeable Boundary

The boundary conditions for the shear dislocation are equa-
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tions (25), (29), and, for an impermeable boundary at y = 0,
equation (27). Taking the Fourier and Laplace transforms of
these equations, then substituting equations (17)—(20) yields
three equations for the functions 4, B, and C. Solving these
equations and substituting these expressions into equations
(17)-(20) yields the doubly transformed stresses and pore fluid
pressure. The expressions for the mean stress and pore
pressure are as follows: :

G=(=byn/s) e~ —pulm (k) /n(x)]e~""} (32)

1 = (byr/s)p{e=" —[m(k)/n(x)]e ") (33)
where & = (1/2) (6, + §,,). It will be convenient to combine
equations (19) and (20) into the complex form:

(34)

T=——2—(oyy = 0y) t1 0y
The result for the double transform of 7, after substituting the
expressions for A, B, and C, is as follows:
F=(byn/s)[1+&/m(x)][1 —m(x)yle= &>

— (buwc/s)m (k) /n(){ [k + n(k)]Pe "
~ 21+ /m (k) ]e~ ") (35)

The Laplace transform variable s appears only in 7 (x) and
as a simple divisor. Terms without »n(«x) can be inverted im-
mediately by noting that s~! is the transform of the unit step
function. These terms give the instantaneous undrained
response and it can be anticipated that the spatial dependence,
given by the inversion of the Fourier transforms in those
terms, is identical to that of the usual elasticity solution. This
can be verified by doing the following inverse transforms:

F-1{e 02y =y/qr? 36)
F U {1+ w/m()][1 —m ()]} = (x— )/ ar’ (37
where 2 = x2 + 2,

The expression for the mean normal stress (32) and pore fluid
pressure (33) can be written using equation (36) as follows:

o=—=b,{(¥/r*)—u I(x.y,0)} (38)
np=pb, { (¥/r*)~1(x,p,t)} (39)

where the Laplace transform of I is given by
1~=(25)"‘Sio [m (k) /n(k)}explicx—n («)yldx (40)

and equations (38) and (39) are understood to apply for ¢ = 0.
The restrictions on m(x) and n(x) (equations (21), (22)) can
be used to convert equation (40) to the following integral over
positive values of «:

f:s“‘go k (k2 +8/c) ~12cos(kx)expl — y (k% +s/¢) 21dk (41)

where the expression for n(x) has been used. Substitution of
equation (37) into (35) and use of equations (21), (22) leads to
an expression for 7:

»? 9
r=b[t x/(x+iy)2]—ubxic 1*~—1*—1#+1}

dxoy ax?*
42)
where the Laplace transforms of I* and I* are given by
I*(x,p,8) = (2¢/5)1(x,,5) “3)

and
Pey,s)= (ZC/SZ)S: k32 +s/c) " V2explik(x+w)]dk  (44)

The inversion of I(x, y, ¢) is described in the Appendix. The
result can be written compactly as

I(X,y,t) = "‘Im[W(X,)’,t)/Z] (45)
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where z = x + v, Im [. . .] denotes ‘‘the imaginary part of
[...]” and W{(x, y, t) is defined by

W(x,y,t) =erfcly/ (4ct) /] + exp(— r2/4ct)erf[ x/ (4dct)?]
(46)

In equation (46) erf(¥) is the error function defined by equa-

“tion (7.1.2) of Abramowitz and Stegun (1964) (hereafter ab-

breviated AS):

£
erf(¢) = (2/7?) SO exp( ~ a?)do ()]

where £ can be complex and the complementary error function
is given by

erfe(¢)=1—erf(£) (48)

The task remaining is the inversion of the integrals I and I*.
Because of equation (43), I* is given by

t
Py =2¢| Iy Nan (49)

Substituting equation (45) into (49) yields an expression for I*:
I* (x,p,t) =(8cty/r?)iterfcly/ (4ct)!/?)
— [2x2(4ct)\ /2 /r2Yierfely/ (4ct)V /2]

1
+2|xlS y (1 — 2 2erfe[er/(4ct) 2 )dE (50)
yr
where i"erfc(z) are repeated integrals of the complementary
error function [AS, Section 7.2].

The details of the inversion of equation (44) for I* are
described in the Appendix and the result is

I(x,y,t) = —2(4ct/m)2z-2 — [dctz 3

+2/z)wlz/ (det) 2] (51)

where (AS, 7.1.3)
w({) =exp(— Perfe( —) (52)

Substituting equations (45), (50), and (51) into equations
(38), (39), and (42) and carrying out the differentiations in
equation (42) yield the following expressions for the stresses
and pore fluid pressure due to sudden introduction of a shear
dislocation on an impermeable plane:

o=b Im{[l —p W(x,y,0)1/z}
nw=-—pup bem{[l - W(x,y,t)]/z}

(53)
(54

T=uxb./7* — pb, {L4ctz‘3 {wlz/dct)V21— W (x,p,1)}
+2(4ct/m)V 2772 [1 —exp(~ y*/dct)] + 27 2Im[z W (x,p,1)]

+2¢z-1w[z/4ct)1/2]} (55)
The first term in each expression gives the instantaneous
response at { = 0. These terms are identical to the usual
elasticity expressions with the undrained value of Poisson’s
ratio, »,. For { — oo, these expressions again reduce to those
of classical elasticity with the drained value of Poisson’s ratio.

Opening Dislocation on a Permeable Plane

The solution for an opening dislocation with a permeable
boundary (»p = 0) at y = 0 can be obtained in a manner similar
to that of the last section and, hence, will be described concise-
ly. As before, the solution to the governing equations (5)-(8) is
given by equations (17)-(20) subject to equations (21) and
(22), and the functions 4, B, and C are to be determined by
the boundary conditions (26), (30), and (31). Because the
boundary condition (30) is not expressed in terms of stresses
and pore pressure some manipulations are, however, required.

Transactions of the ASME
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Differentiating equation (30) with respect to x and using equa-
tion (31) with equations (1) and (2) yields

3
Sy 00 = n(l 5,00,/ GIS (I H (1) (56)
Doubly transforming gives
i
dl}'j (k,0,5) =7(1 — )b, /Gs (57)

This condition can be converted to one on stress and pore
pressure by using equation (1) in (2) with o = 8 = x, differen-
tiating with respect to y, and doubly transforming. The result
is

dii do do dp
2G Y (1 —p)— 4 (1 - 58
LK dy dy ( v)—v dy 7( v) dy (€1))

Recognizing that equilibrium (6) and (31) require dé,,/dy to
vanish on y = 0 and substituting from equation (57) yields the
desired condition:
db, dp

dy (x,0,5) + 29 @ (%,0,8)

The solutions for 4, B, and C in equations (17)-(20) can be
determined by doubly transforming (26), (31), and (59), then
substituting equations (17)-(20). Solving the resulting three
equations for A, B, and C, substituting into equations
(17)-(20) and manipulating in the manner of the solution for
the shear dislocation yields:

2r wh, (1—p)/s= (59

o=b,{ (x/1)—p K(x,,1)} (60)
= —p b, { (x/r) = K(x,y,t)) (61)
r=b, (/)= b, {K(xp,0) =K (03,0
32K* 32K*
-2 v -2 T } (62)

where the Laplace transforms of K, K, and K* are as follows:

K(ey,t)=s! S: expl — (k2 +s/¢) 2 ylsin(kx) dk (63)
K'(xep,1) = (2Lc/s2)5: K (k2
+s/¢)V2explu (x + ) 1dk (64)
K*(x,p,t) = (c/s)K (x,,1) (65)

Inversion of these expressions proceeds along the same lines as
inversion of the corresponding integrals in the shear disloca-
tion solution. The results are as follows:

K(x,p,t)=Re[W(x,y,t)/z} (66)
K* (x,y,t) =2ct (x/r*){erfely/(4ct) 2]
—2i2erfcly/(4ct)’?]}
1
—y sgn(x) S , (1 —u®)2erfelur/(4ct)V*1du 67
y r
Kt (x,y,t) =4ct 27 3w[z/4ct) V2] - 2u(dct/n)z 72 (68)

where the notation is the same as that used earlier. The final
expressions for the stress and pore pressure are obtained by
substituting equations (66)-(68) into equations (60)-(62) and
carrying out the differentiations in equation (62):

o=b,Re{[l—p W(xy,0)1/z) (69)
np=—p b,Refl - Wix,y,1)]/z) (70)

T=ub, (y/2%) — ub, {4ctz 3 [W(x,p,t) —w(z/ (4ct)'"?)]
+ 2{4ct/ 7)Y 2z 21 —exp(— y?/4ct)] (7))

—z 2Relz W(x,y,0)1)

Journal of Applied Mechanics

These expressions reduce to the usual ones from ordinary
elasticity in the limits ¢ — 0 (undrained response) and ¢ — oo
(drained response). In the latter limit, p = 0 and the drained
Poisson’s ratio » enters; in the former m = m, and the un-
drained Poisson’s ratio », enters.

Discussion

The similarity between the solutions for the shear disloca-
tion (53)-(55) and the opening dislocation (69)-(71) suggests
that they can be combined advantageously in a form
analogous to that of complex variable elasticity. To this end,
define the complex Burger’s vector as

b=b,+ub, (72)
Then the two solutions can be written compactly as follows:
o=Im{bz " '[1 - uW(x,y,0)]) 73
p=—p lm{bz '[1- W(x,y,0)]) (74)
=127 Re(bz) — pu{bdctz 3 [w(z/ (4ct) V2 — W(x,p,1)]
+2b(4ct/T) 2721 —exp(~ y/4ct)] + 2" *Im[bz W (x,3,1)]
+2b, wiz/ (4ct)V?]) (75)

where b = b, — b,. For comparison, the solution for a shear
dislocation on a permeable boundary and an opening disloca-
tion on an impermeable boundary (Rice and Cleary, 1976) can
be written in the same form:

o=Im{bz~'[1 ~p exp(—r?/4ct)]} (76)

np=—p Im{bz"'[1—exp(—r?/4ct)]) an
7=12"2Re(bZ) — u{bdctz 3 [1 — exp(—r?/4ct)]

+z 7 2Im[bZ exp(—r?/4ct)]} (78)

(Rice and Cleary, 1976, display only the solution for the shear
dislocation in polar coordinates, but the solution for the open-
ing dislocation is extracted from their results for the complex
stress functions).

It is of interest to compare the stresses induced by the
dislocations on y = 0 for the various cases. For the shear
dislocation on the impermeable plane and the opening disloca-
tion on the permeable plane the tractions on y = 0 are as
follows:

0,y + 10y, = (1, /x) (1 + pdct/x2)[1 — e 3 /4et] — 2y g =34t

+ (b, /x) {1 — p(dct/x2)[1 — e=x" /4]y (79)

For comparison the tractions obtained from the Rice and
Cleary (1976) solution are

Oy + 10,y = (1, /X) (1 — p(det/x2)[1 — e~ /41])

+ (b,/%) {1+ pldet /51 — e~ 4et] 2y o= 14ty (80)

Note that the spatial dependence of the tractions is the same
for the opening dislocation and for the shear dislocation if y
= 0 is permeable or if y = 0 is impermeable. The time
dependence of the tractions does, however, depend
significantly on whether y = 0 is permeable or impermeable.
In both cases, the traction decays from a short time limit, cor-
responding to the usual elasticity expression based on the un-
drained value of Poisson’s ratio, to a long time limit that is
smaller by the factor 1 — p = (1 — »,)/(1 — »). The time
dependence at intermediate times is shown in Fig. 1, which
plots

Uyy (x’oyt) -Uyy (x909°°)
ny (X’O’O) - Uyy (x,0,00)

against 4cf/x? for the opening dislocation on permeable and
impermeable boundaries. As shown, the induced stress for the
permeable boundary decays monotonically from the short-

(81
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Fig.1 Time-dependence of the normal traction ¢, ony = 0 ahead (x >

0) of an opening dislocation at the origin. Results are shown fory = 0
permeable and impermeable to the diffusing species. The plot for the
shear traction o, ahead of a shear dislocation would be identical.

alotm 12

wlbi

p{x,0,t)

-04 L

-0.8~

Fig. 2 Nondimensional pore pressure induced on an impermeable
plane y = 0 by shear and opening dislocations at the origin. The plot is
for a fixed time not equal to zero. The pore pressure for the shear
dislocation is shown fory = 0% ; values fory = G~ are the negative of
those shown.

time undrained value to the long-time drained value. In con-
trast, the stress on the impermeable boundary first rises to a
maximum that exceeds the undrained value by approximately
20 percent of the difference between the undrained and drain-
ed values. This maximum occurs at 4ct/x?> = 0.3. A plot of Oy
ony = 0 for the shear dislocation would be identical to Fig. 1.

As discussed by Rudnicki (1986), the increase of the shear
stress predicted for the impermeable fault suggests that the ef-
fect of coupling between diffusion and deformation is initially
destabilizing for sudden seismically emplaced slip. Also the
differences in the time scale of shear stress decay for
permeable and impermeable faults suggest differences in the
effects of coupling on the reloading of faults, which has been
proposed as a mechanism for aftershocks, and on processes
preceding earthquakes.

Figure 2 shows the pore pressure in nondimensional form
np(ctm)2/p 1] induced on y = 0 by a shear dislocation and
an opening dislocation on an impermeable plane. For the
shear dislocation, the pore pressure is antisymmetric about y
= 0. Consequently, the pore pressure is discontinuous on y =
0 and the values on y = 0~ are the negative of those shown in
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-08+

Fig-3 Nondimensional gradient of pore fiuid pressure (proportional to
the negative of the fluid mass flux) on a permeable plane y = 0 due to
shear and opening dislocations at the origin. The plot is for a fixed time
not equal to zero. Values shown for the opening dislocation are fory =
0%; those fory = 0~ are the negative of those shown.

Fig. 2. For the opening dislocation, the pore pressure is sym-
metric about y = 0 and, consequently, continuous on y = 0.

Figure 3 plots the gradient of pore pressure in nondimen-
sional form Qetyw'2/ulbl)ap/dy on y = 0O induced by
dislocations on a permeable plane. This quantity is propor-
tional to the negative of the fluid mass flux across y = 0(4). As
noted earlier, dp/dy is antisymmetric about y = 0 for the
opening dislocation and, hence, is discontinuous on y = 0. As
shown in Fig. 3, dp/dy is negative for x > 0 and positive for x
< 0. Consequently, there is a net gain of fluid massony = 0
for x < 0 and a net loss on for x > 0. For the shear disloca-
tion, dp/dy on y = 0 is positive and symmetric about x = 0.
Hence, fluid flows from the upper half-plane to the lower. The
nature of the solutions and differences and similarities among
them are further illustrated in Figs. 4-9. These figures plot
contours of the pore pressure, mean stress, and the magnitude
of 7 in nondimensional form for the various solutions. These
plots are all for a fixed time not equal to zero. Contours for
the solutions due to Rice and Cleary (1976), that is, the shear
dislocation on a permeable plane and the opening dislocation
on an impermeable plane, are shown dashed.

Figures 4 and 5 plot contours of the nondimensional pore
pressure np(dct)!’2/u 1b| in the upper half plane. Figure 4
shows the contours for the shear dislocation (b = b,) on
permeable (dashed lines) and impermeable planes. The values
in the lower half-plane are the negative of those shown. The
contours coincide for large y, but differ near y = 0 because of
the different boundary conditions there. As shown, the con-
tours for the shear dislocations on an impermeable plane meet
y = 0 at right angles as required by the boundary condition.
Also, note that the maximum pore pressure change for the im-
permeable plane occurs at the origin whereas that for the
permeable plane occurs at a finite value of y that increases

- with increasing time. Figure 5 shows the contours of non-

dimensional pore pressure for the opening dislocation on
permeable and impermeable (dashed lines) planes. The pore
pressure induced by an opening dislocation on an im-
permeable plane is identical to that for the shear dislocation
on a permeable plane rotated 90 deg counterclockwise. As in

. the ordinary elasticity solution for shear and opening disloca-

tions this feature applies to the entire stress and pore pressure
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Fig.7 Same as Fig. 6 for an opening dislocation. Dashed lines indicate
the solution when y = 0 is impermeable.

y/act)

1.0
x/(4ct)'/2

Fig. 8 Contours of nondimensional shear I+] (4ct)'2/1b] induced in y
= 0 by a shear dislocation at the origin for the plane y = 0 impermeable
and permeable (dashed)

10 20
3c/(4ct)1/2

Fig. 4 Contours of nondimensional pore pressure 3 p(4ct)1’zlu bl in- 20k
duced in y = 0 by a shear dislocation at the origin for the planey = 0im- ’
permeable and permeable (dashed)

ylacty’

y/(tlct)y2

Lo
50
I/(4Cl)1/2

i ——
100

1
-100 -50 o]

Fig.5 Same as Fig. 4 for an opening disiocation. Dashed lines indicate
the solution when y = 0 is impermeable.

y/(4 ct)j/2

x/(4ct)

Fig.9 Same as Fig. 8 for an opening dislocation. Dashed lines indicate
the solution when y = 0 is impermeable.

fields: those for the opening dislocation on an impermeable

plane can be obtained from the shear dislocation on a

permeable plane by 90 deg counterclockwise rotation. As is

evident from Figs. 4 and 5 the solutions with discontinuous

pore pressure or fluid mass flux on y = 0 do not possess this
property.

Contours of the mean stress, in the nondimensional form

o(dct)'2/1b| are shown in Fig. 6 for a shear dislocation (b, =

1.0, b, = 0) and in Fig. 7 for an opening dislocation (b, = 0,

b, = 1.0) on permeable and impermeable planes. Figures 8

and 9 show contours of the magnitude of the shear stress in the

nondimensional form |7|(4ct)2/|bl for shear (Fig. 8) and

1|o opening (Fig. 9) dislocations. In each plot, the two solutions

’ shown approach the undrained solution (¢ = 0) far from the

Fig. 6 Contours of nondimensional mean stress o{dct)!’2/1b1 induced  °T'8!1 and the drained solution (£ — o) near the origin. The

iny = 0 by a shear dislocation at the origin for the plane y = 0 im- 2pproach to these limits need not, however, be the same for

permeable and permeable {(dashed) the two solutions. This is the cause of the different positions

-1, Q.
10 S 3(:/(4ct)1/2
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of the contours near the origin in Fig. 6 and for large values of
y in Fig. 9.

Acknowledgment

I am grateful to J. Rice for suggesting sometime ago that I
look at this problem and to E. Roeloffs for many helpful
discussions.

This work was supported by the US Geological Survey and
National Science Foundation Geophysics Program.

APPENDIX

This appendix describes some details of the inversion of the
integrals 7(x, y, t) and #(x, y, t). The Laplace transforms of 7
and I are given by equations (41) and (44), respectively.

First consider the inversion of 7(x, y, t). Interchanging the
order of the Laplace and Fourier inversions yields

(= _ [ expl~(k* +5/c)1"?y]
I(x,p,1) So k cos(kx)L { S(E135/0) 7

Formulae (29.2.14) and (29.3.84) of Abramowitz and Stegun
(1964) (hereafter abbreviated AS) yield the following result

= {exp[ — (k2 +5/0)%y]
(2 +s/c) 2

}dk (Al)

} = (c/7t)V2exp[ — k*ct — y2/4ct]

(A42)

Formula (29.2.6) of AS can then be used to express the
Laplace transform in equation (A1) as the following integral:

exp[ — (k% +5/¢) 12y} t
— k2ch—y?/4ch]d\ (A3)

The integration can be accomplished by the change of variable
A = (% and the use of AS (7.4.33). The result is

_ (exp[—(k?+5/¢)"%y) ~
L l{ S(E +57¢) 172 }:(2") exp(— ) {1

+erflx (ct) V2 —y/ (4ct) V2]

—eYerfer(ct) 2+ y/(4ct) V1) (A4)

Substituting into equation (A1), writing cos(xx) in exponential
form, changing variables, and using AS (7.4.36) then yields
the final result, given by equation (45).

The inversion of I* is lengthier, but proceeds along the same
lines. Again interchange the order of the inversions. The
Laplace transform can be inverted by using equation (A43) with
y = 0 and (29.2.6) of AS. The result is

L1 (c/s2)/(k* +5/¢)V2) = [cte=' — (2«3) ~ erf[x (ct) /%]
+ k72 (ct/m)V 2exp(— «2ct)
Now, I can be written as follows:

(A45)
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3? o
Plxp,t)=— {(201‘ =+ 1) S exp(ikz)erflx(ct)2]dx
ax 0
(A6)
+1 (401/1)1/215 exp(— ket + mz)dx}
dx Jo

where z = x + . The remaining integrals can be done using
(7.4.17) and (7.4.2) of AS: :

So exp(— k*t +kz)dk

= (w/4ct)2exp(—z2/4ct)erfe] —z/ (4ct) V2] A7
§0 exp(kz)erflx (ct)*]dk
=1z lexp(—z%/4ct)erfe] —z/ (4det) V3] (A8)

The final expression for I* is given by equation (51).
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Substrate

The continuum theory of elastic dislocations is applied to estimate the critical
thickness of a strained layer bonded to a substrate for a given mismatch strain. The
Jormation of strained epitaxial layers is of interest due to their special electronic or
optical properties, and critical thickness is understood to be the smallest thickness at

which interface dislocations can form “‘spontaneously.’’ The criterion invoked here
is based on the work done by the layer stress in driving a threading dislocation to lay
down a misfit dislocation along the layer-substrate interface, and it is applied in a
way that leads to a result that is independent of the deflected shape of the threading
dislocation. The general form of the dependence of critical layer thickness on
mismatch strain is similar to that based on equilibrium dislocation analysis.

1 Introduction

Unique performance characteristics of electronic devices
may be obtained by fabricating a composite semiconductor
consisting of a thin layer or layers epitaxially grown onto a
substrate. Because the materials are selected for reasons other
than perfect match of their lattice spacing, some lattice
mismatch must be accommodated at the layer-substrate inter-
face. In simplest terms, the mismatch can be accommodated in
either of two ways. One possibility is that the layer and
substrate each retain their natural stress free crystalline struc-
ture except for sites within a few lattice spacings of the inter-
face where an array of misfit dislocations exists to permit
bonding. The other possibility is that the layer grows with a
homogeneous strain of the magnitude necessary to bring the
layer structure into perfect register with the substrate. The lat-
ter option is preferable in some applications in order to avoid
undesirable electronic or other functional properties of the in-
terface with misfit dislocations. Thus, the understanding of
crystalline defects in strained coherent layers is of
technological significance, as well as fundamental interest,

The existence of a critical layer thickness for epitaxial
growth of a coherent layer on a substrate is well-established.
That is, if the natural misfit between the substrate material
and the layer material is sufficiently small, the first atomic
layers to be deposited will be strained to match the lattice spac-
ing of the substrate. As the layer becomes thicker, however, a
point is reached at which alignment between the layer and the
substrate is lost, presumably due to misfit dislocations in-
troduced at the interface. The existence of the critical layer
thickness was first proposed by Frank and van der Merwe
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(1949) on the basis of their analysis of a one-dimensional
mechanical model and it was subsequently confirmed
experimentally.

Theoretical studies of interface dislocations in strained
epitaxial layers based on continuum mechanics have followed
one of two types of conceptual approaches. These will be
called simply the energy approach and the mechanistic ap-
proach. It should be noted at the outset that the two points of
view are not independent nor are they in conflict. Indeed, a
purpose of this paper is to discuss the physical phenomenon in
a way that provides some unification of the two points of
view.

The main idea in the energy approach is to consider the total
(mechanical) potential energy of two possible configurations
of the layer-substrate system, typically one with misfit disloca-
tions and one without. Energy is usually expressed as ‘‘areal
energy density’’ or average energy per unit area of interface.
In the absence of misfit dislocations, the areal energy density
is exactly the elastic strain energy stored in the layer due to
homogeneous strain per unit area of interface. The com-
parison state is typically a configuration with one or more long
straight dislocations lying at the interface. The configurational
energy of the dislocations due to their proximity to the trac-
tion free surface of the layer, and possibly due to each other, is
estimated and ‘‘averaged’’ over the interface. It is then argued
on the basis of the minimum potential energy principle that
the preferred configuration between the two is the one with the
lower potential energy. The critical layer thickness is defined
as that thickness at which the homogeneously strained layer
configuration gives way to the configuration with misfit
dislocations as the lower energy state. In this approach, there
is no concern for the way in which the physical system
transforms from one configuration to the other, or even if the
required transformation is possible.

On the other hand, the main idea in the mechanistic ap-
proach is to identify a particular dislocation configuration and
to calculate the driving force on the dislocation due to both
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Fig. 1 Configuration of the layer-substrate system, showing a disloca-
tion on a glide plane inclined at an angle « to the surface normal that is
bowed out due to the layer strain

strain in the layer and image effects due to boundaries. For a
given mismatch strain, the driving force depends on the layer
thickness. The critical layer thickness is that thickness at which
the driving force becomes large enough to lay down a line of
misfit dislocation along the interface. The dislocation lines are
typically curved in the postulated mechanistic models. Conse-
quently, the stress field is a full three-dimensional field and the
configurational forces on a dislocation can only be estimated
on the basis of approximations.

The phenomenon may be approached on the basis of a
framework other than continuum dislocation theory, of
course. A notable example is the recent analysis reported by
Dodson and Taylor (1986) of a discrete or atomistic model of
strained layer epitaxy involving mismatched silicon-like
materials. Through application of a Monte Carlo technique
and a stability criterion, they estimated the critical layer
thickness for a coherently strained structure. For small
thicknesses, they reported nonmonotonic dependence of
critical thickness on mismatch strain.

The purpose here is to re-examine the matter from the con- -

tinuum dislocation point of view. The points to be made are (7)
a work criterion for formation of interface dislocations is pro-
posed that does not depend on the detailed shape of the bowed
dislocation in the layer, and (i) the resulting criterion is
similar in general form to the more familiar equilibrium ap-
proach summarized by Matthews (1975). In several recent ar-
ticles on the critical thickness phenomenon, the results of
analysis leading to the dependence of critical thickness on
mismatch strain were compared to an expression given by
Matthews and Blakeslee (1974); see, for example, People and
Bean (1985), and Dodson and Taylor (1986). However, the
analysis of Matthews and Blakeslee was based on a strained
layer superlattice, whereas the critical thickness expression
cited by these later authors applies for an individual layer in
the superlattice. As noted by Matthews and Blakeslee (1974, p-
124), the critical thickness for a layer in a superlattice (with
layers of equal thickness) is four times the critical thickness for
a single layer growing on a substrate. A factor of two arises
from the fact that the mismatch strain between adjacent layers
is shared equally, and a second factor of two arises because the
dislocations must be bowed from both interfaces in the
superlattice whereas they must be bowed only from the inter-
face for a single layer.

2 A Représentative Model

The formation of a misfit dislocation is considered here

within the framework of the elastic continuum theory of
dislocations. Strains are small enough so that the material
response is adequately described by Hooke’s law. A rec-
tangular coordinate system x;, x,, x; is introduced. The
substrate is an elastic half space with Young’s modulus E; and
Poisson’s ratio »; occupying x, <0. The substrate is assumed

to contain a dislocation. As a specific case, suppose that the
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Fig. 2 Schematic of bowed dislocation configurations for increasing
layer thickness

glide plane of the dislocation contains the x, axis and it is in-
clined to the x,, x; plane at an angle « measured positive with
respect to rotation about the x, axis (see Fig. 1). Far from the
substrate surface, the dislocation line is straight and in the x,,
x; plane, but it has some curvature near the free surface, in
general. For the time being, suppose that the Burgers displace-
ment vector has components (0, — b sin o, b cos «) where b is
the magnitude of the Burgers vector. Thus, far from the
substrate surface, the dislocation is a pure screw dislocation.
The substrate is stress free, except for the stress field induced
by the dislocation.

Suppose that a strained layer with Young’s modulus E and
Poisson’s ratio » begins to grow on the surface of the
substrate. For points on the interface far from where the
dislocation line meets the interface, the layer strain is a
uniform isotropic extension in the plane of the interface.
Denote the extensional strain required for coherency by e,,.
This imposed strain induces a stress field with components

E
11—
Near where the dislocation meets the interface, the layer grows
so as to extend the substrate dislocation into the layer. The
layer thickness is assumed to be spatially uniform (see Fig. 1).

As the thickness of the layer increases, the shear traction on
the glide plane in the layer due to the internal stress induces a
configuration glide force on the dislocation. In general, a
necessary condition for this to be so is that the inner product
of the Burgers vector with the shear traction on the glide plane
is nonzero. If it is positive (negative) the dislocation tends to
advance (recede) along the glide plane. If it is zero, the disloca-
tion is unaffected by the shear traction.

Consider the shape of the dislocation line in the glide plane,
as shown schematically in Fig. 2 for several layer thicknesses.
Even for a very thin layer (thickness #,), the dislocation will
deflect due to the layer stress further than it did due to the free
surface alone. In the substrate, however, there is no driving
force other than the force due to the curvature of the disloca-
tion line in the layer, and the force due to the curvature tends
to straighten the dislocation line. The substrate produces a
retarding effect on the dislocation in the layer. As the layer
becomes thicker (thickness 4,), the dislocation line deflects
further to the right. It does so because, with &, > #,, it can
achieve a larger deflection without significantly increasing the
curvature of the dislocation line at any point. While the
dislocation is of pure screw type deep in the substrate, it is of
mixed screw and edge type along the curved portion.

As the thickness is increased further to A,, the deflection
becomes large enough without the energetically unfavorable
high curvature anywhere along its length so that it is tangent to
the interface (at point E in Fig. 2). At point E, the dislocation
is of pure edge type. The traction due to the stress in the layer
holds it against the interface. Because there is no such stress in

043 =0. n

Oy =0 =
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Fig. 3 Conceptual process for extending the length of misfit disloca-
tion on the interface by a length A

the substrate, however, the edge dislocation has no tendency
to glide into the substrate. As the thickness is increased fur-
ther, the edge segment along the interface is expected to
become longer. Eventually, the thickness will become large
enough so that the curved portion of the dislocation line (PQ
in Fig. 2) in the layer can translate self-similarly, leaving a seg-
ment of misfit edge dislocation in its wake. The thickness at
which this becomes possible is the critical thickness #,, and a
simple argument on a way to calculate A, is given next. The ac-
tual calculation is carried out in Section 3.

Suppose the layer thickness is just large enough to advance
the dislocation line along the layer, leaving a line of misfit
edge dislocation behind. With reference to Fig. 3, consider the
process of advancing the point P a distance \ to the right
through self-similar translation of the segment PQ. Concep-
tually, the final state can be achieved by the following steps.
First, a slab of thickness A is cut out from the body far ahead
of the point Q where the layer strain is essentially uniform.
The faces of the slab are parallel to the plane x, =0. The body
is then cut along the plane AA’ and the cut is opened uni-
formly to a gap distance of A\, thereby closing the gap far
ahead of the dislocation without introducing dicontinuities.
The uniform slab that has been cut out first is then dislocated
to match the condition of the material in the interval EP and it
is inserted into the remaining gap in that interval. The final
state is just the state that would result from advancing PQ to
the right a distance A\. However, the process of introducing
slabs provides a basis for stating a condition on whether or not
the dislocation produces a long segment of interface misfit
dislocation at all.

The process of dislocating the slab that was cut out far
ahead of the dislocation so that it fits into the interval EP re-
quires that a certain amount of work be done on the slab. This
work is the work of formation of a through-the-thickness glide
edge dislocation on a plane inclined at an angle « ot the x;
direction with the dislocation line at a distance # from the sur-
face of the layer. Evidently, if this work is negative the
dislocation will advance spontaneously along the glide plane,
laying down a misfit dislocation in its path. If the work is
positive, on the other hand, the dislocation will recede on its
glide plane. The case when the work is zero is the critical case.
Because the layer thickness is the only variable system
parameter, the criterion of zero net work in forming the edge
dislocation yields a condition for the critical layer thickness.

3 Calculation of the Critical Thickness

Let E, =E and v, = » for the time being. If the elastic moduli
of the layer and substrate are indeed similar, then the effect of
the free surface will be far greater than the effect of the inter-
face on the dislocation. Suppose that the strained layer carries
a self equilibrating isotropic tensile stress o,,. Then the work to
be computed is the work required to introduce the plane strain
edge dislocation with Burgers displacement b shown in Fig. 4.
The dislocation is introduced by first cutting the layer along
the glide plane and applying tractions on the faces of the cut to
hold the two faces together without slip. The normal traction
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Fig. 4 Configuration on which the calculation of work of formation of
the dislocation leading to equations (2) and (7) is based

and shear traction are uniform over the faces and are of
magnitude ¢, cos® @ and ¢, sin « cos «, respectively. Next, ad-
ditional tractions are applied to the faces of the cut that pro-
duce no normal offset of the faces, but that produce a unifrom
shear offset of the faces equal to b. In the process, the normal
tractions on the faces of the cut do no net work, the additional
shear tractions do positive work on the body, and the tractions
due to the initial strain in the layer do negative work.

The second of the two nonzero work contributions is
calculated first. The uniform shear traction —o, sin o cos o
acts through the displacement b over the slip plane length 7 sec
«. Thus, the work is

Wayer = — 0,bhsin Q)

per unit thickness of the slab.

The work of the additional shear traction in forming the
dislocation is computed next. Suppose that a dislocation with
Burgers displacement b’ is introduced on the glide plane as
shown in Fig. 4 in an otherwise stress free half plane, and that
the resulting shear stress on the glide plane (shown dashed in
Fig. 4) is

b
7 uT(E/h,), 0<E<hseca 3)

where p=E/2(1 + ») is the elastic shear modulus. The form of
the stress distribution follows from dimensional considera-
tions, linearity of the problem, and the fact that % is the only
characteristic length in the model. Then the work that must be
done by the additional shear traction on the faces of the cut to
produce the offset b is

hseca—r, pb b’
Waig = g S

. O—h—uT(E/h,V)db’dE

L |
|7 Stomur + o),y ot
- 2 [}

MbZ seca—rq/h
)

1
(0T Uy + o), 0

2
“

where r, is the formal cut-off radius for the dislocation core.
The second integral in equation (4) is the contribution due to
introduction of the cut-off radius. It is computed by replacing
the core of the dislocation with a cylindrical hole of radius r,.
The surface of the cylindrical hole is subjected to the ap-
propriate tractions for formation of the dislocation with the
cut at #=. These tractions are, in fact, the tractions for an
edge dislocation in an infinite medium along with the cor-
responding displacements. The contribution of the second in-
tegral in equation (4) to the total work is thus independent of
the presence of the free boundary. The nondimensional func-
tion T'(n,») is given by Freund and Barnett (1976) as

T(n,v)dn — S;

1
T(n) =5
2 ==
. 5
E c,m’ T sec" o
1 n=0 (5)
seca—1 (9% + sec’a + 2nsecocosa)’

where the parameters ¢, are given by
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Fig. 5 Plot of calculated critical thickness versus mismatch strain for
formation of a mismatch interface dislocation in edge orientation, with
»=0.3, o =30 deg, 45 deg, 60 deg, and r, =b. The dashed curve is ob-
tained from equation (13) with « =30 deg, and the dotted curve is ob-
tained from equation (14).

0.04

¢, = — 1+ 6c082a + 2c0s2 20
¢y = 6c0s2a + 4cos? 2 ©)

=1,
¢y =6+ 2c0s2a + 6¢c0s?a,

¢, = —3—2cos2a + 6c0s*2a, c5=1—2cos?2a.

Evaluation of the integral in equation (4) leads to

b w1 (1-29)
Was =202 {m( r )_TCOSZ“" 4(1—u)}' ™

The first integral in equation (4) was evaluated numerically,
and the simple analytic expression in equation (7) was evident
from the result. This analytic expression was subsequently
verified independently by means of a symbolic manipulation
computer program. The second integral may be evaluated in
terms of elementary functions, and its contribution is only the
last term in equation (7). The contribution of this integral is
discussed in a more general context by Gavazza and Barnett
(1976). The configurational energy of the dislocation (the
potential for force on the dislocation as a function of position)
is discussed by Hirth and Lothe (1982) who note that the in-
dependence of the force of « is a feature of a more general
result on dislocation image forces. In the present case, the
total work of formation of the dislocation is of interest so that
the contributions that are independent of % but dependent on
o must be retained, even though they have no influence on the
configurational force.

The condition that the total work W, .. + Wy is zero pro-
vides an equation for the critical layer thickness /., namely,

b {In < 2hc> ———;——COSZOL - L——%K)—} =€, (8)

87(l + v)h sina r, 41 -»)

For any given set of system parameters, this nonlinear equa-
tion may be solved for the critical layer thickness in the non-
dimensional form A,/b. The result of calculations carried out
with »=0.3, r,/b=1, and «=30 deg, 45 deg or 60 deg are
shown in Fig. 5. This figure shows graphs of #./b necessary to
satisfy equation (8) as a function of misfit strain ¢, for the
three values of « considered.

This analysis can be modified in a straightforward way in

order to account for restrictions on the Burgers vector im-

posed by the crystallography. For a face centered cubic crystal
structure with the interface being the [001] direction, for ex-
ample, a candidate slip system for introduction of interface
dislocations is slip on the (111) plane in the [110] direction or
the [101] direction. In this case, the inclination of the glide
plane to the interface is specified by « =30 deg. Furthermore,
the interface misfit dislocation that is formed has both edge
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Fig. 6 Plot of calculated critical thickness versus mismatch strain for
formation of a mismatch interface dislocation in mixed screw and edge
orientation, with » = 0.3, 8 = 30 deg, « =30 deg, 45 deg, 60 deg and r, = b.
The dashed curve is obtained from equation (12) with « =30 deg.

and screw components. The edge and screw components of the
Burgers vector are then b,= +bcos 8 and b= +b sin £,
respectively, where 8=30 deg. The algebraic signs are deter-
mined by the sign of the mismatch strain and geometrical
factors.

In this case, the work per unit length done by the stress in
the film during formation of a misfit dislocation is again given
by equation (2), except that the total Burgers displacement b is
replaced by b,. The film stress does no work as displacements
in the screw direction occur. Thus,

Wayer = — 0,b,hsina. )

Work is done by tractions on the glide plane as the dislocation
is formed, however, and the result equivalent to equation (7)

above is
2h 1
W, =ﬂ_{ln( )——-—cosZa
S 4 (1-v) To 2
1- 2
_U=2) }+—"b~‘ In (—Zh) (10)
41 -v») 4 7o

As before, the critical condition for spontaneous formation
of a line of misfit dislocation is Wi, + Wy =0 which takes

the form
bcosf {ln < 2hc> 1 cos2 (1-2») }
Py 3 0s2a 01—

8w(1 + »)h sina

N b(1— u)sinBtanBln ( 2hc> _
8x(1 + »)h sina )T

for the case at hand. The equivalent result obtained by Mat-
thews (1975, p. 585) on the basis of dislocation equilibrium
arguments is

b(1 — ysin2B) {h‘l(hc> N 1} B
8x(1 + nyhsina L\ b ~ ¢

in the present notation. The coefficient of the logarithmic
term in equation (12) differs from that in equation (11) only by
a factor cosfB in the denominator. The critical thickness im-
plied by equation (11) is shown in Fig. 6 for three values of «.
In addition, the variation implied by equation (12) is plotted
for a=3=30 deg.

(an

o

(12)

4 Some QObservations

The qualitative dependence of the critical layer thickness on
misfit strain is as expected. The variation is quite similar to
corresponding results obtained earlier by other methods. In-
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deed, the equation for the critical layer thickness deduced here
by the stability arguments is similar to the corresponding
result obtained by Matthews (1975) on the basis of equilibrium
methods. For the notation used here, his expression analogous
to equation (8) above is

) + 1} =€,.

The more commonly cited special case of this expression is

s—ﬂ%h—{‘“(%) +1}=e,

One essential difference between the present result and the
result of the equilibrium calculation is in the nonlogarithmic
term on the right of equation (7). This term is unimportant for
relatively thick layers, but it is of the same order of magnitude
as the logarithmic term for thin layers. Of course, the con-
tinnum dislocation theory is of limited applicability for very
thin layers. If the force equilibrium criterion and the minimum
energy criterion could both be applied on the basis of exact
mathematical solutions of the elasticity boundary value prob-
lems, then the results would be identical. In the absence of
such exact solutions, the stability approach has the advantage
that the result does not depend on the actual deflected shape
of the dislocations, but only on their ability to lay down a line
of misfit dislocation along the interface. Furthermore, the
development of the model on the basis of stability of a disloca-
tion introduced from the substrate is not an essential feature
of the result. As noted by others, for example, the stability of
any dislocation loop expanding in the layer can be analyzed in
the same way.

The results reported here differ significantly from the
results of a theoretical study described by People and Bean
(1985). They applied a certain energy criterion to the physical
system in order to obtain a mathematical estimate of the
critical layer thickness. They predict a dependence of 4./b on
the misfit strain e, that is far stronger than suggested by equa-
tion (R) or by the corresponding result due to Matthews and
Blakeslee (1974). Their representation of the Matthews and
Blakeslee result is incorrect, as has already been noted (People
and Bean, 1986). Furthermore, their energy criterion has no
apparent basis in the minimum potential energy principle of
mechanics. The energy criterion that is introduced does not
compare two actual or realizable energy states in order to
determine the preferred state on the basis of the minimum
principle. Instead, the two states considered are (7) the energy
density of the uniformly strained layer and (/i) the energy of a
dislocated but otherwise unstressed state. This comparison
does not include the important interaction of the pre-existing
stress field due to the layer strain with the forming dislocation.
The work of this stress as dislocations are formed is, in fact,
an essential element in the difference in energies of the two
states.

In a recent article, Dodson and Taylor (1986) report a study
based on the application of Monte Carlo methods to an

b fin e (13)
—_—  )In
87(1 4+ v)h sina T, :

(14)

Journal of Applied Mechanics

atomistic model of a coherently strained layer. The model was
intended to simulate the GeSi/Si structures. By invoking a
stability criterion for determining the critical layer thickness,
they showed that the dependence of the critical thickness on
mismatch strain is very similar in form to the dependence
found by the dislocation equilibrium or that given in equation
(8) above for critical thicknesses greater than about 5
angstroms and mismatch strains less than about 4 percent.

A comparison between the critical thickness prediction
based on this kind of analysis and experimental observations
has been discussed by Matthews (1975). For metal films, the
agreement is quite good. For other materials, including
semiconductor materials, however, interface coherency per-
sists up to thicknesses that exceed the predicted critical
thickness by as much as an order of magnitude. The reasons
for this discrepancy are not clear. In covalently bonded
materials such as silicon or germanium, the resistance to
dislocation glide may be sufficiently great so as to preclude the
dislocation distortions presumed in the above analysis until
the layer becomes much thicker than suggested by equation
(8). On the other hand, the density of threading dislocations is
often too low to account for the amount of strain relaxation
observed upon loss of coherence. Consequently, a dislocation
nucleation process may be required in modelling. In either
case, the effects mentioned would tend to increase the estimate
of critical thickness.

Acknowledgment

It is a pleasure to acknowledge helpful comments from Pro-
fessor D. M. Barnett of Stanford University on this work, par-
ticularly on the way to handle the core region in deriving equa-
tion (7). The research support of the IBM Corporation and of
the NSF Materials Research Laboratory at Brown University
is gratefully acknowledged.

References

Dodson, B. W., and Taylor, P. A., 1986, ‘‘Atomistic Monte Carlo Calcula-
tion of Critical Layer Thickness for Coherently Strained Silicon-Like Struc-
tures,”” Applied Physics Letters, Vol. 49, pp. 642-644,

Frank, F. C., and van der Merwe, J. H., 1949, ‘One-Dimensional Disloca-
tions. I. Static Theory,” Proceedings of the Royal Society, Vol. A198, pp.
205-216; ““II. Misfitting Monolayers and Oriented Growth,”’ ibid, pp. 216-225.

Freund, L. B., and Barnett, D. M., 1976, ““A Two-Dimensional Analysis of
Surface Deformation Due to Dip-Slip Faulting,” Bulletin of the Seismological
Society of America, Vol. 66, pp. 667-675; ibid, pp. 2083-2084.

Gavazza, S. D., and Barnett, D. M., 1976, ““The Self-Force on a Planar
Dislocation Loop in an Anisotropic Linear-Elastic Medium,”’ Journal of the
Mechanics and Physics of Solids, Vol. 24, pp. 171-185.

Hirth, J. P., and Lothe, J., 1982, Theory of Dislocations, Wiley-Interscience,
pp. 86-91, pp. 152-155.

Matthews, J. W., 1975, “Coherent Interfaces and Misfit Dislocations,”
Epitaxial Growth, Part B, Matthews, J. W., ed., Academic Press, pp. 559-609,

Matthews, J. W., and Blakeslee, A. E., 1974, *‘Defects in Epitaxial
Multilayers,”” Journal of Crystal Growth, Vol. 27, pp. 118-125,

People, R., and Bean, J. C., 1985, “*Calculation of Critical Layer Thickness
Versus Lattice Mismatch for Ge,Si; _,/Si Strained Layer Heterostructures,”
Applied Physics Letters, Vol. 47, pp. 322-324; ibid, 49, 1986, p. 229.

SEPTEMBER 1987, Vol. 54/ 557

Downloaded 03 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm
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on Post-Buckling Behavior of
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A geometrical nonlinear theory of composite laminated beams is derived with the ef-
fect of transverse shear deformation taken into account. The theory is based on a
high-order kinematic model, with the nonlinear differential equations solved by
Newton’s method and a special finite-difference scheme. A parametric study of the

shear effect involving several kinematic approaches was carried out for isotropic and

anisotropic beams.

I Introduction

Most of the previous research on composite structures is
confined to linear problems and largely based on the classical
thin plate theory which disregards the transversed shear defor-
mation effect. The classical laminated beam theory, based on
the Kirchhoff hypothesis (see Reissner and Stavski, 1961) has
been shown to be quite adequate for thin laminates with a high
span-to-thickness ratio. Due to the low transverse shear
modulus relative to the inplane modulus of elasticity, the ef-
fect of shear deformation should be taken into account even
for moderate span-to-thickness ratios. In some ‘linear’”’
research works (e.g., Whitney and Pagano, 1970) the shear
deformation effect is allowed for by means of the Mindlin
kinematic model (Mindlin, 1951). Others like Chen and Sun
(1985), Sirakumaran and Chia (1985), and Reddy and Chao
(1985), extend the same Mindlin model to goemetrically
nonlinear cases. High order models for the linear case, incor-
porating higher powers of the thickness, were developed by
Nelson and Lorch (1974), Reissner (1975), and Lo et al.
(1977). Reddy (1984a) used a modified higher-order model
with the same number of unknowns as the Mindlin model,
assuming no shear-strain coupling between v,, and +,,; more
recently Phan and Reddy (1985), Reddy (1984b), and Putcha
and Reddy (1986) applied the model in the nonlinear context,
but his analysis concerned bending rather than postbuckling
behavior. A completely different approach was adapted by
Stein and Jagley (1985), who added trigonometric terms to the
first terms of the power series.

The present work uses a higher order kinematic model in the
post buckling context, with the shear deformation effect taken
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into account. The model is so constructed as to allow a variety
of alternatives. The equilibrium equations and approximate
boundary conditions are derived by applying the variational
principle on the potential energy. The solution procedure is
based on reduction of the nonlinear differential equations to a
linear sequence, by a modification of Newton’s method, and
conversion to an algebraic one by a special finite-difference
scheme eliminating the “‘locking’’ phenomenon which may oc-
cur in cases where the shear deformation effect is insigmifi-
cant, A parametric study of the shear deformation effect and
the accuracy of the kinematic model was carried out by apply-
ing the procedure to isotropic and anisotropic beams,

I Governing Equations

Kinematics. Consider a composite beam consisting of
homogeneous orthotropic layers, of arbitrary orientation,
with total thickness /. Let (x, 2) be a rectangular coordinate
system in the axial and thickness directions, respectively. The
displacement field is assumed to be a cubic function of z:

u(x,z) =u0(x) + ¥ (x)z+ 8,5 (x)22 + 8,0 (x) 23
w(x,z) =wl(x) 0))

where u and w are the displacement functions in the x and z
directions, respectively; u? is the displacement of the reference
surface z=0 (not necessarily the midplane); y (x) is the rota-
tion about the normal to the z =0 plane; ¢ and ¢ are additional
functions of x which violate the assumption of planeness of
the cross section and enable the transverse shear strain to be a
parabolic function of the thickness coordinate; the parameter
6, and §; are introduced for the purpose of investigating
various alternatives. For example, with 6, = 8; = 0 we have

‘the Mindlin (1951) model, which assumes that predeformation

planes remain plane; here the transverse shear strain is as-
sumed constant over the thickness, and a shear correction fac-
tor has to be used. Similarly, the model of Nelson and Lorch
(1974) is obtained by setting §, = 1, §; = 0, that of Reissner
(1975) 6, = 0, 63 = 1, and that of Lo et al. (1977) 6, = 8; =
1. It should be noted that with §; = 1 the shear strain is a

‘parabolic function over the thickness and no correction factor
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is needed. There are no constraints on the shear stress (as in
Reddy, 1984) at the beam top and bottom; the shear stress is
expected to vanish automatically in application of the varia-
tional principle on the potential energy.

The kinematic rélations can be written as:

Exx = ng + K}vxz +K%\'xz2 + K?sz3
)
— 1 2
Yz ™ 'Y?vz +szz + ]<%\'zZ

where €J, and v9, denote the strain of the reference surface,
K and K, (i = 1, 2,3,/ = 1, 2) are the changes of cur-
vature under deformation.

The Von-Karman strain of the reference surface and the
change of curvature, associated with the displacement field
(equations (1)) and imperfection function Dw(x), can be writ-
ten as:

S =1l + V2 (W) + W' . Dw

Yoo =¥+ Wl

K=V,

Ko =8¢,

K= 83

K, =26,¢

K% =369 (3

(), denote the derivitive with respect to x.

Constitutive Equations. Under the classical laminate
theory (i.e., for a single anisotropic equivalent layer) the force
strain relations can be written as:

Ny Ay By Cy Dy .
M, _ B, Cn Dy E, K @
M3, Cy Dy E,Fy K3y
M3, D, E, Fy Gy K
Qs Ay By Cy V%
Mi{z = |By Cu Dy K;z )]
M, Cu Dy Ey K3,
where
(N M Mo M) = | 8,,(1,2,22,2)dA

(6)
(sz 7M}\'z ,M%,z) = SA sz ( l,Z,ZZ)dA

S, is the Kirchhoff stress tensor in the undeformed system.
Ay, By, ete. (i=1, 4) are the elasticity coefficients defined by

(4,1,811,C\1,D11,E 1, F11,Gry)
hr
= bS Q“(I,z,zz,z:‘] ’Z4az5 ,ZG)dz

hp
hy U
(A44,B44,C14, D44, Eg) = b Sh Qu( ,2,2%,23,28dz
B

b is the beam width, Q,, and Q,, are the elastic stiffnesses
transformed to the x directions. For a single layer with o
orientation with respect to the x axis:

01 =0, co5*a+ 2(Q, +2G p)sin%acosa + Oy, sin‘a

044 = G 30082+ Gyysina

Journal of Applied Mechanics

where
On=En/(1—vpry)
le =Quvy
On=Ep/(1—vypry)

Equilibrium Equations. The equilibrium equations and
the appropriate boundary conditions are derived by applying
the following variational principle:

b= | VLB, 4 MUK, + MK, + MBI,
X
+K(Qy 075, + MY, 0K), + MY,0K7, ) Ydx ®

- S (N, (xX)ou+g(x)bw+m(x)oy)dx=0

where n,,, g and m are the external axial, transverse, and mo-
ment loading. k is the shear correction factor assigned to k=1
when §;=1.

Substituting equations (1), (4), and (5) in equation (8), in-
tegrating the latter by parts, we obtain the equilibrium
equations:

Nxx,x =- nxx
Nee (Wi + DW )]+ k Qs = — 4
My —kQy=—m ®
8y (Mo = 2kM;) =0
83(My = 3kM?3,) =0
with the following boundary conditions:
u=u* or N, =N*
w=w* or N, (w, +D‘w‘x) +kQ,. =0*
Y=y* or Ml =M.
E=£*or ML =MZ
$=9¢* or M3, =M

where ( )* denotes the given displacement and/or forces at the
boundaries.

(10)

. III Solution Procedure

A modification of Newton’s method (Thurston, 1965), ap-
plicable to differential equations, is employed for reducing the
nonlinear equilibrium equations (equations (9)), and the boun-
dary conditions (equations (10)), to a linear sequence. Under
this approach, the iteration equations are derived by applying
to an approximate solution (initially taken as linear) a small
correction obtained through solution of the linearized dif-
ferential equations.

Taking the displacements and their derivatives with respect
to the x coordinate as unknown dependent variables,! the
unknown vector reads:

{Z]T= {u’w’lp,s,d)’a’w!&’g’é} (11)

where () denotes the first derivative of ( ) with respect to x.
By this means, the sequence is reduced to first order but the
number of equations increases to ten.

In order to eliminate the ‘‘locking’® phenomenon (see In-
troduction) a special ‘‘half-station’’ finite-difference scheme is
adopted. This scheme consists of two interlaced distinct nets
as shown in Fig. 1. All equations (equations (9))

1 This choice was made because of the solution scheme, which is based on a
finite-difference procedure.
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Fig. 1 Interlaced nets and corresponding unknowns
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Fig. 2 Load-deflection convergence of w at midpoint {6, = 43 = 0)

are written between the mesh points—except the second equa-
tion, which is written at the point itself, thereby achieving a
high degree of accuracy even with relatively sparse nets. Dif-
ferentiation at the boundaries is derived with the aid of fic-
titious points on either exterior side of the beam.

The differential equations are converted into an algebraic
sequence which can be written in matrix form as follows:

Equilibrium equation:

CiZ_+B,Z;+A;Z;,,=G; j=12,...,N (12
Boundary conditions at the first point:
R{Zy+REZ, +R3Z,=R{ (13)
Boundary conditions at the last point:
Ry iiZy_ + RN Zn+ RN 1 2y =Ry (14)

where N is the number of finite-difference points, Z, and Z,, , |
are the unknown vectors at the fictitious end points. Equa-
tions (12) and (14) are an aglebraic sequence which is solved by
a modification of Potter’s method (Sheinman and Simitses,
1984).

IV Numerical Results and Discussion

For the procedure outlined above, a general computer pro-
gram NABS (Nonliner Analysis of Beams with Shear Defor-
mation) was written, covering nonlinear behavior of any
laminated composite beam under arbitrary external loading
and boundary conditions, as well as any geometrical initial im-
perfection. This program is especially suitable for parametric
study of the effect of shear deformation and for investigating
the accuracy of the given kinematic approach. Two examples
(worked out on a VAX-750 digital computer) were used for il-
lustrating the above methodology; (@) an isotropic beam and
(b) an anisotropic carbon/epoxy laminated beam.

(@) Isotropic Beam. This example is reproduced from

560/ Vol. 54, SEPTEMBER 1987

Table 1 VAX-750 CPU-time as function of number of mesh
points

ADINA
No. of points 21 41 61 81 101 121 161 199 4 Node ele.
CPU time 4 8 12 17 23 42 46 54 240
(sec)
Max No. of 5 6 6 8 12 15 19 24 40
iterations
125
1),(2),(3),(4)
6=0.81-10", 0.81-10"°
(1,2
1.00
3),4)
"
N, 075
= n.(2)
o0.50f- oo (3),(4)
() =0 83:=0
0.25 @2 =1 8;:0
3 8:=0 Js=1
(41 8y=1  B3=1
% ' o1 ' 0z ' 03 : 04

w/L
Fig. 3 Load-defiection curves for isotropic beam with different shear
moduli .

1.25

pL2ATRED

OO.O 02 04

w/L
Fig. 4 Load-deflection curves for isotropic beam with different shear
correction factors (k)

Sheinman (1982) and demonstrates convergence procedure as
well as the accuracy of the various kinematic approaches. The
data for the example are: Length L = 4 m; cross section area
A = 0.0032 m?; moment of inertia I = 170.7+10-8 m*;
modulus of elasticity is £ = 2.1.10"" N/m?; the initial im-
perfection is taken as Dw(x) = §; sin(wx/L) with 8,/h = 0.1.
In Fig. 2, the convergence of the solution with respect to the
number of finite-difference mesh points, is shown for the
kinematic approach of Mindlin’s model (6, = §; = 0), with
shear modulus G = 0.81+10!! N/m?2 and shear correction fac-
tor kK = 5/6. From this figure it is clear that the convergence is
a function of the load level. Up to P/P, = 0.85, which is still
~within the linear region, convergence is achieved with 21
points; the higher the load-level, the larger the number of
points needed for convergence. For very high levels, at which
the lateral nondimensional midpoint displacement exceeds
0.15, 200 points are needed. This example was run also with 20
isoparametric 3 and 4-node beam elements using the ADINA
code (Bathe, 1981). Convergence here also depends on the
“load level; the 3-node element is up to about P/Pg= 1, and
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Fig.5 Load-deflection curves for different stacking combinations, L/h
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Fig. 6 Effect of kinematic approach on midpoint deflection w for car-
bon/epoxy laminated (0/90/0/90) beam

the 4-node element up to P/P; = 1.14 (see Fig. 2); at the level
above 1.14 the 4-node element fails to converge with 40 itera-
tions. The ADINA results are in good agreement with ours,
but the CPU computer time is much longer (see Table 1).

In Fig. 3 load-deflection curves for different given shear
moduli areplotted; it is seen that at low moduli there are
significant differences between the various kinematic ap-
proaches, and an accurate approach is called for. Load-
deflection curves for different shear correction factors are
plotted in Fig. 4. It should be noted that while there is no need
for correction (k = 1), under the kinematic approach §; = 1
(since the shear stress vanishes at the top and bottom of the
beam) correction is necessary with the Mindlin model (6, = 6,
= (); the most accurate factor is seen to be k = 5/6.

(b) Anisotropic Carbon/Epoxy Beam. The data for this
example are: 4-ply laminate with A, = 0.000125 m; Ay =
0.0005 m; E;; = 1.4.10" N/m?; E,, = 0.1-10!! N/m?; Gy,
= 0.1:10' N/m?, v, = 0.34 and it assumed that: G|; = Gy,
= (.2¢10'% N/m?. The initial imperfection is again Dw(x) =
8y sin (wx/L) with 8,/k = 0.1, and width of b = 0.01 m. In
Fig. 5, load-deflection curves are plotted for L/, = 200 at
different stacking combinations. The isotropic curve was ob-
tained for E,, = E;; = 1.4.10'!' N/m?. The fact that inden-
tical results were obtained for the Kirchhoff-Love (G = ),
Mindlin (6, = 8; = 0) and Lo [10] (6, = 6; = 1) approaches
at this span-to-thickness ratio, indicates that the effects of
shear deformation is insignificant for this ratio. The effect of
shear deformation and the accuracy of the kinematic ap-
proach as a function of L/h ratio were checked, for the stack-
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Fig. 7 Etfect on L/h ratio on midpoint deflection w for carbon/epoxy
(0/90/0/90) laminated beam subject to load level (pL2/(x2Cyy) = 0.3,
under different kinematic approaches
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ing combination 0/90/0/90, and Fig. 6 shows that while the
effect is still small for L/h = 30, it is very large for L/h = 5;
the entire range of L/A ratios is covered in Fig. 7, with the con-
clusion that for this stacking combination, the effect of shear
deformation is significant up to L/A < 15 (for isotropic
materials, up to 5).

Significant differences were also seen between kinematic ap-
proaches, widening as the load level increases. In Fig. 8 and 9,
the longitudinal stress at x = L/2, and shear stress at x = 0,
respectively, are plotted for load level 0.32 for L/A = 50 and

SEPTEMBER 1987, Vol. 54 / 561

Downloaded 03 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



L/h = 5. The calculated shear stress at the top and bottom of
the beam is not zero as in Fig. 9, but still very small compared
with the maximum stress.

Y Conclusion

A nonlinear higher-order shear deformation theory and a
solution procedure are presented for beams of arbitrary rec-
tangular cross section. The nonlinear equations are written in
a special form, whereby different kinematic approches can be
considered. The differential equations are reduced to a linear
sequence by a modification of Newton’s method and con-
verted into an algebraic sequence by applying a special finite-
difference scheme, in which the ‘‘locking’’ phenomenon is
eliminated.

The theory and solution procedure are general and suitable
for investigating the effect of shear deformation. The pro-
cedure was applied for an isotropic and an anisotropic beam
with a view to comparing the kinematic approaches. Of the
principal findings, the following should be emphasized:

1. The convergence of the solution with respect to the
number of finite-difference points, depends on the load level.
The higher the latter, the larger the number of points needed.

2. Application of a regular central finite-difference scheme
showed that the special scheme actually eliminates the ‘‘lock-
ing”’ phenomenon. :

3. For the isotropic case with a low-order kinematic model,
the shear correction factor of k = 5/6 yields the most accurate
results.

4. The shear deformation is affected by the length-to-
thickness ratio, both in the laminated and in an isotropic
beam. For a laminated beam, where E/G ratio is relatively
high, the L/h ratio at which the shear deformation is signifi-
cant increases. For low L/h ratios, a higher-order kinematic
model is necessary for accurate results.

5. With a more accurate kinematic model, the beam is
characterized by higher flexibility.
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Viscoplastic Buckling of Silicon

C.T. Tsai
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Silicon ribbon grown by the dendritic web process passes through a rapidly changing
thermal profile in the growth direction. This rapidly changing profile induces

stresses which cause buckling. Based on a viscoplastic material response function

Department of Engineering Mechanics,
University of Kentucky,
Lexington, KY 40506

(Haasen-Sumino model), the creep buckling behavior of the silicon ribbon is in-
vestigated. The lateral deflection speeds describing the viscoplastic buckling
behavior are calculated. It is found that the deflections of some modes increase with

time while others die out. The role of the residual stresses in viscoplastic buckling is

examined.

1 Introduction

Silicon ribbon is being considered for use in terrestrial
photovoltaic applications (Ciszek, 1985). There is con-
siderable interest in increasing the (area) rate of productivity
of sheet silicon in order to reduce the cost of photovoltaic
power. One promising method for doing this is known as the
dendritic web ribbon growing process. However, the thermal
stresses caused by the combination of the rapidly changing
thermal profile and wide ribbon induces buckling. This buck-
ling is actually the major limitation to growing wider silicon
ribbon (thin plate) in all existing industrial processes.

The thermal elastic buckling analysis of an initially flat
silicon ribbon has been previously discussed (Dillon and De
Angelis, 1984; Duncan et al., 1982; Seidensticker and
Hopkins, 1980; Seidensticker and Schruben, 1984). The
dislocation density in the solidified silicon ribbon is very low
(i.e., below 10° cm~?2) so that the yield stress is also small. The
thermal stresses generated from the rapidly changing thermal
profile are, therefore, appreciably higher than the local yield
stress, and then viscoplastic flow occurs. Industrially grown
ribbon product frequently has permanent lateral ripples
(Seidensticker and Hopkins, 1980; Seidensticker and
Schruben, 1984), especially when growth of wide ribbon is at-
tempted. This permanent deflection must be the result of the
viscoplastic flow. Deviations from flatness clearly cause dif-
ficulty in later steps in the manufacturing sequence involved in
changing ribbon into useable photovoltaic cells. The analysis
of buckling of a thermal viscoplastic (i.e., silicon) cantilevered
plate is carried out here in order to more accurately evaluate
the importance of the viscoplastic effect in the web growing
process and to provide guidance on how to grow flatter ribbon
by preventing buckling.
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Since the temperature in the ribbon changes rapidly and
nonuniformly from the melting point to room temperature
during the growth process, a nonuniform stress field and an
inhomogeneous strain rate field are generated. The
viscoplastic material has inplane residual stresses which can-
not be considered in the elastic plate. These residual stresses
can themselves cause buckling. )

This paper is the adaptation of the methodology contained
in Tsai (1985), and Tsai and Dillon (1987), to the more com-
plex thermal profile associated with a specific industrial
process. The second spatial derivative of the temperature
distribution for this profile (and all others known to us) is
much greater than the generic cases previously investigated.
This results in higher stresses near the solid-melt interface and,
therefore, increases the potential for viscoplastic effects to be
larger.

A three-dimensional constitutive model of silicon material is
given in Section 2. The governing equations and the boundary
condition for viscoplastic buckling of the thin plate are
discussed in Section 3. Solution procedures and numerical
results are contained in Section 4. A discussion is given in Sec-
tion 5, while Section 6 summarizes the results.

2 The Viscoplastic Material Model (Haasen-Sumino
Model)

Haasen (1962, 1967) in Germany, and Sumino et al. (1978,
1979) in Japan developed an accurate one-dimensional
material response function for silicon. This model matches the
stress-strain and dislocation density-strain data obtained dur-
ing one-dimensional tensile tests of silicon over a wide
temperature range. It is found that the viscoplastic behavior of
silicon is temperature sensitive and that data at different
temperatures are correlated by the term, exp (—Q/kT’),
where Q, k are material constants and 7’ is the absolute
temperature (Tsai, 1985; Dillon et al., 1986).

A three-dimensional response is assumed by generalizing the
Haasen-Sumino one-dimensional material model and assum-
ing that silicon is isotropic in both its elastic and plastic
responses (Tsai, 1985; Dillon et al., 1986). Therefore, we
assume that the material model for silicon is such that (Dillon
et al., 1986)
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. I+w v : .
&G =—p— Oy~ O1yebyy + T8 + e, (1)

where

erl=fS;, 2
and where T is the temperature (°C), v is Poisson’s ratio, « is
the coefficient of thermal expansion, and ¢;, d;, 6; and éf»}-‘ are
the components of the total strain rate, stress rate, Kronecker
delta function, and plastic strain rate tensor, respectively. In
equation (1), E is the Young’s modulus, S; are the com-

ponents of the deviatoric stress tensor which are S; = o; —
040;/3, and the viscosity fis (Dillon et al., 1986)

_ bk,N,e= T (NJ,— DVN,, )™

S 3)
N,
where N,, is the mobile dislocation density; J, is the second in-

variant of the deviatoric stress tensor defined by J, = §;5,/2.
Haasen and Sumino demonstrated the need to consider the
changes in the dislocation density in order to model silicon
behavior. This is especially true at low values of N,,. The rate
of generation of the dislocation density is (Dillon et al., 1986)

N,y =¢Kk,N,e~ 4T (N Ty~ DNN,, )m+A, @

where &' = N,, = 0if v/J,—DVN,, <0.

The values of b (3.8 x 10~ m), K (3.4 x 10~* m/Newion),
k, (8.58 x 10~* m¥2?/s-Newton'!), m (i.1), D (7.84
Newton/m) and N\ (1.0) are material constants and ¢ is a
“‘shape factor’’ which is taken to be 0.1 for thin silicon sheets
(Dillon et al., 1987). The value of Q and k are taken to be 2.17
eV and 8.617 x 10-% eV/K here, and the Young’s modulus
for silicon is E(T’) = L.7'" — 2.771 x 10* x (T')? Pascals
(Hartzell, 1984). We assume that this model is applicable all
the way to the melting temperature (1412°C) although it has
only been experimentally verified as being valid to 1200°C.
This implies that the dislocation mechanisms do not change in
the temperature range between 1200°C and 1412°C. The use
of equation (4) couples the thermal stress field and the disloca-
tion density. As recently discussed in Dillon et al. (1986), one
cannot neglect changes in N,, in photovoltaic materials. In
turn this results in a more complex ‘‘rate effect’”” in the
material response.

3 Analysis

The lateral deflection (buckling shape) grows with time due
to the effect of viscoplasticity, We are only interested in buck-
ling as the plate starts to deflect and do not treat any
‘‘postbuckling’’ problem here. The analysis is applicable to
very thin plates and is limited to the development of threshold
buckling predictions. The material properties are assumed to
be those represented by equations (1)-(4) where the
‘‘viscoplastic flow’’ of silicon is spatially inhomogeneous due
to the spatial variations of the temperature and the dislocation
density. Based on the ideas in Tvergaard’s work (1979) on the
creep buckling of simply supported plates subjected to a con-
stant inplane stress in one direction, the governing equation
for the thermal creep buckling of a plate of the Haasen-
Sumino material was derived in detail in Tsai (1985), Tsai and
Dillon (1987), and is summarized in Appendix B to be

D, .., *we 3*we FPwe
T viw =0,y ——-—axz + Oxy axay +ny ayz
2fE Zwe ?we *we
+ —3~ (Uxx 6)(2 i ny axay + Jyy ayz ) 3 (5)
EnW?
where D, =———————
¢ 121-2%)"

the x axis is taken to be along the growth direction and the y

564/ Vol. 54, SEPTEMBER 1987

A

e

Fig. 1 Dimension of the ribbon and the schematic temperature varia-
tion along the growth direction (x) of the ribbon

Temperature

axis is in the width direction of the ribbon as shown in Fig. 1.
The parameter we is the elastic part of the lateral deflection,
Oyy» Uy, and o, are the inplane stresses which are entirely due
to the thermal field and are obtained from the analysis of the
prebuckling state as described in (Dillon et al., 1986), while A
is the ribbon thickness. This equation involves only the elastic
deflection we as the dependent variable as a matter of conven-
ience. However, this does not mean that the plate is being con-
sidered as an elastic one.

In deriving equation (5) it was assumed that fis independent
of the thickness coordinate. In addition to this, the usual
assumptions of thin plate theory are used. The last group of
terms in equation (5) represent the major effect of the
viscoplastic material while the o; are also different than the
elastic ones. We consider E(x) to depend on space as obtained
from combining the expression given above for £(7”) and the
thermal profile. We do not include spatial derivatives of E(x),
because earlier numerical work where they were retained, gave
results similar to those obtained from equation (5).

The industrial process being modeled uses a take-up reel of
large diameter to hold the finished ribbon. All other edges of
the ribbon are free, except for surface tension at the solid-melt
interface which we neglect.

The problem to be solved is, therefore, the thermal
viscoplastic buckling (time dependent growth of an initially
deformed) cantilever plate that is governed by equation (5).

The inplane stresses are due to the spatial variation of the
temperature field and, therefore, are always self-equilibrated.
They are evaluated from the equations given in detail in Dillon
et al. (1987) and listed in Appendix A. The boundary condi-
tions for the inplane stresses considered in Tsai and Dillon
(1987) are different than those used here. The relations be-
tween the moments, shearing force and derivatives of w¢ are
precisely the same as those of elastic plate theory as can be
seen in Appendix B.

The inplane stresses that exist near the solid-melt interface
are very close to the elastic ones in numerical value in that
region (near x = () and are large and are due to the low
number of the dislocations. However, due to the material be-
ing viscoplastic, a o,, residual stress field of significant
magnitude exists farther away from the solid-melt interface.
Since the stresses are self-equilibrated, this potentially changes
the nature of the buckling from the purely elastic case.

The solution of equation (5) is assumed separable in the
form

we(x,p,1) =g (O W(x.y), ©®

where W(x, y) is the deflected shape of the plate and g(¢) is
its amplitude at time ¢. By substituting equation (6) into equa-
tion (5) and then using the separation of variables approach,
we obtain equations for the time dependence of g and the
spatial dependence of the deflection shape W. They are

g(t)—pg(t)=0 )]
and
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Fig. 2 The approximate web thermal profile given by equation (13)
(solid curve) and equation (14) (dashed curve)

2fE
D, VW= (1+L)hx
3¢
;W ;W Pw
(Uxx ax? T2y dxdy % ay? )’ ®)

where ¢ is the separation parameter. The solution of the time
dependent equation (7) is (Tsai, 1985; Tsai and Dillon, 1987)

g(t)y=g*, )]

where g° is the magnitude of the increment in the deflection of
the plate due to the thermal stresses being applied to an elastic
material,

The inelastic behavior results in viscoplastic buckling which
is governed by the same spatial equation as classical elastic
thin plates, but where the inplane stresses are replaced by (1 +
2fE/3¢)o; as shown in equation (8). For the special case
where o,, and o, are constant, the temperature is uniform, fis
constant and the plate simply supported, equation (8) is read-
ily solved for ¢ (Tsai and Dillon, 1987; Trevgaard, 1979). In
the present context f(x, y) is a complex function of space, the
term 2fE/3¢ can vary in magnitude from 106 to 10~16 in the
same problem. Hence the term (1 + 2fE/3¢) changes sign
several times which then has obvious implications for
buckling.

As will be developed below, higher modes are needed to
capture the significant physical phenomena. Due to the com-
plex nature of the spatial variation of the term (I +
2fE/3¢)0; mentioned above, it is unlikely that shapes W(x,
») can be found which are consistent with ¢ being constant.
Hence a Galerkin procedure is first used on equation (8) in
order to evaluate ¢, where the W(x, y) that is used is an
assumed deflection shape.

The shape functions W, (x, y) used here are the mmth mode
shapes of the buckled elastic cantilevered plate that are
associated with

D,V W=hs; —a—z—l (10)
¢ Y ox;0x;
The mth eigen-parameter in equation (10) is the thickness A2,
and W,, are the corresponding eigenvectors of this equation.
A particular W, (x, y) is substituted into equation (8) and the
result multiplied by W,,. These products are then integrated
over the entire plate. The result is rearranged as
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Fig.3 The o,, stress (MPa)induced in a 3.6 cm x 12 em ribbon by the
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residual stress boundary conditions; initial dislocation density = 13
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Fig.4 The oyy stress (MPa) induced in a 3.5 cm x 12 cm ribbon by the

profile given in equation (13), the end x = 12 cm is subjected to the
residlzxal stress boundary conditions; initial dislocation density = 13
cm”™
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e (In
n—n S2
where h,, is the critical thickness of the mth ‘‘pseudo’’ elastic

mode from equation (10) and 4 is the actual plate thickness,
and

©=

arb 2fF
SI=S S %(V“W,,,)Wmdxdy, (12a)
a rb
52=S S E(V*W,) W, dxdy, (12b)

For numerical work described below, # is taken as 1.14,.

4 Numerical Results

The thermal profile for the web growth process is approx-
imately expressed as (Seidensticker, 1984)
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Table 1 Typical results for residual stress boundary conditions with
ribbon length = 12 ¢m
initial disi;cation 13 6 1
density (em 7)
critical
ribbon width (&P 8.5 8.9 4.6
maximum o com. -20.7 ~23.8 ~27.5
®X
(MPa) ten. 8.66 9.88 11.7
maximum o com. ~22.5 -22.0 - -21.5
Yy
(MPa) ten 8.12 8.99 10.5
max. residual com. ~11.5 -12.8 -13.2
o (MPa) ten. 4.48 4.03 2.91
XX
final dislocation 2310 2730 3150
, ~2
density (cm )

Table 2 Creep buckling results for a 3.5 cm x 12 cm ribbon (residual
stress boundary conditions)

mode critical thickness (mm) ) (sec_l)
1 " 0.233 -0.694
2 0.181 -0.00280
3 0.155 -0.00821
4 0.141 ~0.00000629
5 0.130 0.00225
6 0.125 ~0.0000399
7 0.110 -0.0134
8 0.105 -0.0000565
9 0.102 0.0316
10 0.0957 ~0.00350
11 0.0944 0.000193
12 0.0834 0.00335

T(x) = 1600e ~0-9827x 4 850~ 5*cos(mx)+ 75sin(wx)

—273,if 0=sx<4;
T(x—4)

T(x) = 1600e~0-9827x 4 850~ 5¢cos(mx) — 35sin g

—273, if 4=x<10;
T(x) = —39.545x + 822.229, if 10=x<20.1;

T(x).=27, if x=20.1, (13)

where x (cm) is the position along a ribbon as measured from
the solid-melt interface, x = 0. The temperature 7(0) = 1412
°C is the melting point of silicon. Although the industrial pro-
file also varies along the y direction, its variation is small so
that only the x dependent thermal profile is considered here.
The temperature distribution in the ribbon given by equation
(13) is shown as the solid curve in Fig. 2.

The inplane stresses used in the buckling analysis are ob-
tained from a prebuckling analysis. Typical o,, and o,, stress
distributions obtained from solving the equations in Appendix
A are illustrated in Figs. 3 and 4 for a 12 ¢m long and 3.5 cm
wide ribbon with an initial dislocation density of 13 ¢m~2.
This plate is subjected to the thermal profile of equation (13)
and the residual stress boundary condition at x = 12 cm. The
stresses existing at x = 12 c¢m are the residual stresses for this

case. As can be seen from Figs. 3 and 4, the o, stresses are

large while the value of ¢, are nearly zero along x = 12 cm.
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Fig. 5 The first buckling mode shape induced ina 3.5cm x 12 cmrib-
bon by the profile given in equation (13), the end x = 12 cm is subjected
to the residual stress boundary conditions; initial dislocation density =
13¢cm "2; the critical thickness = 0.233 mm

0‘0.75

Fig. 6 The second buckling mode shape inducedina3.5cm x 12cm
ribbon by the profile given in equation (13), the end x = 12 cm is sub-
jected to the residual stress boundary conditions; initial dislocation
density = 13 cm"z; the critical thickness = 0.181 mm

Typical inplane stress and final dislocation density values ob-
tained from using the residual stress boundary conditions for
differential initial dislocation densities and ribbon widths are
listed in Table 1.

Equation (10) is solved by the finite element method, using a
sixteen degree-of-freedom Hermitian-conforming rectangular

- element. The general procedure was discussed in (Tsai, 1985),

where a computer code was developed for a ribbon divided in-
to 20 X 20 elements for the calculations associated with buck-
ling. Once the thickness and the corresponding deflection
shape W, are obtained from the solution of equation (10), the
value of ¢ can be calculated from equation (11).

For a 12 cm long and 3.5 cm wide ribbon subjected to the
thermal profile of equation (13) and the initial dislocation den-
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Table 3 Creep buckling results for a 3.9 cm x 12 cm ribbon {residual
stress boundary conditions)

mode critical thickness (mm) P (sec—l)

1 '0.255 -0.0357

2 0.235 -0.00971

3 0.167 -0.00406

4 0.155 -0.00002356
5 0.139 : 0.00398

6 0.138 ~-0.000185

7 0.123 -0.00375

8 0.112 ~0.00634

9 0.111 0.00000473
10 0.100 0.00005690
11 0.0995 -0.00236
1z 0.0863 0.000155

Table 4 Creep buckling results for a 4.6 cm x 12 cm ribbon (residual
stress boundary conditions)

mode critical thickness (mm) ¢ (sec—l)

1 0.279 ~0.000813
2 0.259 ~0.00317

3 0.185 ~0.00689

4 0.173 ~0.0000116
5 0.158 0.0108

6 0.1484 ~0.00776

7 0.1483 ~0.00042

8 0.120 0.00193

9 0.119 0.0000863
10 0.107 0.000624
11 0.106 ~0.00122
12 0.0984 0.000663

sity of 13 cm 2, thickness results and the associated value of ¢
are given in Table 2 for several modes. The thickness of the
first mode (twisting) is 0.233 mm, which is seen to have a
negative value of ¢. Its mode shape is shown in Fig. 5. The
second mode (bending) also has a negative value of ¢. Its
shape is shown in Fig. 6. The ninth mode (bending and curl-
ing) has the maximum positive value of ¢ which makes this
mode the most likely one to be seen in the experimental situa-
tion. Its shape is shown in Fig. 7. The thickness of the first
mode is 0.328 mm when the ribbon length increases to 18 cm,
and the associated thickness is 0.201 mm when the length
decreases to 9 cm. Other results for the cases of 3.9 cm and 4.6
cm wide ribbons are listed in Tables 3 and 4.

In the calculations described above the spatial shape func-
tions used to calculate ¢, via the Galerkin procedure, were the
mode shapes of the ‘‘pseudo’’ elastic problem, equation (10).

To obtain better estimates of the deflection, we now specify
we as

we=g%e* W*(x,y),

where ¢ is known from the previous step. Substitution of this
deflection into equation (5) again produces equation (8) but
with a “known”’. value for ¢. New mode shapes are then
calculated from equation (8). In turn these new mode shapes
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Fig.7 The ninth buckling mode shape induced ina3.5¢cm x 12 ecmrib-
bon by the profile given in equation (13), the end x = 12 cm is subjected
to the residual boundary conditions; initial dislocation density = 13
cm ‘2; the critical thickness for this mode = 0.102 mm

1.75

o "1.75

Fig. 8 The third “improved” buckling mode shape induced in & 3.5 cm
x 12 cm ribbon by the profile given in equation (13) with ¢ = 0.00319.
Other conditions are as in Fig. 6.

W? can be used as “‘improved’’ shape functions in equation
(12) to yield improved values of ¢.

Many of the improved mode shapes W} (x, y) obtained
from equation (8) are identical to those obtained from equa-
tion (10). However it is found that all modes are not identical.
In particular if ¢ is small the term (1 + 2fE/3¢) appreciably
differs from unity and makes the new modes important,
Typical of the ‘“‘correction’ to the deflected shapes is that
shown in Fig. 8 in which the region near x = 0 is drastically
bent with respect to that shown in Fig. 6. Clearly this reflects
the viscoplastic nature of the material. If ¢ is large, most of
the improved modes obtained from equation (8) are the same
as those of equation (10).

What we are doing is a typical creep buckling analysis in
which an initially deflected plate continues to deflect in time.
We presume that the initial deflection is in a mode shape and
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Table 5 Creep buckling results for a 4.6 cm x 12 cm ribbon (traction
free boundary conditions)

mode critical thickness (mm) P (sec_l)j
1 0.289 -0.0145
2 0.235 0.00342
3 0.174 -0.00724
4 0.162 -0.00000218
5 0.158 0.00492
6 0.143 ~-0.000115
7 0.132 -0.00252
8 0.107 0.000679 J
9 0.092 0.00160

then the magnitude of the w grows with time. Due to f being
assumed to be independent of w, we find the deflections grow
as g°e¥. Since most of the interest is in the fastest growing
modes, and this implies large ¢, the improved modes are
primarily of academic interest.

5 Discussions

The main effect of the residual stresses can be illustrated by
considering a plate with different boundary conditions for the
inplane stresses at x = L. The results for such a plate having
the traction free boundary condition at x = L, but otherwise
of the same geometry as in Table 4, are given in Table 5. The
thickness needed to prevent elastic buckling is not much dif-
ferent in the two cases. However, the values of ¢, and hence
which modes will grow, are considerably different.

In order to further study the contribution of the residual
stresses themselves to the buckling, we considered two
hypothetical plates in which the inplane stresses are the
residual stresses throughout the entire length of the plate (i.e.,
inplane stresses are uniform in the x direction). The residual
stresses developed by the profile of equation (13) are shown in
Fig. 9. For a plate with 18 cm in length and 3.5 cm in width,
we calculated a critical thickness equal to 0.457 mm. This is
greater than the 0.328 mm calculated for the same geometry
but the stress field is similar to that shown in Figs. 3 and 4. If
the residual stresses are multiplied by minus one, thus putting
tension on the outside of the plate, the critical thickness
decreases to 0.138 mm. This illustrates that a thermal profile
which generates tensile residual o,, stresses on the outside of
the plate has a great advantage in preventing buckling over
one with edge compression.

Consider now a second profile which has been used in a
thermal modeling effort for improving the web growing
process by changing the furnace design (Seidensticker, 1986).
This profile results in small tensile residual stresses o,, on the
edges. This new profile is

T e (x) = 608306 — 85x 1. 1352, (14)

Equation (14) is shown as a dashed curve in Fig. 2. For this
profile and the case of a 12 ¢cm long and 3.5 ¢m wide ribbon,
the residual stresses o,, variation along the ribbon width is
shown in Fig. 9 (curve with diamonds). The profile of equa-
tion (14) results in a much smaller magnitude of the residual
stresses than those (see the curve with stars in Fig. 9) obtained
from equation (13). The critical thickness is found to be 0.045
mm when only these new residual stresses are applied
throughout the entire ribbon. This new profile probably
represents a nearly optimum one in so far as residual stresses
are concerned. .
The value of ¢ controls the speed of the lateral deflection of
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Fig. 9 Residual g, stress distribution along the width direction (y) for
a 3.5 cm x 12 cm ribbon with initial dislocation density = 13 ecm™
subjected to the profile of equation (13) (curve with stars) and equation
(14) (curve with diamonds)

plates. When the value of ¢ is equal to infinity, elastic buck-
ling occurs. When ¢ is positive, the amplitude of the buckling
shape will grow with time. Larger values of ¢ will cause the
lateral deflection of plates to grow faster. When ¢ is negative,
the amplitude of the imperfection in the plate will decrease
with time.

This ambivalence about whether a specific mode will grow
or damp out (go back to flat) is probably due to the stresses
being self-equilibrated. It certainly is extremely sensitive to the
specific inplane stress distribution that is used to calculate ¢.
To the authors knowledge this is a new type behavior.

The results in Tables 2-4 show that the value of ¢ is small
even though we used # = 1.1A;. Based on equation (12), a
greater ribbon thickness # will further reduce the value of ¢,
and hence the buckling speed. That is, the threshold for the
lateral deflection of silicon ribbon can be moved to higher
stress (i.e., wider ribbon) by growing ribbon thicker than 4,.

Once the value of ¢ is reduced so that the growth behavior
can be neglected, the buckling of the final product of thin rib-
bon seems to be primarily due to the residual stresses existing
in regions of the ribbon where there are small plastic strain
rates. There are many ways to decrease the critical ribbon
thickness by adjusting the thermal profile. A profile which
reduces the magnitude of the residual stresses is one way.
Selecting one that causes tensile residual stresses to occur on
the edge region and compression near the center is a second
way. Of course, there are other ways (for example, putting
reinforcements on the outer edges) than adjusting the thermal
profile that can also reduce the critical thickness.

6 Summary

The inplane stresses obtained from using the residual stress
boundary conditions in the prebuckling state are used to
calculate buckled shapes and their lateral deflection speeds.
The lateral deflection speed can either be positive or negative.
Hence the lowest mode may not be the one that is likely to be
observed in an experiment.

Ribbon that is moderately thicker than the eigen-thickness
can reduce the buckling speed. However, the use of
viscoplasticity in the inplane stress calculation cannot be
neglected because it is responsible for the residual stresses as
well as some modes growing in time.

A thermal profile which generates smaller tensile residual
stresses on the edge regions and smaller compression on the
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center regions can be used to produce ribbon that is
significantly thinner than one which has large compression on
the outside edges.

Residual stresses are important in evaluating buckling of
silicon ribbon when the ribbon is long.
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APPENDIX A
The inplane stresses o;; are obtained as the solution of the
equilibrium equations expressed as
d%a,, _ azoyy _
ax? y?
and the compatability equation in the form

(4-1)

Journal of Applied Mechanics

Vo, +o,+a ET)=EFp (A-2)
where
92ePL  g2ePL 52PL
Fp= > 4 2.2 hod A-3
P gyt ax? dxoy (A4-3)

and N given by equation (4). The plastic “‘strains’’ in equation
(A-3) are :
X
velt= S eiftdu
(e}
where the /7~ are given by equation (2) in terms of the inplane
stresses.

During the growth of the silicon ribbon, the solid-melt inter-
face (x = 0) and two outer edges (y = +C) are assumed free
of tractions and moments in all directions. Since the value of
3*T/3x* in growing ribbon usually drops to zero after a short
distance (say L*) from the solid-melt interface, the ribbon
grows under the steady-state when the length of growing rib-
bon is larger than L*. This implies that the stresses in the
region beyond x = L* are constant so that the stress gradients
in the x direction are zero in this region. The use of zero stress
gradients along x = L* permits the residual in-plane stresses
to be calculated in the prebuckling analysis. When the in-plane
stresses oy, 0y, and o, are being calculated, the boundary
conditions mentioned above are called the residual stress
boundary condition, These stresses along x = L* are the
residual stresses. The o,, and o, stresses are found to be very
small when compared to o,, (Dillon et al., 1986).

Hence the boundary conditions are

05 (0,9) = Oxy (0,y)=0= Oy (x,£C) = Oxy (x,=0)
and the residual stress ones
do;/3x;(L*,y)=0. (A-4)

This system is expressed in their finite difference equivalent
and the results solved iteratively for o,, and g,, on the digital
computer. In the right-hand side of equation (A4-2) the func-
tion F is evaluated using the stresses obtained in the previous
iteration. The shearing stresses are obtained from one of the
equilibrium equations or by ‘‘fitting’’ a stress function to the
data on o,, and ¢, and then differentiating the result to ob-
tain o, .

APPENDIX B

The transverse displacement w(x, ) at a generic point in
the plate is written as
(B-1)
where w? is the deflection at zero stresses, w? is the increment
in displacement when the stresses o; are applied considering
the material to be elastic, and w"” is that part of w due to the
stresses o;; when considering silicon to be viscoplastic (i.e.,

ij
without elasticity). The strains are written as

8% (we + w'P)
ax,-axj

w=w+w®+w"?

e 208 oVP _
€ =€ tej

(B-2)
using the usual assumptions of small deflection plate theory;
therefore, the strains are written as

e =€ +elP

In equation (B-2) the ¢ff and ¢/ are independent of z. The
moment intensities are given by the basic definition

h/2
M;= S—h/z Z 0;dz (B-3)
Hence we have
azwe 62 we
Mxx: —De (a—‘xz—‘f‘ll _3};—2) (B‘4)

and also
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aszP aszP 2
Mxx: _DVP< _>

27 B5
x> 20y? (8-5)

where Dyp = h3/12f. .
If we assume v = Y5, equations (B-4) and (B-5) imply

PWr oE 3wt

dx? 3 9x? (8-6)

and corresponding expressions for 8*w'?/8y? and 82w'¥/
dxdy. This procedure is analogous to Trevguard (1_979).
The general equilibrium equation for a plate subjected only

to inplane stresses o is
OXM;/3x;0x; = — hod*(W® + we + wP) /dx,0x; (B-7)

Using the expressions of the type given by equation (B-4) in
the left-hand side of equation (B-7), one obtains

570/ Vol. 54, SEPTEMBER 1987

D,V w*=ho;d*(w® + w + w'F)/dx,0x; (B-8)
Equation (B-8) is then differentiated with respect to time and
w? thereby eliminated, except from the associated initial
conditions.

Using the relations of the type (B-6), one eliminates w*” in
favor of w® and thereby obtains equations (5) of the text.
Relations similar to equation (B-4) can also be used to express
the boundary conditions in terms of w¢, precisely as in elastic
plate theory.

Thus the problem to be solved is equation (5) with

M (0y)=M,, (x,+C)=M,,(0,y)=0
M, (x,£C)=0=0Q,(0.y) =0, (x,£C)

We do not know the initial deflected shape so that we watch
any one of the “‘pseudo’ elastic mode shapes grow in time.
That is

we(x,9,0) =g° W, (x,y).
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Nonlinear Forced Response of
Infinitely Long Circular Cylindrical
Shells

A combination of the Galerkin procedure and the method of multiple scales is used
to analyze the nonlinear forced response of infinitely long circular cylindrical shells
(or circular rings) in the presence of internal (autoparametric) resonances. If wr
and a; denote the frequency and amplitude of a flexural mode and w,, and a, denote
the frequency and amplitude of the breathing mode, the steady-state response is
Jound 10 exhibit a saturation phenomenon when w, = 2w, if the shell is excited by a
harmonic load having a frequency Q near w,,. As the amplitude t of the excitation in-
creases from zero, a, increases linearly with f until a threshold value f, of f is
reached. Beyond f., a, remains constant and the extra energy spills over into the
flext_:ral resonant mode whose amplitude grows nonlinearly. Results of numerical in-
vestigations, guided by the perturbation analysis, show that the long-time response
exhibits a Hopf bifurcation, yielding amplitude and phase-modulaied motions. The
amplitudes and phases experience a cascade of period-doubling bifurcations ending

A. H. Nayfeh

R. A. Raouf

Department of Engineering Science
and Mechanics,

Virginia Polytechnic Institute

and State University,

Blacksburg, VA 24061

up with chaos. The bifurcation values are finely tuned.

1 Introduction

Recently, the problem of the nonlinear vibration of shells
has received considerable attention. The sources of the
nonlinearities in the governing equations may be geometric,
inertial, material, or any combination. These nonlinearities
appear in the governing partial-differential equations and may
appear in the boundary conditions. However, most of the ex-
isting studies of other than composite shells deal with
geometric nonlinearities.

The methods of solution of the nonlinear partial differential
equations governing shell motion can be broadly classified in-
to three approaches: purely numerical methods, perturbation
methods, and a combination of the Galerkin procedure with
either perturbation or numerical methods.

The last is the most commonly used approach. It consists of
expanding the dependent variables in terms of a linear com-
bination of shape functions with time-varying coefficients.
These temporal coefficients are treated as generalized coor-
dinates. The Galerkin procedure is used to derive a set of
nonlinear ordinary-differential equations. These equations are
solved using numerical or perturbation techniques. Examples
of this approach include the work of Atluri (1972), who
employed the method of multiple scales, and the works of
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Fig. 1 Polar coordinates of a point of the shell which was initially at P
and at P* at time t*

Reissner (1955), Chen and Babcock (1975), and Hui (1983),
who employed the Lindstedt-Poincaré technique.

Since the problem is governed by partial-differential equa-
tions, the response, in general, consists of many modes. In
fact, using the Galerkin procedure one obtains an infinite set
of nonlinear coupled equations describing the time variation
of the amplitudes of the infinitely many modes. All existing
studies truncate the infinite set of equations to a finite number
and many of them keep only one mode.

The first studies of modal interactions in the response of
shells were initiated by Mclvor (1962, 1966), Goodier and
Mclvor (1964), Mclvor and Sonstegard (1966), and Mclvor
and Lovell (1968). They analyzed the response of infinitely
long cylindrical and spherical shells to radial and nearly radial
impulses, taking into account the coupling of breathing and
flexural modes when their frequencies are in the ratio of two-
to-one. By considering the linearized equation of the breathing
mode, they obtained a Mathieu-type equation for the flexural
vibrations and used it to study the stability of the shell. Other
examples of modal interaction studies include the works of
Bieniek et al. (1966), who used Donell’s equations to obtain a
Mathieu-type equation to study the stability of the axisym-
metric modes, Atluri (1972), who used the method of multiple
scales to analyze free oscillations of shells in the absence of in-
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Fig. 2 An edge of an element of the deformed and undeformed shell

ternal resonances, Mente (1973), who numerically solved a set
of n nonlinear equations arising from the Galerkin procedure,
and Chen (1972) and Chen and Babcock (1975), who used the
Lindstedt-Poincaré technique to study the interaction of a
flexural mode with its companion mode (i.e., one to one
resonance) for a simply-supported cylindrical shell.

In the present paper, we analyze the nonlinear response of
an infinitely long cylindrical shell (or a ring) to a harmonic ex-
citation when the frequency of the breathing mode is approx-
imately twice the frequency of a flexural mode. We use the
method of multiple scales to fully account for the nonlinear in-
teraction, including the influence of the flexural mode on the
breathing mode. We demonstrate the saturation phenomenon.
This phenomenon was found by Nayfeh et al. (1973) in the
response of internally-resonant ships. We also show the ex-
istence of a Hopf bifurcation and numerically demonstrate the
occurrence of chaotic motion. Systems with two-to-one inter-
nal resonances were studied by Mettler and Weidenhammer
(1962), Miles (1984, 1985), Sethna (1965), Nayfeh et al. (1973),
Mook et al. (1974), Yamamoto and Yasuda (1977), Hatwal et
al. (1982), Haddow et al. (1984), among others.

2 Equations of Motion

Following Mclvor (1962) and Goodier and Mclvor (1964),
we consider the case of plane strain in which the strain parallel
to the generators of the shell is everywhere zero. Thus, the
deformation of the shell is identical in every plane perpen-
dicular to the shell axis, and the shell can be considered as be-
ing in plane motion (or simply as an elastic ring). In such a
plane, we consider a point P on the undeformed shell midsur-
face with the polar coordinate (a, ), which after a time #*
moves to P* with the polar coordinates 7 and ¢, as shown in
Fig. 1. Figure 2 shows an edge of an element of unit width of
the shell in both the deformed and undeformed configura-
tions. Let the coordinates of an element of the undeformed
midsurface be (a, #) and (a, § + df) and those of the deformed
element be (r, ¢) and (r + 6r, ¢ + 6¢). Then, the extensional
strain is given by

ds* -ds
= ——————
ds

where the prime denotes the partial derivative with respect to
0. Thus

€ ai(r't+ri¢’ v -1 o))

ds* =adf(1+¢,) ).

It follows from differential geometry that the curvature is
given by

K= [d’, (r2¢/2 —rr” +2r’2)+d>”r'r][r’2 +r2¢12]~3/2 (3)
The usual assumptions of thin shell theory are used here.

Straight lines normal to the midsurface before deformation

stay straight and normal to the midsurface after deformation,

572/ Vol. 54, SEPTEMBER 1987
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Fig. 3 Deformed sheil element

implying that the shear deformations are negligible. The
thickness # of the shell is unchanged, and the normal stress is
negligible. The ratio (h%/a?), where a is the initial radius of the
shell, is small. Using the above assumptions and assuming
plane strain, we find from Fig. 3 that

e¢=eo-z(1+eo)<l<—%> (1+%+Z—2+ . ) )

We introduce the dimensionless displacement w and time ¢
defined by

a—r ct*

4

where ¢* is the dimensional time, ¢ = E/p(1 — »?), E is
Young’s modulus, » is Poisson’s ratio, and p is the density of
the shell per unit width. Moreover, we let

y=0¢—-0 ©®

Using Hamilton’s principle and calculus of variation, we ob-

tain the equations of motion
W+ (W2 W)~y w=w" (Y —w) — P
1 a(l — v?
+Y 2w+ wiy” —5" w/2+% PA+y' —w)(T)

and

. Csoa(l—v?)

V=Y +w =ww” 2wy’ +2wx/x+Th w' P (8)
in agreement with those obtained by Mclvor (1962) and
Goodier and Mclvor (1964). These equations have the same
mathematical form as those of a ring. The ring equations can
be obtained from equations (7) and (8) by replacing a(l —
v2)/Eh by ah*/(12EAK?), where A and k are, respectively, the
area and radius of gyration of the cross section of the ring.
Simmonds (1979) showed that the cubic nonlinearities in an
elastic ring have a significant effect on the behavior of low
modes of vibration. The present study will consider higher
flexural modes and thus cubic nonlinearities can be ignored.

3 Inextensional Oscillations

Goodier and Mclvor restricted their analysis to impulses
with durations much less than the period of the uniform radial
(i.e., breathing) mode of vibration. Such a restriction made it
possible to convert the problem into that of free vibration.
Under the assumption of inextensionality and by simplifying
the expression for the kinetic energy through neglecting a (2w)
term, Mclvor (1962, 1966) and Goodier and Mclvor (1964)
produced a numerical solution of the approximate equations
of motion. In the present analysis, such assumptions concern-
ing the energy are not used.

Since the shell is closed, w and  must be periodic in § with
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period 2x. Consequently, they can be expanded in Fourier
series as

w=n,(r)+ E [n, (7)cosnf+ ¢, (7)sin nb]

n=1

(9a)
and

¥=Y e, (r)cosnf+d, (r)sin nf] 9b)
n=1

The basic response of the shell is the radial (breathing), purely
extensional mode 5, (7), which is assumed to be perturbed by
the inextensional modes. Thus, we follow Goodier and
Mclvor (1964) and assume that the deviation from the
breathing circular mode satisfies the inextensionality condi-
tion
v —w=0
Hence, equations (9) become

w=n,(7)+ E [1, (T)cos nb+ ¢, (7)sin nb)

n=2

(10a)

and

v= E [—-&'—— cos nf+— sin no] (10b)
n=2 n n
The first harmonic is omitted in equations (10) because it cor-
responds to a rigid body translation in the inextensional
model. The damping is assumed to be given by the dissipation
function
1 . = n?+1 .
Dy=— Evhan| 2,3+ Y vy " G2+ ] ap
n=2 n
so that the resulting damping is modal. The quantities 7,, 4,
and {, can be considered as generalized coordinates resulting
in the following equations of motion:

> 1 .
ﬁo+wgna+2,uoﬁa+ E [2—2 (7]31'*_ 121)
n=2 n
1 2 2,82
o (=23 D) =P, () (12
2 2
ﬁn+w£nn+2#n‘i]n— n 77 - 7] ’7
n?+1 " prap OV
ni(n*-2
_%ﬂq—) N,M, + higher-order terms = P, (¢) (13)
" . n¥(n*-2) 2 "
§n+w%§n+2#n§n*ﬁ nag-n_—;l-z—_{'_T nog‘n
71, {, + higher-order terms = Q, (¢) (14)

2
where the P, and Q,, are generalized forces, the u,, are damp-
ing coefficients, and
n*(n? —1)?

(n2+1)
The full form and details of the derivation of equations
(12)-(14) are given by Nayfeh and Raouf (1986). The higher

order terms are not listed because they do not appear in the
second-order approximation presented in this paper.

o? (15)

wi=1+a?, o?

4 Perturbation Analysis
In this section, the method of multiple scales (Nayfeh, 1973,

Journal of Applied Mechanics

1981) is used to derive an asymptotically valid closed-form
solution for equations (12)~(14) in the case of a two-to-one in-
ternal (autoparametric) resonance between the breathing
mode 7, and a flexural mode 5, and {;. Thus, we consider the
case w, = 2w;. Moreover, we consider the case of a harmonic
excitation of the breathing mode near primary resonance; that
is,welet P, = S, = 0Oand

P, =2F cos{lt (16)

where 0 = w,.
Following the method of multiple scales, we seek a uniform-
ly valid expansion of the variables in the form

1o (Ge) =en 1 (To, T\) + €2 2 (T, T)+. - amn
77,;(1‘;6):677"1 (TmT1)+6277,,2 (T01T1)+' .. (18)
g‘n(t;e)=6§‘nl (Tu!T1)+€2§‘n2(ToaT1)+' .. (19)

for n = 2, 3, 4, ..., where € is a small dimensionless
parameter that is used as a bookkeeping device, T, = ¢is a
fast scale, and 7, = et is a slow scale. Moreover, we order the
amplitude of the excitation and the damping coefficients so
that

F—ew,f and p,—ep, (20)
Substituting equations (17)-(20) into equations (12)-(14) and
equating coefficients of like powers of ¢ on both sides, we ob-
tain equations describing the 7,, and {,, (Raouf, 1985,

Nayfeh and Raouf, 1986). The solution of the first-order pro-
blem can be expressed as

iw, Ty
7,1 :Ao(Tl)e‘ +c.c. 21)
0 =A, (T +ec. 22)
{4 =B, (TN +c.c. 23)

where c.c. stands for the complex conjugate of the preceding
terms. The functions A,, A,, and B, are arbitrary at this
order; they are determined by imposing the solvability condi-
tions at the next level of approximation.

Next, equations (21)-(23) are substituted into the second-
order problem and detuning parameters o, and o, are defined
as

(24)
Then, eliminating the terms that produce secular terms from

the inhomogeneous equations governing the n,2 and { 5, we
obtain

Q=w,+e0; and 2w;=w,+¢€0,

QAL+ 2,4, +4ih, (A2 + B2 wife” T =0 (25)
DA+ 2u,A, +4iby A, A e 2T =0 (26)
2B+ 2u,B, +4ih, A, Be 2 =0 @7
where
1 2
dophy = (2 =)+ ;";2 28)
4o,y = (67 = 2) = 26k + 00, )] 29)
Letting
1 it 1 iv
Ay=—a, ()™, B =— b (T))e™"",
2 =7
1 i
Ag=—- a,(T)e™s ™ (30)

in equations (25)-(27) and separating real and imaginary
parts, we obtain

(31
(32

a,+p,a, + Ajatsiny, + A, b2siny, — fsiny, =0

a]+pa,—Aya,a5iny, =0
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Fig. 4 A typical time history of the free-osciliation response

b+ uby—Aya,bsiny, =0 (33)
a,B. + Aja2cosy, + A b2cosys +fcosy, =0 (34)
a,S+ Aya,a.co8v, =0 (35)
b+ Aya,b,cosy; =0 (36)
where
V=0T =By, v2=B,—-28,—0,T,
andy; =8, —-2v;—0, T} (37

In the following section, we discuss the undamped case of
free oscillations, and in Section 6, we discuss the case of
forced damped oscillations.

5 Undamped Free Oscillations

In this case, f = 0 and pu, = g, = 0. Under these condi-
tions, eliminating v, and v, from equations (31)-(36) yields

Ay al+Ayagal+ A bl =0 (38)
Integrating equation (38) yields
(Ay/AD2+a + b2 =E (39)

where FE is a constant of integration. Since all the terms on the
left-hand side of equation (39) are positive, E must also be
positive, which means that the motion described is a bounded
one. When b, = 0, the solutions of equations (31)-(34) and
(37) can be expressed in terms of Jacobi elliptic functions
(Nayfeh and Mook, 1979).

Next, we present numerical results for the case o> = 2.0918
x 1.0-%, (h/a = 1/20), which leads to w, = 1.0001 and w, =
0.4993 s0 that w, = 2wg. In this case, A; = 2.1259 and A, =
16.5203. Figure 4 shows the time-history of the amplitudes of
the free-oscillation response obtained by integrating equations
3B1)-(37). It clearly shows the continual exchange of energy
between the breathing and flexural modes. The maximum
amplitude of the flexural mode is about a factor of 3 larger
than the maximum amplitude of the breathing mode.

6 Forced Damped Oscillations

Fixed points and hence steady-state periodic solutions of
equations (31)-(37) correspond toa;, = a; = b; = Oandy, =
0. It follows from equations (37) that 8] = o, and B, = »; =

V2 (0, — 0,). Hence, steady-state periodic solutions have four

possibilities. First,
a,=b;=0 and a,=f(u2+d}) % (40)

which is essentially the linear solution. Second, a; = 0 and b,
# 0. Third, a, # 0 and b; = 0. Fourth, a; # 0 and b, # 0.
The last solution includes the second and third solutions as
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Fig.5 Modal response amplitudes as functions of the amplitude of the
excitation when I < 0

special cases. Then, it follows from equations (32), (33), (35),
and (36) that

a,=az=Az" [u?Jr% (o4 —02)2] ) “1)
tany, = tany; = [2u,/ (03 — )] (42)
Then, it follows from equations (31) and (34) that
@+ 02 = (A8 [ 0101 — o) — ook [ 1203
1 2%
- (01Mo+7 Hs("l“az)z) :l I 43)

Equation (41) shows that the amplitude a, of the directly ex-
cited breathing mode is independent of the amplitude f of the
excitation. It depends only on the damping of the flexural
modes and the detuning parameters o, and ¢,. On the other
hand, the amplitudes a;, and b, of the flexural mode are
strongly dependent on the excitation amplitude f.

To determine the stability of the steady-state periodic solu-

tions, we let
1

. ivy T

A0=—§— (p,—igpe '

1 . iy Ty
ASZT (D2 —igy)e (44)

1 . vy T
B.=—- (03— igs)e”* !

where

and »,=— (0,—0;)

2

in equations (25)-(27), separate real and imaginary parts, and
obtain

vy =0,

Pl+riqy+popy +20(2q, +P3g3) =0 (45)
ai—vipi+pod —MO3+ PR -G~ g} =S (46)
P+ 3Gy + Dy + Ay(q1py ~ qop) =0 7
G =Dy + sy — Ay (D1 Py +4192) =0 (48)
D3 +mgy+ups + Ay (g0 —q3p) =0 (49)
q3—vyD3 T 1sq3 = A (0103 +4193) =0 (50)

Equations (45)-(50) are a generalization of those studied by
Miles (1985) and Nayfeh (1987). The local stability of a fixed
point with respect to a small perturbation proportional to exp
(AT)) is determined by the zeros of the characteristic equation
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To investigate the stability of thelinear solution given by
equations (40), we put p, = p; = g, = ¢; = 0 in equation
(51) and, after some algebraic manipulations, obtain

[N+ 1) % + 031N+ ) + 03 — AJa3]* =0 (52)
Hence,
A= —poxivy,  —pox (AJad— )",
— g £ (Ajay —v3)” (53
Consequently, the linear solution is stable if and only if
A2 <vd + 2 (54)

which, in conjunction with equation (41), implies that the
linear solution is stable if ¢, < ¢} and unstable if a, > a} or
38 = ay(ud + oP”.

To study the stability of the nonlinear solution given by
equations (41)-(43) when b, = 0, we let p; = g3 = 0in equa-
tion (51), use equation (41), and obtain

[N+ )2 — BTN + 2, + )N + [+ Apo g + 9]
+ 4 Ay @2 INF + Rpgpd + 207 + 4A Ay (i + pig ) aZIN

FAA AP A AR + pops— v 9]} =0 (53)
Hence, either A = O or —2p; or
N 42, + )N+ [0d + o + ] + 40, ApaZIN
+ [2p03 + 2,98 + 40 Ay (o + pg)aZIN
+4A M@ A Aoa} + pops — 9] =0 (56)

The necessary and sufficient conditions that none of the roots
of equation (56) have positive real parts are

Ay Ay + popg— v 9 >0 (57)
Apops (p2 + v (@Ep2 + dpops + 1l + 1) + 8(u,
+ g ) 2A A @2 (U2 + 2, s + 2010, +11) >0 (58)

Condition (57), in conjunction with equation (43), implies that
the solution corresponding to the positive sign is stable
whereas the solution corresponding to the negative sign is
unstable. The violation of condition (58) would imply the ex-
istence of a pair of complex-conjugate roots of equation (56)
with a positive real part. When »,», > 0, condition (58) is
satisfied for all values of u,, u,, and f. On the other hand,
when »,», < 0, condition (58) may be violated, depending on
the values of u,, u,, and f.

Next, we present numerical results for the same case con-
sidered earlier w, = 2wg with u, = 0.01 and p; = 0.01.

In Fig. 5, we show a representative variation of the
amplitudes of the breathing and 6th flexural modes for the
case I' < 0, where

02) = Boks (59)

=T a,(0, -
If the shell is excited by a radial load of amplitude f and fre-
quency @ = w,, the linear solution shows that the steady-state
amplitude a4 of the flexural mode is zero, whereas the steady-
state amplitude @, of the breathing mode increases linearly
with f. However, including the nonlinear terms shows that

above a threshold value &, of f, where
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20.p;
2A4q5

0

0 =0
va—Aop,

A~ Arg, 1)

b2= a3 (3 + o)
1 v
a7 {3+ b |+ (-0}

the linear solution is unstable, @, remains constant (saturates),
and the additional energy spills over into the flexural mode. If

(60)

the excitation frequency is such that o, = o0,, then the
threshold value &, of fbecomes
£ =pehs ' (ud +o})" (61)

which can be very small, depending on the damping coeffi-
cients, u, and ug. Consequently, the linear solution is unstable
and the shell responds nonlinearly even for small excitations.

Next, we consider the case where y, = u, = 0.02, 0, =
—0.1,and o, = —0.18, theny, = —0.1,», = 0.04, and ' <
0. Hence, equation (43) has no real roots when f < £, and it
has one real root for all f = &,, where £, = 2.761 x 1074,
When £, < f < &,, where §; = 1.2761 X 1073, both condi-
tions (57) and (58) are satisfied, and hence the finite-amplitude
solution is stable. When f = £;, condition (58) is violated, in-
dicating the existence of a Hopf bifurcation and hence the

Qg

Amplitudes

time
Fig. 6 Hopf bifurcation conditions. Variation of the steady-state
amplitudes of the breathing and fiexural modes as a function of time
when f = 0.1.

PTYVe .,.'A'A'A'l'l'l'lvl'l'l'l'lll'l’l'l'l’l'l‘lylllAu.. A.u'l'lvl'l'l'l'l'l'l‘

Breathing Mode Amplitude

k. | y - 1] 1 L

time
Fig. 7 Hopf bifurcation conditions. Time response history of the
breathing mode response when f = 0.1.
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Table 1 Summary of reponse with varying values of 4,

a Trajectory Phase
Trajectory

< ~0.075 fixed point
[-0.075, —0.031] limit cycle/

period T Fig. 9
[-0.03, —0.0297] limit cycle/

period 2T Fig. 10
[—0.0296, —0.02953] limit cycle/ .

period 4T Fig. 11
[—0.02950, 0] chaos
>0 fixed point

vﬂ\j/\/\\j/\vf\\//\V/\V/\V/\VAV/\V/\VAV/\V/\v/\v/\v/\vf\vf\vAvf\vAVz

Flexural Mode Response

L 1 1 1 1

time
Fig. 8 Hopf bifurcation conditions. Time response history of the flex-
ural mode response when f = 0.1,

finite-amplitude solution is unstable. Consequently, the
response is periodic and consists of only the breathing mode
when f < £,. When £, < f =< &;, the response is also periodic
having the same period as the excitation but it consists of a
combination of the breathing mode and the 6th flexural mode.
When f > £;, the response is also a combination of the
breathing mode and the 6th flexural mode but in this case the
amplitudes and phases are not constants. Consequently, the
response is either an amplitude and phase-modulated motion
or a period multiplying (the period is an integral multiple of
the excitation period) motion or a chaotic motion. The critical
value f = £, is a Hopf bifurcation point at which the real part
of a complex-conjugate pair of the roots of equation (56)
changes sign.

Under the above stated conditions of complex-conjugate
pair with positive real part, Fig. 6 shows variations of the
long-time behavior of the amplitudes @, and a4 of the
breathing and flexural modes when f = 0.1, obtained by
numerically integrating equations (45)-(50) using a 6th order
Runge Kutta algorithm. Under the same conditions, equations
(12)-(14) are integrated and the results are shown in Fig. 7
(breathing mode) and in Fig. 8 (flexural mode).

To illustrate the importance of the Hopf bifurcation, we fix
the parameters of the system, vary ¢, and numerically in-
tegrate equations (45)-(48). The results show the system to ex-
hibit a fixed-point response in the phase diagram before enter-
ing and after leaving the interval —0.75 < 6; < 0. In this in-
terval, the system exhibits a limit cycle behavior, then a
cascade of period-doubling bifurcations starts to develop,
leading to chaos. The system goes back to the fixed point
behavior for &, > 0. Table 1 summarizes the behavior of the
system with reference to the phase trajectory describing every
pattern of response.

In Fig. 12, we show a representative variation of the
amplitudes of the breathing and 6th flexural modes when I' >
0. In addition to the saturation phenomenon, Fig. 12 exhibits
the jump phenomenon. When the excitation amplitude flies in

the interval [£,, £,], there are three possible steady-state solu-

tions. Two of these solutions are stable: the trivial solution
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.50

5,=-0.0730
.25}
A
de L
1.00 F
075k 1 1 i L 1
0.00 0.50 .00 1.50

A

do
Fig. 9 Projection of the trajectory of th1e modulation equations on the
4, ~ dg, plane, where 4, = a, (flAp) ™ 7%, and dg = ag (flA4)™ 7, for

wfAg) ™" = 0.02, gp(fAy) ™" = 0.18, and oq(fA) " ¥ = - 0.073
2.00
5,=-0.0299
.50 |-
a, 100F
0.50
O 1 i 1 i 1 1] 1
0.50 .00 .50 2.00
A
GO

Fig. 10 Projection of the trajectory of the modulation equations on the
&, — &g, plane, where 4, = a, (flA;)” 2, and d¢ = ag (flA{)~ 72, for
ulfhg) ™" = 0.02, oy(fAy)~ " = 0.18, and oq(fA)~ ¥ = — 0.0299

and the larger amplitude solution. The response that is at-
tained physically depends on the initial conditions. If the ex-
citation amplitude increases from zero, one observes only the
breathing mode until freaches &,. As fincreases beyond &,, a4
jumps up from zero to point C, producing a large wrinkling of

- the shell. As fincreases further, a, remains constant, whereas

ag increases slowly along the curve ECD. If f decreases from a
value corresponding to point D, a4 decreases slowly along the
curve DCE and g, remains constant until point £ is reached.
As f decreases below £, a; jumps down to zero and @, jumps
down to point F. As f decreases further, a4 remains zero and
a, decreases linearly with f.

If the amplitude of the excitation is set at a value in the in-
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.50
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A
Fig. 11 Projection of the trajectory of th1e modulation equations on the

4, — dg, plane, where 4, = a, (HAy)~ 2, and dg = ag (HA7)~ %2, for
#fAg) ™% = 0.02, o5(fAz) ™ ¥ = 0.18, and oq(fA5) % = — 0.02959

Fig. 12 Modal response amplitudes as functions of the amplitude of
the excitation when T > 0

terval [£,, &,] and the shell is initially undisturbed, the
response corresponds to the linear solution, in which the shell
is breathing without wrinkling. However, if the shell is
disturbed, the shell may respond with the nonlinear solution,
in which the amplitudes of the breathing and flexural modes
increase dramatically, yielding a much larger response.

The instability of the linear solution and the saturation
phenomenon were first found analytically and verified
numerically by Nayfeh et al. (1973) in the response of ships.
Later these phenomena were observed experimentally in the
response of a simple model consisting of two beams and two
concentrated masses by Haddow et al. (1984) and in the
nonlinear vibration laboratory at VPI & SU.
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Large Elastic Deformation of Shear
Deformable Shells of Revolution:

L. A. Taber

Department of Mechanical Engineering,
University of Rochester,
Rochester, NY 14627

Theory and Analysis

Large axisymmetric deformation of pressurized shells of revolution is studied. The
governing equations include the effects of transverse normal strain and transverse
shear deformation for shells composed of an incompressible, hyperelastic material.

Asympiotic solutions to the equations are developed which are valid for moderately
large strains. Application to Mooney-Rivlin clamped spherical caps reveals that, for
large enough bending and stretching, the consequences of shear deformation in-
clude: (1) bending moments can decrease at the edge after the load passes a critical
point; (2) even thick shells can behave as membranes; (3) transition points can oc-
cur in the shell which divide regions of shell-like behavior from regions of
membrane-like behavior.

introduction

Large clastic deformation of shells has gained renewed in-
terest in recent years. Although governing equations for large
strain have been available since the 1950s, the extreme com-
plexity of these relations (e.g., Naghdi, 1972) has persuaded
most researchers to focus on membrane solutions. Much re-
cent effort has, therefore, been devoted toward the develop-
ment of approximate equations that are more amenable to
analysis (Libai and Simmonds, 1981; Taber, 1985; Simmonds,
1986). Although further refinement of these relations, espe-
cially the boundary conditions, undoubtedly will occur in the
future, the intent here is to gain insight into the fundamental
behavior of elastic shells undergoing large bending and
stretching. Thus, using these equations at their current stage
of development, this paper examines some basic shell bending
problems through asymptotic analysis.

A pair of previous publications (Taber, 1987a,b) presented
asymptotic expansions for large axisymmetric deformation of
rubber-like circular plates and cylindrical shells. These and
other recent papers (Libai and Simmonds, 1981; Keppel, 1984;
Simmonds, 1986; Brodland, 1986) have relaxed the Kirchhoff
hypothesis to allow for thickness changes but not transverse
shear strains. Justification for such a theory is based in part on
the work of John (1965), who has shown that, at least for
small strains, transverse shear stresses are only O(ot/L),
where o is the norm of the stresses in the shell, ¢ is the
thickness, and L is the minimum ‘‘wavelength’’ of the defor-
mation pattern. However, if this conclusion can be extended
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to large strains, then transverse shear deformation can become
significant near edges and concentrated loads of even ““‘thin”’
shells, where L can grow quite small. Indeed, a recent publica-
tion by Meroueh (1986) demonstrates this behavior for cylin-
drical deformation. Thus, the current work extends and
generalizes that of Taber (1987a,b) to include the following
features: (1) general axisymmetric geometry; (2) incompressi-
ble material properties characterized by a general strain energy
density function; and (3) transverse shear deformation.

The shell equations employed herein represent essentially a
combination of the field equations for a shell of revolution
developed by Reissner (1969, 1972) and the two-dimensional
strain energy density function of Simmonds (1986). With the
latter slightly modified to allow transverse shear strains, this
Reissner-Simmonds (R-S) shell theory assumes that lines
originally normal to the reference surface remain straight but
not necessarily normal after deformation. The results of
Meroueh (1986) indicate that this is not a bad assumption,
even for very large bending. In addition, these lines can
change in length to incorporate transverse normal strains. A
key ingredient of this theory is the constitutive coupling be-
tween bending and stretching that occurs during large strain in
isotropic shells (Libai and Simmonds, 1981; Taber, 1985),
which is similar to that encountered in linear theories for un-
symmetrically layered laminates. In its current form, R-S shell
theory is valid for large membrane and ‘‘moderately large”
bending and shear strains, i.e., [y?, (#x)?] < < 1, with y and
being the largest transverse shear strain and curvature change

. measure, respectively.

This paper first examines the effects of thickness changes on
the governing equations of Reissner (1969, 1972) and then
adds transverse shear effects to the strain energy density func-
tion of Simmonds (1986). Next, based on these R-S equations,
expansions are developed for pressurized shells of revolution.

~And finally, results are presented for the special case of a

clamped, spherical cap. As in the case of a cylinder (Taber,
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Fig. 1

Geometry for shell element

1987b), the results show the presence of a primary boundary
layer, and bending and stretching components of a secondary
boundary layer. Details of the primary layer, which was first
identified in membranes by Bromberg and Stoker (1945), and
of the bending portion of the secondary layer were studied for
small strain by Reissner (1959). On the other hand, the secon-
dary stretching component develops as strains grow large
(Taber, 1987a,b).

Governing Equations

Geomelry. The geometry of a shell element before and
after deformation is shown in Fig. 1, in which subscript zero
indicates values in the original configuration. While the
undeformed reference surface S, is taken as the middle surface
of the shell, two definitions for the deformed reference surface
S will be explored. First, as in Simmonds (1986), the position
of § will be defined through a ““dynamic (or static) consistency
condition’’ (Theory I)

12
S_t/zz dz,=0 (1)
where ¢ is the undeformed shell thickness, and z, and z are the
undeformed and deformed transverse coordinates (Fig. 1).
With this definition, the material composition of S is not
necessarily the same as that of S, and can change with the
deformation. Second, as in Taber (1985), the reference surface
will be assumed to be made up of the same material points,
regardless of the deformation (Theory II). In general, S will
not be located at the geometric midsurface. These differing
criteria for locating the reference surface mainly affect the
form of the constitutive relations, which are discussed in a
later section.

As a first approximation, transverse shear deformation
enters in the manner of Reissner (1969), who employed an ex-
tension of Timoshenko beam theory. Accordingly, a line nor-
mal to S, and at a meridional angle ®, relative to the axis of
symmetry remains straight during deformation but rotates an
additional amount -y relative to S due to shear, forming an
angle ® with the shell axis (Fig. 1). Furthermore, transverse
normal strains are accounted for through the assumption that
a point in the shell, originally a distance z, from S,, moves to
a distance z from S along this nonorthogonal line, where the
(engineering) shear strain is I'.

For axisymmetric deformation, it is convenient to work in
terms of the stretch ratios

Journal of Applied Mechanics

Ay =dsy/dsgy, Ag=dsy/dsy,, A,=02/02, )

and, with the kinematic assumptions outlined above, the
geometry of Fig. 1 gives the relations

cos®ydsq, =d (ro+2o8in®g), sin®odss, =d(yo —20c0sPy)

dsy, = (ry + zosindy)do 3a)
cos(®~T)dsy =d(r +zsin®), sin(®—T)dsy =d(y —zcosd)
dsy = (r+zsin®)do. (3b)

After substitution of equations (3) into (2), the two forms for
dse, and dsg provide a pair of equations to be solved for A4
alnd0 T, giving

- g+ 2k No+zk
Ay=AgcosI'=—2 %%, _ MoTZ0
1+Z0k¢0 1+Zok00
_ . y+z'
I'=Agsinl=—— 4)
® 1+ Zokq,o
where the bars indicate modified strain measures and
()'=d( )/ (dsg,)s,=d( )/dx.
At the reference surface, the strain measures are
Ao =Agcosy=r'cos®+y’sin®, A,=r/r,
¥=Ngsiny=r’sin® — y’cos® )

and the undeformed and deformed curvature measures are
kg, =%, k=3, Ky, =sin®,/ry, ky,=sin®/r;. 6)

Outside of the appearance of z’, equations (4) are equivalent
to those of Reissner (1969, 1972), who neglected thickness
changes. In addition, these relations do not include several
higher-order terms as given by the more rigorous derivation of
Simmonds (1986).

To render the analysis more manageable, we now introduce
two further assumptions. The first is the usual thin-shell ap-
proximation (z‘kq,o,tkg )< <1, and the second is I'?< <1.
Thus, to this point of tge development, the analysis is valid for
large bending and membrane strains but only moderately large
transverse shear strains, and equations (4) can be written

Ap=Ap =Ny +2k5, Ag=Ng+2xg
P AT =7=Ngy )
where

Kq,=kq,—)\%,)\9kq,0, K6=ka—)\q,)\%k,,o 8)

are curvature change measures (Taber, 1985). Note also that
the z’ term of I' has been dropped. Later, it will be shown
that this term should not be included in a first approximation
shear deformation theory.

Equilibrium. With stress and moment resultants (Fig. 1)
defined per unit undeformed length of the reference surface,
vertical and horizontal force equilibrium and moment
equilibrium yield! (Reissner, 1969, 1972)

(rOV)/+r0p,,=0, (rOH)’—N5+r0pH=0
(reMy)” — Mycos® —ro(QX, — Ng7) =0. ©)
Also, the geometry gives

Ng=Hcos®+ Vsind, Q=Hsin®— Vcosd (10

in terms of the vertical and horizontal force components V

IThe moment equilibrium equation ignores the contribution due to the mo-
ment about the normal to the reference surface, which was included by Reissner
(1969) but shown by Simmonds (1986) to be of higher order.
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and H, respectively. For a uniform internal pressure p, the
vertical and horizontal surface loads per unit area of S, are

Py=—DPAsNCOSKP =), Pr=DPAsNgsin(®—7) (1
and equation (9), can be integrated to give
V=prt/2r,. (12) .

Constitutive Relations. For a shell coniposed of a
hyperelastic material, the two-dimensional strain energy dens-
ity wis defined per unit area of S;. Via the principle of virtual
work, Reissner (1972) determined that the constitutive rela-
tions can be written

aw aw aw
N o — =—, -,
A YV WS 0
aw ow
= M,= . 13
T By 07 bk, (13

The appearance of Ay and ¥ instead of Ay and v in these equa-
tions is due to the fact that, in general, Ny and Q are not
parallel and perpendicular, respectively, to S (Fig. 1).

Boundary Conditions. Recently, Gregory and Wan (1985)
have shown that, at least for linear plate theory, the exact
distribution of edge tractions across the plate thickness is more
important than previously thought. Even the solution in the
plate interior can be affected significantly. For shells, it may
be that the curvature effects contain this behavior within the
edge zones, but this requires further study, especially for large
deformations. Since a detailed investigation of the boundary
conditions is beyond the scope of the present paper, only ap-
proximate conditions consistent with the field equations will
be used here. The principle of virtual work shows that the ap-
propriate boundary conditions are to specify My or &, and H
or r, and V or y at each shell edge (Reissner, 1969).

Strain Energy Density Function

The forms of the preceding equations are not significantly
different from those of a small-strain shell theory. For large
strain, the major additional complexity lies in the constitutive
behavior contained in the two-dimensional strain energy den-
sity function w. As discussed by Reissner (1974) and Libai and
Simmonds (1983), two methods can be used to determine w
for a shell material. One way involves experiments on two-
dimensional samples of the material (direct method), and the
other obtains w through transverse integration of the three-
dimensional energy density W (reduction method). Here,
following the analysis and much of the notation of Simmonds
(1986), we employ the reduction method to compute an ap-
proximate form for w consistent with the strain measures
derived earlier. Specifically, w is developed as an asymptotic
series in powers of the small parameter

e=1t/2L. (14)

Three-Dimensional Relations.
nondimensional quantities

(28,2%)=(2/1) (20,2), (k3,45") =L (kg,Kp),
@*9=@\9) /e Wr=W/C, w*=w/Ct, (15)

where L is the deformation wavelength and C is a material
constant with units of a Young’s modulus, equations (2); and
(7) become

Upon introduction of the

Ap=Np+ez*sh, Apg=Ng+ez*cf, A,=0z*/3z¢,

j— (16)

The current derivation is valid for any incompressible, elastic
material that allows axisymmetric deformation without
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twisting—for example, a polar orthotropic material.
However, this paper focuses later on isotropic shells for which

W=w(,,L), L=1 (17

where W is the strain energy density per unit undeformed
volume. The strain invariants are

I,=Gy+Gy+G,, I,=G43G,+GyG,+G,G,—~GCr,

I, =G3GyG,— GGy (18)
where equations (16) give
Gp =A% =N} + 20132 e+ x322* %2 = G4,+Gq,e+Gq,e
Go=A, =N} + 20107 e+ K32 7% 2 = Go + Goe+ Gge
G,=A%=(82"/3z¢)?, Gpr=I?2=¢2"*2, 19

Now, on enforcement of the incompressibility condition I; =
1, equation (18); can be solved for G, and then

W=W(Gy,G,,Gy) (20)
and
I, =Gy +Gy+1/G3Gy+Gr /Gy,
I, =G4Gy+1/Gy + 1/Gy+ GG,y /Gy Q1)

Reduction to Two Dimensions. Simmonds (1985) has
shown that, for moderately large bending strains [(tk)? < <
1], the form of the two-dimensional strain energy function for
a shell is the same as that for a flat plate. Therefore, the reduc-
tion to two dimensions is given by

w* = ! gl

-1

W*dz. (22)
Since G. < < 1 for moderate transverse shear stralns W can
be expanded in the Taylor series

W* =[W*1gpn o0+ (W60 lop0Gr + - - - (23)

which is substituted into equation (22). The first term of the
resulting integral, which was computed by Simmonds (1986),
corresponds to a first-approximation shell theory that neglects
shear deformation, and the second term provides a correction
due to shear.

In his approach, Simmonds (1986) sought an expansion
about the membrane state given by e— 0 through a series of the
form
0
Gy)

0 0 0 0
A(Ge,Gy) = A+ Ay g(Ge— Gg)+ A (G —

1 o 0 ., 0 0
+T [A0,0(Gs~ Ga)* + A (G, — Gy)?

0 0 0
+2A1,)(Gs — G X Gy — Gl +. . . (24)

where

am+nA
T GGy
After substitution of equations (19) into (24), setting

A(m,n) AE(A)E=0'

A=[W*]gp -0 and A =[W*,;, 15 o gives these terms as func-

tions of z* and e. Subsequent substitution into equations (22)
and (23) then yields

0 0
W= (W )gp -0+ | Oars Wi
0 1
+Nog W&J,l))Gr:OS . Z*dzé“]e
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1 0 0
+T [[( Wiot 223 (*2,0))"&:2
0 0
+ (Wi + 20\¢ W(’f),z))Kg*Z

0 1
+AWE ANk K VG -0 S I

)
+287 (W0 ) ap 072 |2+ 0@) 25)
where
1 L
- S 1 T*2dzg =v*2/g (26)

has been introduced, with g being the reciprocal ‘‘form factor
in shear.”” For linear shell theory, the transverse shear stress
distribution is parabolic over the shell thickness, leading, in
some derivations, to the value g= 1.2 (Reissner, 1952), which
is used here. The determination of an accurate value for large
strain is left to future study.

Next, the incompressibility condition provides z in terms of
Z,. As in Simmonds (1986), the asymptotic expansion

2¥=70% tez®O*+ | | 27

is substituted into equations (18); and (19) with I; = 1.
Equating coefficients of like powers of e gives

20 =28 /gy,
20 = — (3282 — q) (harg + Ngkd) /6NING (28)

where ¢ is introduced to distinguish between Theory I, which
satisfies equation (1), and Theory II, which does not, i.e.,

{1, Theory I
q =
0, Theory II.
At this point, note that, if z’ is kept in ' as given by equation
(4), then derivatives of the strains would appear in the expres-
sion for w. For a first-approximation shell theory (including
shear deformation), we assume that stresses depend on only
the local strains and, therefore, drop these terms.

Finally, substitution of equations (27) and (28) into equa-

tion (25) and subsequent integration give, in terms of new non-
dimensional variables,

W =Wy + Wy 72/ + B2 (Wo RS + Wyke Ry + WekD) 29)
where the w,(Ag,\y) are
Wo =(WO/*)GF:0: wy=( WO/*,GP 6r=0
Wy =/ (12NNDIG Wi o)+ 2N W lop -0
Wy = /(12NN [ANEN W,
~ (1= @) s Wy + N Wl o
wa = a2/(12N5MD) g Wiy + 2N W Lo —o- (30)

To facilitate the following asymptotic analysis, the new non-
dimensional quantities are defined as

(Rg,Re) =a(ky,Kp)
B=pa*/Ct? €10

where a is a characteristic length such as a reference radius of
curvature of the shell. For y=0 and g=1, equation (29)
reduces to the expression given by Simmonds (1986), while
y=g=0 produces the relation given in Taber (1985).

a=pa/Ct,
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Specialization to a Mooney-Rivlin material is provided in
Appendix A.

Asymptotic Analysis

Nondimensional Equations. The foregoing analysis is
based on the nondimensional quantities

(r*,ro*,X*,)’*)=(",ro,x,)’)/a;
(k3,k8) = (Rg,Rg) =a(Kp,ky)
(Ng,Ng,Q* H*, V*)=(Ny4,Ny,Q,H, V) /pa

(M M) =My, My)/C?, w*=w/Ct 32)

along with « and 3 as defined in equation (31). In addition, we
introduce the notation

cp=cosd,, sy=sin®,, c=cosP, s=sind

¢ =sinw, (33)

where w=® —®,, is the rotation of a meridional face of the
shell (Fig. 1). After substitution of equations (32) and (33) into
equations (5), (6), and (8)-(13), removal of the stars yields the
governing relations for a pressurized shell in the form

7 = COSw

r'=Ngct+gs, ¥ =ReS—FC, Ng=r/ry
ke =0 /n+ (1 =Ne0D7), k9= (s—NgA]hS)/ 7o (34a)
1 ow 1 aw 1 ow
R VP v
ow aw
V=r2/2ry, (roH)' —Ny+rohy (Ags—3¢) =0
B (roMs)’ — cMy] —ro(QNg —Ng7) =0 (34c)
§=1Sy+@Cy, C=nCo—hSg, N>+ P?=1
Ng=Hc+Vs, Q=Hs—Vc. (344)

Formal Expansions. The asymptotic analysis follows
those in Taber (1987a,b), which ignore transverse shear strains
in treating the special cases of circular plates and cylinders
composed of neo-Hookean material. This work extends those
analyses to general shells of revolution composed of a general
incompressible, hyperelastic material and also adds the effect
of transverse shear deformation.

Briefly, each dependent variable is expanded in the form

(0 () kg (X) g (X)) = Y, ), B menhew

m=0 n=0

X (P (), ) (), B ()

where y represents any dependent variable except x5 and «,.
These expansions are valid for moderately large membrane
strains, so that o=0(1), and thus, for a thin shell, 8> >1
(equation (31)). Similar expansions for small strain were given
by Ranjan and Steele (1980) and Steele (1980) for cases
without and with transverse shear deformation, respectively.
Note that, while the approximation for w (equation (29))
limits the magnitude of the bending and shear strains, the
asymptotic analysis limits the magnitude of the membrane
strains so that all strains can be only moderately large. In
equation (35), the n=0 terms give the interior solution, and
the exponential (n>0) terms provide the edge-zone solution.
For 3>8, £(x) is a real-valued decay function of O(1) (Taber,
1987b), and so the ¢ will be real.

As shown by Taber (1987a,b), the main features of the solu-
tion are given by the »=0, 1, and 2 terms in equation (35).
After substitution into equations (29) and (34), like powers of

(3%
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Fig. 2 Load-deflection curves for pressurized, spherical membrane
caps
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Fig.3 Meridional rotation profiles near edge of clamped hemispherical
cap (p=0, a=2)

B, Beft, etc. are equated, giving a first-approximation solution
of the form

Y= 00 4 G 1y 10) | oBEOD) | 2B (02) (36)

Here, the (00) terms represent the solution of nonlinear mem-
brane theory, the (10) terms give the interior bending
moments, and the (01) and (02) terms represent bending and
membrane components, respectively, of the edge-zone solu-
tion. Details of the solution procedure are very similar to those
expounded upon in Taber (1987a,b) and will not be repeated
here. However, the terms necessary for the solution (36) are
presented in Appendix B. For g =0, this solution contains no
shear deformation.

Results for a Clamped Spherical Cap

This section applies the preceding development to the
special case of a pressurized spherical cap clamped around its
edge. For this geometry, a= R, and the material is rubber-like
with a Mooney-Rivlin strain energy density function

W=CI; —3)+ull, —3)] @37

where C and p are material constants, and ; and I, are given
by equations (21). Most of the features discussed in Taber
(1987a,b) for neo-Hookean (u=0) plates and cylinders
without shear deformation (g=0) also occur for spherical
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Fig. 4 Bending moment (a) and membrane stress resultant (b) distribu-

tions near edge of clamped hemispherical cap (R/t = 20)

geometry. This paper, therefore, focuses on the effects of
shear deformation (g=1.2) and the value of p.

While curves of load versus maximum deflection for mem-
branes (Fig. 2) differ little from those of shells, the local defor-
mation pattern near the edge depends strongly on bending and
shear effects. For example, Fig. 3 shows the meridional rota-
tion @ =w—+ of the reference surface near the clamped edges
of a hemispherical membrane and shells of three different
thicknesses. The primary boundary layer of Bromberg and
Stoker (1945) appears but is not pronounced in the membrane
solution. On the other hand, the boundary condition of zero
rotation for g =0 leads to the development of the readily ap-
parent bending component of the secondary boundary layer.
Inclusion of transverse shear deformation (g = 1.2) relaxes the
edge restraint considerably, letting the deformed shape ap-
proach that of a membrane, even for a thick shell with
R/t=10. In addition, the curves for R/¢=350 indicate that
L/t=2, and so, although this shell fits the classical definition
of a “‘thin shell,”” such a short wavelength leads to the signifi-
cant shear deformation effects in the edge zone.

Bending moments and membrane stress resultants (Fig. 4)
illustrate the bending and the stretching components, respec-
tively, of the secondary boundary layer. Note that the latter
component is required to satisfy the equilibrium condition
N3; =0.5 at the clamped edge of hemispherical shells (Taber,
1987b). The force resultant distributions depend on the decay
function, which is (see Appendices A and B)

x 00)7, (00)* A7 (00) 12
E(x)=S [ S ; N ZN“’ > G] dx
o Lo (34NN (1 + urf0%)

(38a)
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Fig. 6 Bending moment at clamped edges of spherical caps (R/t = 20,
p=0)

near the edge x=x, of a Mooney-Rivlin shell, where
G =1 - FODNLO /700 Q0D

= 1= gaNPOO N /2(1 + phjoO?). (38b)

These relations show that, at a given pressure for the case
g=0, membrane stretching narrows the secondary boundary
layer. (The primary layer, which is contained in the interior
solution, actually widens with increasing pressure (Reissier,
1959).) Increasing u decreases the magnitude of this stretching
and, therefore, widens this layer, but only a small amount for
p=0.2. The behavior of a shell with shear deformation al-
lowed (g>0) is somewhat more complicated. The shear term
G in equation (38) indicates that shear deformation mediates
the effect of membrane stretching; £ decreases and the edge
zone is wider than for g=0.

The physical basis behind this behavior is illustrated for a
cylinder in Fig. 5. When g =0, the zero rotation condition dic-
tates a negative M, applied to the edge, with N, having no ef-
fect on the moment. For g>0 and G >0, however, N con-
tributes a moment that opposes the moment due to shear,
thereby reducing My (see also equation (9);). Figure 6 clearly
shows this effect; for large deflections, shear deformation
dramatically reduces the edge moment. ‘Furthermore, for
g=1.2, My actually peaks at a critical deflection and begins to
decrease. Eventually, a point is reached at which G =0 at the
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shell edge, where now £’ =My =0 (equations (38) and (B4)),
and the secondary boundary layer dissipates (see below).

The condition G =0 defines a ‘“membrane equivalent state’’
of the shell in which the bending moment, but not the
transverse shear stress, vanishes, i.e., the moment due to N,
exactly balances that due to Q. In a pressurized cap, this con-
dition actually is met first at a point in the shell interior. Then,
as the load increases, this transition point (G =£¢’ =0), which
divides the exponentially decreasing edge-zone solution (G >0,
£’ real) from an oscillatory solution (G<0, £’ imaginary),
moves toward the shell edge.

At very large deflections, G<0 throughout the shell, and
the edge-zone solution becomes completely oscillatory in x.
Now, the edge effects propagate into the interior of the shell,
which behaves as a ‘‘thick-walled membrane.”’ The interior
bending stresses, which have been O(8~!) as given by the in-
terior solution (Appendix B), now are O(1) and are given by
what were edge-effect terms (exponential (01) terms in equa-
tion (36)). An in-depth study of this behavior is left to future
research.

Finally, Fig. 6 also shows the effects of reference surface
location on the bending moment. When shear deformation is
included, the difference in bending moments given by Theory
I and Theory II is quite small, even for very large deflections.
Thus, the choice of reference surface definition does not ap-
pear to be important for moderately large strains.
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APPENDIX A

For a Mooney-Rivlin material with W given by equation
(37), the terms required for the approximation for w given by
equations (29) and (30) are

(V‘O’*)GP=0=>\%+>\%+ (Aphg) 23
NN +HNG 2+ N2 -3)
("(}?1,0>)Gp=o =(1=Ag* N1 +pN)
(Wh)on -o=(1 A 2A7 )1+ %)
(Wondor—o= (1M Oug)
(W)op -0 =21+ N/ OGN
(Whaap -0 =201+ iN3) 7 (NGAD)
(Wian ap -0 =1+ 1A/ N (A1
APPENDIX B

The terms for a first approximation solution (36) follow.

Interior Solution. The first-order terms in 8 provide the

system of equations

k{00 = 00 = 00 = A0 — A0 =

FOD S NG00 500" = ) 00500 | \(00) — (00) /o
NEO = o= Hawg/ g ]g = HOO 00 1 p1o0500)

N =~ [awe/3Nglo,

Q0 = FO0500) _ 0000 = P00 — 002 /2y
(FgHOD)" — NP - r NPON 00500 =,

SO0 = @50 4 @ 00 = OO ) — OO

700 = (1 — 02172 (B1)
where w, is given by equation (30) and
[lo=I1 (B2)

00 00y,
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These are the governing relations of nonlinear membrane
theory (Adkins and Rivlin, 1952) and contain the primary
boundary layer (Taber, 1987b). The terms involving the
general strain energy density function w were obtained by
observation of the solutions for specific forms of w.

The second-order 38 terms contribute

MEO = = 2wy + wyr

MY = o~ w0 + 2w,k §10],
KfiO =60 /900 1 (1 - AP\ By),
k§10 = (500 N\ LONJD250) /1,

QU9 =310 =0, (53)

Edge-Zone Solution. The first-order e terms give
FOD = HOI = N 0D = \OD = 01 = N = NjO» = PO = HOD =
Kgn) — E 1 4)(01)/17(00)’ ,?(0\) ___gaQ(m)/[zwl]O’
QO =N O /9@ MOV =20 [, ]k,
MY = o= [wy] k00, 7OD = — $O HOD /(©0)

SOD = (00 $OD) /(00) | c(O1) — _ 5(00) (01 /. (00) (B4)
along with the decay function
(') = aGNPONPO /2w, ], (B%)
“where
G=1-7OONLO /A LD QOD, (B6)

With ¢) determined by the boundary conditions, these terms
provide the bending component of the secondary boundary
layer. The stretching component is given by the ¢2% terms
102 = 0D N0 = 02) = ((02) = 50D) )

My = M) = Q0D = PO = 02 = ¢

A = _[ Iw, + W, (1+ (1-G)Ng 9w, ):I
M MG w, Ay /o
K {012
P —
[2wy/ N3]0
N30 = — (N0 /2, 002) 5 (01)2
N =g [)\5,02) 92w, FOD2 gy, pra aw, ]
ONgONg g 0Ny g do

$0D = _ (¢(00)/2n(00)2)¢(01)2, 77(02) - _ ¢(01)2/2n(00)
502 = _ (5000 /2002y 012
) = — (00 /277002y O12 (B7)
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Calculation of Damping Matrices

D. J. Segalman’

Earth Simulation Research,
Plano, TX 75075
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for Linearly Viscoelastic Structures

A technique is presented for the systematic calculation of ‘‘damping”’ and

“stiffness’’ matrices to represent the linearly viscoelastic properties of structures.
The technique generates explicit expressions for these matrices in terms of the
measurable viscoelastic properties of the components of the structure.

Introduction

Presented here is a systematic approach for the calculation
of damping and stiffness matrices for the calculation of the
small amplitude motion of linearly viscoelastic structures. The
problem is described as follows.

The governing equations for the small amplitude dynamics
of viscoelastic structures, even linearly viscoelastic structures,
are integro-differential equations in time. Not only are such
equations difficult to solve analytically, but their numerical
solution is computationally very expensive. On the other
hand, the increasing use of plastics in advanced structures
makes consideration of the viscoelastic properties of
components increasingly important in structural modeling.

It is because of the prohibitive difficulty of solving the
integro-differential equations of viscoelastic dynamics that it
is common to approximate those equations by simpler ones
which are simply second order differential equations in time.
The viscoelastic nature of the structure is accounted for by the
inclusion of a ‘‘damping”’ term.

Only for very restricted subsets of linear viscoelasticity have
systematic methods been developed for the calculation of
damping matrices that could be employed in corresponding
second-order systems (Biot, 1955; Golla and Hughes, 1985;
Bagley and Torvik, 1983). However, there has not been a
general and systematic method for the calculation of the
damping matrices from arbitrary linear viscoelastic models.
One such method is suggested in this paper.

The approach taken is to match the perturbation solution
for a ‘‘slightly viscoelastic’’ structure to the perturbation
solution for a corresponding ‘‘slightly damped’’ structure.
Requiring the two perturbation results to agree results in
expressions for the damping (and. stiffness) matrices in terms
of the viscoelastic properties.
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Discretization of Linearly Viscoelastic Structures

A linearly viscoelastic structure is one that is composed of
linearly elastic and linearly viscoelastic materials. The stress
response at a particle, X, of a linearly viscoelastic material is

o

0630 = | " Gy (1 X) (1= 7),X07 1)

where 0, (¢, X) is the {j component of the Cauchy stress at
time ¢ and particle X; e; (¢, X) is the {j component of the
Cauchy strain at time ¢ and particle X; and {,, ( , X) is the
ijmn component of the relaxation tensor at particle X; (Itis a
material property.) Above and in the rest of this paper,
summation occurs over repeated indices.

Gurtin and Sternberg (1962) enumerate conditions on both
the relaxation tensor and the strain history that guarantee the
convergence of the integral in equation (1). The constraint on
strain history is that the strain be continuous over the interval
["' o, ¢ ] .

Discretization

The development in this section should be familiar to those
who have worked through standard finite element derivations.
It is presented here as the most concise method of introducing
and defining quantities which are used in later portions of this
paper.

A structure B of particles X is considered. It is assumed that
the-configuration at any time, ¢ can be specified satisfactorily
by a linear combination of basis functions, {4;,(X)}, and a
corresponding set of generalized displacements, {w}. The
physical displacements, y;(¢, X), of particles X C B are
linearly determined by the generalized displacements:

Yi(6,X) =hy (Xdw, (£) 2
where subscripts |r refer to the generalized coordinate and
again, there is summation over repeated indices.

The strain field is obtained from the above displacement
field and is also expressed in terms$ of the generalized
displacements:

e (1,X) =kyi (X)w, (1) (3)
To assure convergence of all relevant integrals, only strain and
displacement fields are considered here which are bounded
(finite) throughout the body.

In terms of the generalized displacements, the Lagrange
equations of motion reduce to:

SEPTEMBER 1987, Vol. 54 585
t © 1987 b
eor

Cop¥r®hstl;vls%e http://www.asme.org/terms/Terms_Use.cfm



P (0) =Q,,. (1) C))
for each r, where )|, is a generalized force associated with the
rth degree of freedom defined by the virtual work equation

6W:.erawlr (5)
Pro= | o0 QOB (04X ©)

and p(X) is mass density at X so that p(X)dX has units of
mass. ,

The virtual work done (internally) through  the stresses
within the material is

5WI=—SB Gij(l‘,X)(Seij(l‘,X)dX 7
=[]0 P @i = nyarom, ®

where
T(r)= SB g‘ijmn (T,X)kijlr(X)kmn!s (X)dX 9

(Note that the above virtual work consists of both recoverable
and unrecoverable parts.)

The generalized force originating from the stress response
of the material in the structure and associated with this virtual
work term is

0=~ Tiu(rin(r=ndr (10)
Substituting into the Lagrange equations of motion,
Pring () + | T (r) (e=r)dir = OF, (1 an

where the right-hand term represents all other applied forces,
including body forces and tractions applied at boundaries.

The convergence of the infinite integral in the above equa-
tion is induced from the convergence of the integral in equa-
tion (1) and the boundedness of the strain functions, k. The
restriction on admissible strain histories used in equation (1)
induces a similar restriction in the generalized degrees of
freedom; the above equation is restricted to histories w,, ()
over which w,, (¢) is continuous over its history.

It should be observed that the mass matrix P (= [P),]) is
determined entirely by the mapping from generalized
displacements to particle displacements and by the distribu-
tion of mass in the structure. The matrix of relaxation func-
tions T'(7) (= [I'),, (D)) is entirely determined by the mapping
from the generalized displacements to the strain field in the
structure and by the viscoelastic properties of the materials in
the structure. The stiffness matrix I'* ( = [I'$,,]) which would
be calculated from static elastic properties of the materials in
the structure is I' (o).

The Problem of Free Vibration

Plrsv'i)ls(t)+S:I’I,S(T)Wls(t——r)d7'=0 (12)

We look for solutions w,, (¢) = Re [4,e~*] where in general,
A,, and « are complex.
e_""()[ZP'rSA s+ e~vA Is SO I‘|rs (T) ( _a)eaTde 0 (13)

It is now convenient to define the complex stiffness of a struc-
ture by .

Tt (w)= S: to L (r)e e dr. (14)
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(This corresponds to the definition for the complex modulus
of a viscoelastic material.)

Then 6Py + Ty 1) 14 1 =0 (15)

In matrix form: [e?P+T*(a)]4A=0 (16)
Because of the dependence of I'* on «, this is a nonlinear

eigenvalue problem.

Perturbation for ‘‘Small Viscoelasticitiy’’

A second order approximation for the equations of motion
for a viscoelastic structure is derived for the special case where
the elasticity of the viscoelastic structure dominates the tran-
sient response:

PIrS(T)= ‘Ifrs+AI‘|rs(t)' (17)
The assumption of small viscoelasticity is that
APlrs(t) <<P£l’rs (18)

for all ¢.
The standard e notation will be used to emphasize this
assumption:

T(7)=T°+eAl'(£). (19)
where e is assumed to be much less than 1. Here and for the
rest of this paper, matrix notation is employed.

Also defined is

AT™* (w) = S: wAT (7)e~ " dr (20)

so that
I'*(w) =T + eAT* (). [¥3))

Expressed in terms of the above notation, the equation of mo-
tion for the case of free vibration is an eigenproblem:
[(a")2P+I“’+eAI‘*(a”)]A" =0 22)
(no sum on the #’s) where (o, A”") is the nth eigensolution.
Here and in what follows, a superscript identifies distinct
eigensolutions. The above is a nonlinear eigenproblem because
of the dependence of AT'* on o
Note that since the real part as well as the imaginary part of
AT'* may be nonzero, the viscoelasticity of the structure will
not only add damping, but will also alter the apparent stiffness
of the structure. In acoustics, this stiffening is referred to as
“‘dispersion.”” This stiffening is accommodated in the second
order approximation later in this paper through modification
of the effective stiffness matrix.
A perturbation solution to the above viscoelastic eigen-
problem is sought in the following form:

o' = — " +ef”

(23)

A" =x" + epn (24)

where " and x" are on the order of I'®.

Substitution of the assumed solution into the viscoelastic
eigen equation and retaining only terms up to first order in €
yields the following matrix equations:

[_(wrrz)2P+I‘e]xn1 :0 (25)
for the zeroth order terms and
[—(@™Y2P+Te" = [2u"B" P~ AT (" ) ]x" (26)

(no sum on #) for first order terms.

It will be useful to observe that, by construction, the mass
matrix P is symmetric. The elastic stiffness matrix I'¢ is sym-
metric by virtue of the Maxwell reciprocal theorem.

The first of these matrix equations is contracted with v* and
the second is contracted with x™. Then terms involving the
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mass matrix P are resolved out to generate the following
equation:

[1 _ (w" Jw™ )2](xm ) TI‘e v (27)
— [(2L6"/(;0" ) (xm ) Tpexn _ (X'" ) TAT *x™ (28)

Assuming only simple eigensolutions for the elastic problem,
there are only two cases which must be considered:

(1) n=m: in which case

26"

(xn ) TAF ¥y = p (X" ) TFeXn (29)
w .
where there is no summation over n,
(2) n#m: in which case
(xm ) TAF*(w" )X" - [1 — (wn/wm )2]()('" ) TFEU" (30)

Approximation by a Second Order System
The equations of motion are next approximated by the
following second order system:
Pw+eACw+ [T +eAllw=Q 31)
where the matrices P and I'® are as defined above, and AC and

AT are selected to give the same perturbation solutions as
derived in the previous section for free vibration.

Py +eACw+ (T +eAT)w=0 (32)
Again, a solution w(t) = Re [Ae~*] is assumed:
[c?P—aeAC+ (I'¢ +€Al'¢)]A4 =0. (33)

Again, the solution is sought as a perturbation to the elastic
problem:

(34)
A" —x" + eV (35)

The followmg is derived employmg manipulations similar to
the previous section:

[1- (wn/wm) ](xm)TI\evn = (2B /") (x) T eyn

an _— — L(.O" + 66"

and

- (x'".)T[AI'e + Lw"AC]x" (36)
from which can be derived:
2 n
(x")T[AT? + 1" ACIX" =—L€ (x")yTrex” 37
for all n, and
(x™YyTIAT® + 1" ACTX"
= —[1— (0" /0™)2)(x")TPev" (38)

for n # m. Requiring that this perturbation be identical to the
previous one results in the following equation:

[AT® + 1" AC]Ix" = AT *(w" ) X" 39)
for all n. Explicit expressions for the AC and AI'® can be de-

rived with the help of a set of basis vectors {z”} orthogonal to
the eigenvectors relative to the stiffness matrix:

Tex?
(X" ) TI‘exn
(no sum on the n’s) for each n. Postmultiplying both sides by

(z")7 and summing on #,

= (40)

APEEX"(Z")T=R€EAF*(O)")X"(Z")T (41)
Since Ex" (z")7 is the identity matrix,
n
ATe = Re[EAI‘*(w" )x" (z")T] “2)

n
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Similarly,

AC= Elm[—l— AT*(w") X" (2") ]

n

(43)

Some Computational Simplifications

Examination of the above two equations does not provide
any indication that the damping and stiffness matrices are
symmetric. Indeed, there is no reason to expect damping and
stiffness matrices that derive from linear viscoelasticity to be
symmetric, since they do not originate with dissipation or
strain energy potentials. In addition, the damping and stiff-
ness matrices derived above can not be expected to preserve
the normal modes of the perfectly elastic problem. Though
physically reasonable, the nonsymmetry and mode coupling of
the above matrices are usually undesirable features in
numerical calculation. It is for that reason that the following
further approximations are introduced so that more amenable
matrices are achieved.

Comments on Application to Finite Element Analysis

On Traditional Methods of Selecting Damping Methods.
Traditional approaches to treating damping—in particular
viscous damping, Rayleigh damping, and modal damp-
ing—have been employed both for computational ease and
because of the absence of a rational method for incorporating
known viscoelastic properties of materials. The method
presented here is one such rational method.

The method presented here is more general and more direct
than those presented in Biot (1955), Golla and Hughes (1985),
and Bagley and Torvik (1983) in that it is not restricted to any
specific subset of linear viscoelasticity. In fact, the method
presented here simply requires complex moduli of the
materials in the appropriate range of frequencies.

On the Cost of Assembling These Damping Matricies. In
the context of finite element analysis, this method would in-
volve the calculation of complex stiffness matrices I'* at each
resonant frequency using code almost identical to the genera-
tion of the elastic stiffness matrix. Also calculated at each
resonant frequency must be the dual vectors z7. Both of the
above operations has its own numerical cost. However, the
above operations need not be performed for all eigenfrequen-
cies; the process may be restricted to just those frequencies or
ranges of frequencies of interest.

On the Symmetry of Damping and Stiffness Matrices De-
rived in the Above Manner. There is no reason to expect coef-
ficient matrices derived from linear viscoelasticity to be sym-
metric except in one special case: where the relaxation tensors,
Sy (7, X), everywhere in the structure consist only of
heavy side functions at zero (elastic components) and delta
functions at zero (Newtonian viscosity). In this special case,
where strain energy and dissipation potentials exist, the
method presented here does indeed generate symmetric
matrices.

On Preservation of the Normal Modes of the Elastic Pro-
blem. In general, the damping and stiffness matrices generated
in the manner presented here do not preserve the eigenmodes
of the elastic problem. However, these matrices can be
modified slightly in a manner that both results in symmetric
matrices and preserves the eigenmodes of the elastic problem.

The revised matrices are obtained by premultiplying each
component, AT*(w") x" (z")7, of the complex matrix from
which the damping matrix is derived, by appropriate terms to
make it orthogonal to all but the corresponding eigenmode:
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are=Re| T2 (xr) TAT* @ (21)7 | (44)
Similarly,
| .
AC= Elm[_T z" (X")TAP*(w")X"(Z")T (45)
W

n

Each of the matrices is symmetric and preserves the desired
eigenmode.

On the Assumption of ‘‘Small Viscoelasticity.”” This
assumption was employed in connecting viscoelasticity to
damping, and the derivation suggests that the two can only be
connected for general deformation histories in the case where
the assumption is good. The author is developing numerical

588/ Vol. 54, SEPTEMBER 1987

experiments to provide a better notion of just how ‘‘small’
the viscoelasticity of a structure need be in order for it to be
modelled adequately by a damped system.
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An Improved Shear-Deformation
Theory for Moderately Thick
Multilayered Anisotropic Shells
and Plates

The general linear equations governing the motion of moderately thick multilayered
anisotropic shells are derived by making use of the principle of virtual work in con-
Junction with an a priori assumed displacement field. The assumed displacement
Jield is piecewise linear in the u and v components and fulfills the static and
geometric continuity conditions between the contiguous layers; furthermore, it takes
into account the distortion of the deformed normal. Shear and rotatory inertia terms
have also been considered in the formulation. Particularization of the resulting
equations to the flat multilayered anisotropic plates is straighiforward; thus, only
the final expressions are given. The proposed approach gives, as particular cases, the
linear equations of motion of the classical shells theory based on the Kirchhoff-Love
kinematic hypothesis and those of the shear deformation theory for which it is

M. Di Sciuva

Dipartimento di Ingegneria
Aeronautica e Spaziale,
Politecnico di Torino,
Turin, Haly 10129

assumed that the deformed normal do not distort,

Introduction

An increasing number of structural designs, especially in the
aerospace, automobile, and petrochemical industries, are ex-
tensively utilizing fiber composite laminated plates and shells
as structural elements. Because the solution of the three-
dimensional linear problem with general boundary conditions
involves considerable mathematical difficulties, in recent years
some approximate bidimensional linear theories for
multilayered plates and shells have been developed by making
use of the axiomatic approach. This approach generally
utilizes the principle of virtual work in conjunction with an
assumed displacement field. An integration with respect to the
thickness coordinate supply the governing differential equa-
tions and consistent boundary conditions in terms of unknown
generalized coordinates which are independent of the
thickness coordinate.

At the present time many of the existing methods of analysis
for multilayered anisotropic plates and shells are direct exten-
sions of those developed earlier for homogeneous isotropic
and orthotropic plates and shells. In fact, many approaches
utilize a displacement field which do not account for the
equilibrium requirements at the interfaces.

In the Classical Lamination Theory (C.L.T.), the well-
known Kirchhoff-Love kinematic hypothesis is assumed to be
verified (Reissner and Stavsky, 1961; Dong et al., 1962; Am-
bartsumyan, 1964). A theoretical unification of the thin shell
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theories commonly used (Donnel’s, Love’s, Sanders’s, and
Flugge’s theories) as well as a numerical comparison has been
presented by Soldatos (1984).

The range of applicabilitiy of the C.L.T. solution has been
well established for laminated flat plates by Pagano (1969,
1970). To the best of the author’s knowledge no analogous
solutions exist for curved plates and closed shells.

These analyses have indicated that a theory which accounts
for the transverse shear deformation effects would be ade-
quate to predict the gross behavior of the laminate.

A Mindlin-type first-order transverse shear deformation
theory (S.D.T.) has been first developed by Whitney and
Pagano (1970) for multilayered anisotropic plates and by
Dong and Tso (1972) for multilayered anisotropic shells.

Both of the previous approaches considered all layers as one
equivalent single anisotropic layer; thus, these approaches are
inadequate to model the warpage of cross sections, that is, the
distortion of the deformed normal due to transverse shear
stresses. Furthermore, the assumption of nondeformable nor-
mal results in incompatible shearing stresses between every
two adjacent layers. Also, the latter approach requires the in-
troduction of an arbitrary shear correction factor which is
dependent on the lamination parameters for obtaining ac-
curate results (Whitney and Pagano, 1970).

The exact analyses performed by Pagano (1969, 1970) on
composite flat plates have indicated that the distortion of the
deformed normal is dependent not only on the laminate
thickness, but also on the orientation and degree of or-
thotropy of the individual layers. Therefore, the hypothesis of
nondeformable normals, while acceptable for isotropic plates
and shells is often quite unacceptable for multilayered
anisotropic plates and shells with very large ratio of Young’s
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modulus to shear modulus, even if they are relatively thin.
Thus, a transverse shear deformation theory which also ac-
counts for the distortion of the deformed normal would be
quite accurate in predicting the elastic linear behavior (deflec-
tion, thickness distribution of the in-plane displacements,
natural frequencies, etc.) of multilayered anisotropic plates
and shells.

Higher order theories, in which a displacement field of
polynomial form a degree greater than one is assumed, have
been developed (Whitney and Sun, 1973, 1974; Librescu,
1975; Lo et al., 1977; Bhimaraddi, 1985) for the purpose of
removing the inaccuracies in the classical lamination and first-
order shear deformation theories. From an engineering point
of view, such approaches have little equal because of the dif-
ficulties in obtaining solutions to the system of governing par-
tial differential equations and in prescribing boundary condi-
tions. In this context mention should be made of the approach
proposed by Reddy which has developed a higher-order but
simple shear deformation theory of laminated plates (Reddy,
1984) and shells (Reddy, 1985). The developed theory is simple
in the sense that it contains the same dependent unknowns as
in the first-order shear deformation theory. The u and v
displacements are expanded as cubic functions of the thickness
coordinate (as in Lo et al., 1977), and the transverse displace-
ment is assumed to be constant. However, in contrast to Lo et
al., the number of generalized coordinates is reduced to five,
setting to zero the transverse shearing stresses at the top and
bottom surfaces.

Obviously, these higher-order shear deformation theories,
as well as the first-order theory, will not fulfill the continuity
conditions for the transverse shearing stresses at the
interfaces.

To develop a theory for composite laminates which allows
the contact conditions for the displacements and the transferse
shearing stresses at the interfaces to be satisfied simultaneous-
ly, the following two axiomatic approaches have been pro-
posed and developed.

The first approach has been utilized by Sun and Whitney
(1973) and Srinivas (1973) to formulate a refined theory for
multilayered plates, and by Zukas and Vinson (1971) and
Waltz and Vinson (1976) for multilayered shells. Firstly,
distinct transverse shear deformations are allowed to exist
within each layer; thus, initially, for each layer it is assumed
that the kinematic hypothesis of the first-order shear deforma-
tion theory is verified. Secondly, these deformations are con-
strained in order that the shearing stresses be continuous at the
interfaces of the layers.

The second approach has been originated by Ambart-
sumyan (1964, 1969). Following this approach, the distribu-
tions of the transverse shearing stresses in each layer are
assumed to be known. The fulfillment of both the continuity
conditions between the adjacent layers and the boundary con-
ditions on the bounding surfaces allows to obtain some
unknown parameters. The approach has been utilized by
Ambartsumyan (1969) to formulate a refined plate theory for
symmetric cross-ply laminates and extended by Whitney
(1969) to the symmetric laminates in which the material axes
of each layer have arbitrary orientation with respect to the
plate axes. Extensions to the laminated cylindrical shells con-
sisting of orthotropic layers have been suggested by Hsu and
Wang (1970), and to symmetrically layered general or-
thotropic shells by Rath and Das (1973).

Although the two latter approaches are very accurate, they
are quite cumbersome and computationally more demanding,
especially in the case of multiple layers, because the number of
equations in the final system increases with increasing the
number of layers. In fact, all the numerical results refer to two
layered shells. Further, it is very difficult to utilize these ap-
proaches for constructing plate and shell finite elements via
the finite element displacement method.
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The approach proposed in this paper utilizes a displacement
field which fulfills a priori the static and geometric continuity
conditions between contiguous layers. It is worth mentioning
that the number of partial differential equations in the
resulting system is independent of the number of layers; in ad-
dition, the order of the system is the same as in the first-order
shear deformation theory.

The reduction of the three dimensional problem to the
bidimensional one is accomplished by assuming a displace-
ment field which allows piecewise linear variation of the in-
plane displacements « and v, and the constant value of the
transverse displacement w through the thickness of the
laminate. Thus, the boundary conditions on the external
bounding surfaces are not fulfilled, as well as in the first-order
transverse shear deformation theories.

In a recent series of papers, the writer has employed this ap-
proach to obtain a refined shear deformation theory govern-
ing the linear elastostatic behavior of multilayered orthotropic
(Di Sciuva, 1984a) and anisotropic (Di Sciuva, 1984b) plates.
The approach has been extended also to the formulation of the
geometrically nonlinear equations of motion of multilayered
orthotropic plates (Di Sciuva, 1986).

Numerical tests carried out on the cylindrical bending of a
three-layered symmetric cross-ply (Di Sciuva, 1984a) and
angle-ply (Di Sciuva, 1984b) strip and on the bending, vibra-
tion, and buckling of a three-layered, symmetric cross-ply,
square plate simply supported on all edges (Di Sciuva, 1986)
prove that the proposed approach does work. Thus, by mak-
ing use of this approach, in the following a refined linear
theory governing the elastodynamic behavior of moderately
thick anisotropic shells is developed.

The chief advantage of the assumed displacement field rests
on its capability to model the distortion of the deformed nor-
mal and to satisfy the contact conditions ad initio, without in-
creasing the number and order of the partial differential equa-
tions with respect to the first-order transverse shear deforma-
tion theory. Furthermore, it is feasible to employ this formula- °
tion for constructing plate and shell finite elements via the
finite element displacement method (Di Sciuva, 1985a-b).

The present paper is structured as follows. After discussing
the general linear strain-displacement relations in the Section
2, we give the complete expression for the displacement field
in Section 3. By making use of the principle of virtual work,
the linearized differential equations of motion and related
boundary conditions for a general shell are derived in Section
4. In Sections 5 and 6 the previous results are particularized to
the shells of revolution and to the flat plates, respectively.

A sequel to the present part containing numerical results
and comparisons with other results and solutions for curved
plates and closed shells of revolution is in preparation.

1 Geometrical Preliminaries

Consider the space surrounding an arbitrary surface S,
hereafter designated the shell reference surface, which is de-
fined by two curvilinear orthogonal coordinates (o, 8) coin-
ciding with its lines of principal curvature (Gaussian cur-
vilinear coordinates). Let ¢, and f; be the unit vectors in the
directions of o and f, respectively,

l,=A"'0,F I3=B 13,F
where 7 = F(w, ) is the position vector of a point on the
reference surface;
A%?=9,rd,r, B*= BpredgF
are the coefficients of the first fundamental form of the shell
reference surfaces (surface metric coefficients). The symbol 9,

stands for partial derivative with respect to .. The unit vector
perpendicular to § is denoted by #, which is chosen so that £,

t_,;, and # form a right-handed orthogonal system, 7 = f;At;.
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The radii of curvature in the directions of « and 8 are denoted
by R, and Ry, respectively, and are taken to be positive when
the centers of curvature lie in the positive direction of 7.

Let ¢ be a rectilinear coordinate measured along the normal
7 to S. The following relations hold in the given triorthogonal
system of curvilinear coordinates:

Square of a line element:
(dn)? = HA (do)® + HE (dB)* + (di)?
Area of an infinitesimal rectangle on the reference surface:
dS=ABdadp
Area of an infinitesimal rectangle on the edge surface S,:
dsS,=H(})ddcC
Volume of an infinitesimal parallelepiped:
dV=H HydodBd{
where!
H,=A(1-R;') Hg=B(1-Rs'{)
H({) = ((mH,/A)? +(IHy/B)?)!"?
H, and Hj are the coefficients of the second fundamental
form of the shell reference surface (Lamé coefficients).
2 Strain-Displacement Relations

Following Washizu (1968), it is found that the following
strain-displacement relations hold in the Gaussian curvilinear
coordinates:

Hoyeo =0ou+0B 13534~ wARS! )
Hgegs=d50+uA~13,B—wBR;! ®)

e =0,W 3)
H,Hye,; = Hdg (H 'u) + H30,, (H7 'v) @)
He, =8,w+H23, (H; 'u) )
Hgeg, =dgw+ H33, (Hz 'v) (6)

Here, u, v, and w are the displacement components of an ar-
bitrary point in the direction of the ¢,, 75 and 7.

The approximate displacement field is assumed to be of the
following form

u(0,B,8) = (1 =Ry 'O’ + (o —A 9,9

+E (F= ) Y (S 8) N
V(8,8 = (1= Rz 500 + (vl — B~ '3,w°)

L (E= 5 Y (E— ) ®)
w(a,B,8) =w° ©)

where u°, 00, and w? are displacements of a point on the shell
reference surface; 'ygf and 'ygf are the values of the shear rota-
tions in the («, ¢) and (3, ¢) planes, respectively; Y({ — §,) is
the Heaviside unit function and ¢, («, §) and 8, («, B) are
functions to be determined by satisfying the contact condi-
tions on the transverse shearing stresses at the interfaces k. In
addition, X, denotes the summation for k ranging from 1 to
N-—1, N being the number of the layers.

Substituting the above expressions for the displacements in-
to equations (1)-(6), we obtain the following strain-
displacement relations for a linearized theory of layered
anisotropic shells including the transverse shear deformation
effects and the distortion of the deformed normal:

l(I, m) stands for the director cosines of the outward normal to C, where Cis
the intersection curve between the reference surface S and the edge surface S,.
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Hye,o=63, + K, +T; (0,9,

+0,B~13,4) ({ =8 Y(E—84) (la) -
Hgegs =efls+ {Ky+ L, (950,
AT, B) (C= ) Y (= 8) (2a)
H, Hpez=H, {9;u°—1°A~19,B
"f‘ﬂac(')’g(“AnlaaWO_uoRz;l)’"
— A~ (g% —B~135w0 —°R;1)d, Bl )
+Hp{3,0°—u’B~ 354 +
+ {180 (3, —B~195w0 — "R 1)
— B~ (0~ A719,w° —uPR; )3z Al) +
+Zk[Ha(aﬁ\//k—0kA*13aB)+Hﬁ(3u9k
~ YBT3 ANE— ) Y~ ) (4a)
Hae(x{:A')’g('*'AEkll/k(l_Rt;lg‘k)y(g‘_g'k) (Sa)
Hgeg =Bv5 + B0, (1-Rz ') Y (5= &) (6a)
where
€S, =8,u’+ 1B~ 13,4 - wlARS!;
%3 =800 + u'A~19 B~ wOBR,"! (10)
Ky=—0,(A"'d, w0 +uR; ')~ B~} (B~13,m
+0OR; )94
+ 8,70 +v%B 18,4 (1)
Kg=—35(B~13,w0+ 1°R; )= A~ 1(A~13,w°
+u'R; 13, B
+ 3973 +70.A18,B (12)

3 Expressions for ¥, and 0,

Let us consider a shell of constant thickness # consisting of
N parallel thin layers of anisotropic materials perfectly
bonded together. The thickness of each layer is assumed to be
constant and the material to possess a plane of elastic sym-
metry parallel to the reference surface { = const. The material
properties and the thickness of each layer may be entirely dif-
ferent. The shell reference surface S is superposed on the top
bounding surface of the shell? and the unit vector 7 is directed
inwards in the material of the shell. Owing to the existence of a
plane of elastic symmetry, the constitutive relations for any in-
dividual layer are given by

Ton Ci Cp €y Cys Cou
% | Cp Gy Cy Cy s
O ) Ciy Gy Cyy G S1e
9up Cis Cy Css Cos J €op
[ Oup } _ { Cay Cis ] [ enr } 13)
Tt Cys Css 1L st

where C;; are the elastic coefficients and the usual notation for
stresses and engineering strain components has been adopted.

2Obviously, other choices are possible. For example, for symmetric laminates
several partial mathematical simplifications are achieved if the middle surface is
selected as reference surface.
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If a given layer consists of a fiber reinforced composite
material, it is treated as an orthotropic sheet, the axes of
material symmetry being parallel and normal to the fiber
- direction. Thus only 9, rather 13, of coefficients C; are in-
dependent in this case.

As usual, the normal stress O is assumed to be small in
comparison with other normal stresses and is neglected. As a
consequence, local effects, such as boundary layer
phenomena, presence of load or geometric discontinuities,
etc., are beyond the capability of the proposed approach. Tak-
ing into account this assumption and eliminating ¢, from the
above relations, the constitutive relations for each layer
assume the following contracted form

Ooq Qun Qi Cis o |
Ogg | = Qn On O €pp
Oap Q16 Qs Des €ap |
l-laall] o
Ogy Qus Oss | L es;

where Q;; = C; — C3/Cy; for i, j = 1,2,6 and Q; = C; for
i,j=4,5.

For shells consisting of layers perfectly bonded together (the
layers of the shell function concurrently without slippage), we
know from elasticity theory that the displacements and
stresses at the interface k& between the kth and (k¥ + 1)th
bonded layers must satisfy the following contact conditions

(14)

Otk = 0okt OBtk =0prh+1 Otk =Ock+1 (15)
In examining the relations (7)-(9) it is not difficult to realize
that the displacements v and v are continuous functions of the
¢ coordinate for all values of the ¥, (a, 8) and 6, («, 8). It
follows that the expressions for ¥, («, 8) and 8, («, §) may be
found from the contact conditions for the transverse shearing
stresses o,; and og,.
According to the previous relations, the transverse shearing
stresses at the interface k are given by the following relations

Wi =Wei

Up=Upyy Vg =Upyy

where
Oor = Qua(k)eg; + Qus(k)eg,
0 = Qualk + Deg + Qus(k + 1eg;

k-1
e;ﬂ':[’yg(-i- Eqwq(l _R;l{q)]/(l _R;lg—k); e;gf:e;{"f“//k
(17a)
efr=ep+ 0
(17b)
Here, the symbols — or + refer to the values of the func-
tions for { = ¢, — Oand { = { + O, respectively, where { is
the value of the { coordinate at the interface k.

k-1
eg=[vh+ Eqﬁq(l—R,;'g‘q)]/(l—Rglg'k);

By substituting the expressions for e, and eg; into equa-
tions (16b) and satisfying the contact conditions for the
transverse shearing stresses, yields
[ Vi J 1 { —Qss(k+1)  Quslk+1) } [ AQfs AQs
Lo ] R Qus (k+1) —Quk+1) | | AQk AQK
where we have posed
AQk=Qu(k+ 1)~ @y (k);
R=Quuk+ 1)Qss(k+ 1) — Qfs(k +1)

It is readily realized, by substitution of the expressions for
eq and e into equation (18), that ¢, and 6, are known func-
tions of the generalized coordinates v, and y§; therefore, we
pose

Ve=ays e O =divde + by (19}
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0 =Qus (K) ey + Qss(K)eg,
0f = Qus(k + ey + Qss (k+ Deg;

where a,, b, ¢,, and d, are known constants only depending
on the transverse shear mechanical properties of the various
layers.

4 Governing Equations

General Equation of Dynamics. Consider the motion of an
elastic body under prescribed surface tractions and boundary
conditions. If the body is assumed to execute an arbitrary set
of infinitesimal virtual displacements éu, év, and 6w from the
actual configuration, the following variational equation of
motion holds (Washizu, 1968)

6(1)—6W+Svpc(ii6u+ vdv+ wéw)dV =0 20)
In the above, u is the material mass density, W the work done
by the applied external forces, and ® the strain energy. In ad-
dition, the overdot indicates differentiation with respect to
time ¢ and V is the volume of the body under consideration,

Strain Energy. If V(s) stands for the volume of the sth
layer, the variation of the strain energy is given by (the index s
is dropped for sake of simplicity)

N
w:ES

s=1

) [Uuaéew + Gﬁﬁﬁeﬁﬁ + (TQB(SeO[B

V(s

+ 0ypde, + 0p beg | H, HpdadBde @1)

By taking into account equations (la)-(6a) and the expres-
sions (19) for ¥, and 6,, we obtain after some straightforward
manipulations

68 == (18,(BN,)+3,(AN;,)
+ N385 —N,yd,B—ABR;' O, 16u° +
+1[0, (BN,g) +85 (AN;) + N, 0, B
—N,03A~ABR;'Q,180° +
+[AB(R;'N, +R§'Ny) +0,(BO,) +3,(A0;)16w° +

(16a)
(160)

+ABI(Qo — Qu) + (05— Q%) + (0f — QD 16var +
+AB[(Q5— Qp) + (O5— Q}) + (08 — 05167 ) dadB +
| NG =R M)+ (N = R My, Yo

+ (N —Rz'M )+

+ (Ng — R 'Mg)m]6v® + (0, + Ogm)sw®

} (18)

— A~ (M1 + My, m) 58 ,w° +

— B~ (Ml + Mym)33; w0 + [(M,, + M.

+ M)+ (M, + M5, + M) m]y0, +

+ (Mg + MY+ M5, )m + (Mg + M2 + MEY16v3, 1dC

€ur

Il

€gg

where we have introduced the following notation for the stress
resultants
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(Ny:Nog) =B~ <Hp(0,4,005) >
(My,M ) =B~ <Hj(0py005) 5>
Q,=B""' <Hgoy >

ABQ, =0, (BM,)+05(AMg,) + M 50,4 — M3, B

ABQg =03 (AMg) +3,(BM5) + Mg, d,B—M,d,A

(M2 M5 M, M2) "
=B~'<Hy

(Mg, Mg M5, M3g) Oup

(Ma’Mb’ E)Mg) Uﬁﬂ
=A"'<H,
[ (Mga ’Mga’ME‘Iu 7Mcﬁiu) Gﬁot

(Q4,05) =B~ <Hgo Ly(ar,c) (1-R, &) >
(Q5,09)=A~"'<H 05 L (by,d) (1 =Rz '{) >
For notational convenience, < > is defined by

N ¢
<. .>=ES (.
s=1Y%-1
s—1

Ly If we introduce the following quantities

g
and I, stands for

Ny, =N, +Nym
M, =M+ Mzm
M,=M_,l+Mzm
Vy=Qul+Qpm
and take into account that
A1, =18,—md,;; B l'd;=md, +10,
an integration by parts on terms like (. .) 9,w9, yields

Np, =Nl +Ngm
Mg, =M 5l +Mgm
M, = —M,,m+ M,

§d=— SS ([8, (BN,) + 35 (ANg,) + NogdgA
—Nzd;B—ABR;'Q,16u° +
+[0, (BN,) + 05 (ANy) + N8, B
—N,d,4—ABR;"'Q4l60° +
+[AB(R;'N,+R;'Ng) +0,(BQ,) +35(A0;)16w° +
+ABU(Q, — Q.) + (05— 0%) + (Of — 01675 +
+ABUQp~ Qp) + (08— OF) + (05 — AL 167 ) dadB+
+ SC [ (Nyg—Rg'M,,)8u° + (Ng, — R ' Mp, ) 60°
+(V,+ M, yow® —

~M,80,w° + (M, + M2, + M3,)6v3,
+ (M, + M5, + M.,) v} )dC—

—M,w/ ¢, (22)

Work of External Forces. Let p,, ps, and p, denote the o,
B, and { components, respectively, of the surface tractions on
S, (8, being that part of the surface of the shell on which trac-
tions are prescribed).

If we suppose that the boundary surfaces of the shell are
loaded only by normal loads p;, the virtual work is given by

5w, =|_asoweas 23)

where G, = p(0) + py(h) (1~Rg'h) (1—Rz'h) and p(0)
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(Nﬁ’Nﬁa) :Aml <H0l(0-/3330ﬁa)>
(M,B’Mﬁ(!) :Arl <Ha(o—ﬂﬁsgﬁa)§.>
Qp=A"'<H,05>

j| Ek(ak,bkack,dk) ($—&) >

:| z:k (ak3bk3ck!dk) (g‘_ g‘k) >

and p, (h) identify the quantity p, at the outer (¢ = 0) and in-
ner ({ = k) bounding surfaces of the shell, respectively.

In writing § W, we have assumed that on the boundary sur-
faces only surface tractions, and not displacements, are
prescribed.

Let p, (s), s (s), and p,(s) denote the o, 3, and ¢ com-
ponents, respectively, of the edge forces. If S}, denotes that
part of the edge surface S, of the shell on which surface trac-
tions are prescribed, the virtual work done by these external
forces is

N
SW,= ), gse [ (5)0U + g ()0 + Py (5)5w1dS,
s=1 D

If equations (7)-(9) are substituted into the above, the expres-
sion for 6 W, becomes, after an integration by parts,

oW,= Scp (N,

+ (Nﬂu -RI;IMﬁV)avO + (I7r1 +M,,,’,)6W0 -

RN, )ou®

—M,0,6W° + (M, + M2, + M4,) 675,

+ (Mg, + M}, + M, )63, 1dC

—M,,,Bwo/cp

where
(NawsNg,, V) = <H(£)[Po (5),55 (), (5) >
(M, Mp,) = < H(O) Dy (5),Pg(5)]>

Mg{u i

_ } = <P, (S)H({)E, [ J (§—fo>

Mgv Ck

M, by

| = <Py H(E (F=50)>
By k

~ Work of Inertial Forces. Using the approximate expressions
for du, év, and 6w (as well as for i, ¥, and W) given by the
equations (7)-(9), an approximate expression for the virtual
variation of the work given by the inertial forces is obtained as

N

- §1, 1

s=1 s—1

p(s) (1idu + G6v+ Wow) H  HydadBdi=

= - Ss {(M=2R;'P+R;2Ni°+[(P+ P)
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— RN (J+ TIN5+ (PC =R V)i —
— A~ (P=R;'J)3,%° }6u’ABdodB —

- SS (M- 2R51P+k§21)ﬁ°+(Pd—R§‘Jd)")"g(
+[(P+PP) Rz W(J+I"))id—
—B ' (P—Rj'J)33W° }6v°ABdodf —

—~ SS (ABMYW® + 3, [B(P—R;'J)il® +

+B(J+J)50 + BJYY, — A~ B3, WOl +

+95[A (P~ R )T + AT50 + AT+ J) gy
— AB~J3,#]}6w0daxdlf —

- SS ([(P+P?) — R (J+ J*) |30 + (P4 — Ry 1 Jd) i
+ (2T 4 Jea 4+ JEY R0, +

(T4 Jae g o) 59, — AL+ J7) 3, O
— B~1J43,° ) 6y%, ABdadf —

- SS {(PE—RZVF) O+ [(P+PY) —Rg ' (J+J)]°
+ (I T4 T4 T 0+

+ (JH 2+ T8 4 )58 — A1,
— B 1(J+J2)35%° } 67 ABdad +

* Sc (P =R Nl + (T + ") Vg + Yy
— A3, W) +

+ (P~ R )P + J4%+ (J+ )7 .-

~B7'3,W0Imiow'dC 25)
where
M P Jl=(AB) '<[l1 ¢ ?1H Hgu(s)>
[P P] 1 ’
{ ]= (AB)~'< [ :|HuHﬁll-(S)[Ak Cil>
[J¢ J] e

Natural Boundary
Conditions on C,

[Pt P9] 1
=(4B) '« H Hyu(s)|B, Dil>
[ J9 Y
[Joa gbb Jee j3d = (AB) ~ ' < H Hpu(s)[AA, BB, C,C, D;D,]1>
[Jec P = (AB) "' <H,Hgpu(5)[A,C, B,D,]>
Wlth (A/(' Bk’ Ck’ Dl() = Ek (aky bk’ Ck: dk) (g‘_‘(k)

Equations of Motion and Boundary Conditions. Inserting
the expressions for 6o, §W,, 6W,, and 6W,, given by equa-
tions (22) through (25) into equation (20), we obtain the dif-
ferential equations of motion and the boundary conditions in
terms of force and moment resultants.

The vanishing of the coefficients of the virtual variations in
the surface integral gives us the following differential equa-
tions of motion:

3, (BN,) + 5 (AN, ) + N,ydyA —N3d B~ ABR; ' 0,
=AB(M—2R;'P+R;2J))il® +
+HIP+P?) =R (I +ID)Fe + (PP =R ¥
~A~Y(P—R;')3, W) (26)
0o (BNg) + 35 (ANg) + Ngo8,B—N,354—ABR;' Q4
=AB{(M~2R;'P+R;2J)i° +
+ (PY=R; )%+ [(P+P?) =Ry ' (J+J°) 4%
' ~B-'(P—R;'1)3,#) @7)
8 (BO,) +05(AQ5) + AB(R;'N, + R; 'Nyg) + ABG;
=ABMW’ +3,[B(P—R ' J)il® +
+B(J+J*)q% + BJ§3. — A~ BJ3 W] +
+8[A(P—Rz ' J)i® + AJIY%, +
+ A+ )43 —AB~1J3,%°] (28)
(Qu—Qu) + (04 —-0%) + (0§ -0 =[P+ P) —R;'(J
+ IO+ (P =Rz JN) 0 +
+ (J+2J7+ JO 4 JUYV GO (6 + T+ T+ TP,
— A" YT+ J9) 3, W0 — B~ 49,10 (29)
(05— Q) + (Qf = Q) + (05— Q%) = (P° =R ' J)il°
+[(P+P2)—Rz U (J+I)]° +
+ (JO T+ T+ PR+ (T + 208 + %
+JC) GG — A1 TB 0 — B (J+ JP) 3,00 (30)

From the vanishing of the terms in the line integral, the
following natural (mechanical) and prescribed (geometrical)
boundary conditions are obtained:

or Prescribed Boundary
Condition on C,

Ny, —R;'M,, =N, —R;'M,, u® =i
Ng,—Rg'Mp, =Ny, —R5 ' M, 0=
Vot My =Vt My + [(P—R3 1Y+ (J+ J4) 30, — W0 = 0
—J 43— A=V T3 WO + [(P— R J) i +
+ IO+ (J+ T )4 — B~ 130)m
M, =M, a,wl=9,wb
My, =M, Vo =V
b=M, Yor ="Vhs
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where we have introduced the following notation
M;u:Mav+MZV+MdV Ev=Mﬁv+Mgu+Mfw

Analoguos expressions hold for M, and Mj},.

5 Shells of Revolution

In the engineering applications of thin shells, a shell whose
reference surface is in the form of a surface of revolution has
extensive usage. Thus, our concern in the rest of this paper will
be a theory of the shells of revolution.

Let R, be the radius of a latitude circle (also called a .

parallel). The position of a meridian is defined by the angle w
(the azimuth of the meridian plane), measured from some
datum meridian plane; the equation of the meridian is R, =
R, (x).

The position of a latitude circle is defined by the angle ¢,
made by the normal to the reference surface and the axis of
rotation. If the description of the reference surface of the shell
is based on the independent variables ¢ and  for the square of
a linear element on the reference surface, we have

(dn)* = R} (do) + Ri(dw)?

where R, stands for the radius of curvature of the meridian.
The first term on the right-hand side of the above equation
represents the square of the differential length of arc along a
meridian, and the second terms represents the square of the
differential length of arc along a parallel.
If we associate o with ¢ and 8 with w, for the coefficients of
the first quadratic form we obtain the following expressions

A=R, B=Ry,=R,sing

where R, stands for the second radius of curvature of the sur-
face. Furthermore, for a surface of revolution the relation
d4Ry = R,cos¢ holds.

With the parameters that we have identified above and with
the observation that in a shell of revolution R, R, and R,, are
independent of w, the above equations reduce to:

Displacement Field.

u($,0,8) =1 =R + £ (v — R '8, w°)

FoY (=S Y (=6 (7R)
v($,,8) =(1 =RV + {(v3 — R 19,w°)

+ L0 (=8 Y (=50 (8R)
w(¢,0,8) =w’ (OR)
Strain-Displacement Relations.

Ryegs =4y + 1Ky + 03 (=) Y(E—50) (1R)

Roen, =% + 0K, + Ly (3,0, + YR30, R)(E— 6) Y(E— &)
(2R)
R,Rye,, =R,0,u’— 003¢R0 +R,80, ('yg,r-—R,;lad,wo - uoR(; h
—(y% —R5 '3, W0 — "R D4Ry + Ry, 0°
+Ro§4 (7o —Rg'0,w° —v"RSY)
F L (Ry0, ¥, — 0,0, Ry + R0,0,) ({— )Y (§—§%) (4R)
Cor =+ Bt Y (§= i) - GR)
ew('_")’g('*zkeky(f—fk) (6R)
where
el =9,u0 —wl égw =3,°+ u'Ry13,Ry — WOR R (10R)

Ky=—08,(R;'0,W° +uPR; ")+ 8,7% (11R)

Journal of Applied Mechanics

K,=—3,(Ry'a,w" +1°R; 1Y)
—R;URFVO WO+ UOR; ISRy +
+0,70: + 73R T4 R (12R)

Equations of Motion.

34 (RyNy) + Ryd,N,y —RyN,cosé— R, 0,
=RR{ (M—2R;'P+R;2 )i+
+ (P4 Py =Ry 1T+ J9) 55 + (PF =Ry 1 J)50, —
~R;YP—R;J)3, W)

34 (RN, ) + RN, +RyN,4c0s6 —RyR,R;' O,
=R Ry (M=2R,'P+R;2J)i° +
+ (P =R D+ TP+ PP) —R; 1 +J7))4% —
—Ry Y (P—R;1)3, W)

35 (RyQy) +Ry3,0,+RoR,(R;'N,+R;'N,)
+RoR G, =R RoMW° +
+ 4 [Ro(P~R; ' )il® + Ro(J+ J*) 4§ + RoJH5, —
~R;'RoJI, W1+ 3, [Ry (P—R; 1) + Ry JI58, +
+ Ry (J+J) Y0 — Ry Ry 1 J3,%0]
(Qy—Qy) + (05— 09) + (24~ Q%)
=[(P+P") =Ry (J+J)]i +
+ (PY=RGVJ) O+ (J+ 209+ Jo + J4) 55,
+ (JE o+ J4 o Joe 4 Jr) 50, —
—Ry1(J+J")3,W° — Ry 199, W0 (29R)
(0, — Q)+ (05 —08) +.(05~Q5) = (P —Ry; ' J)il® +
+[(P+PP)—R;'(J+I2))° + (J+ I+ T + J0) 5, +
+ (J+ 20 4+ I+ )40, — Ry 19, WO
— Ry (J+J?)3, WP

(26R)

(27R)

(28R)

(30R)
where
q;=p0)+p;(h)
RoR, 0, =8, (ReM,,) + Ryd M, —M,3,R,
RyR,0,=R,3,M,+3,(ReM,,) +M,,38,R,

6 FKlat Plates

It is not difficult to realize that the previous relations con-
tain, as a particular case, the linear equations of motion for
multilayered anisotropic plates. For this purpose, let us to
choose

x=o; y=0;2=¢
with the plate reference surface belonging to the plane (x, y).
Then,
R, =Rgz=o00; H,=Hy=1;A=B=1
and equations (26) to (38) yield

3,N, +3,Ny, = Mil® + (P + P)§% + P*§}, — P8, W’ (26P)
3Ny, +8,N, =M + P5% + (P+P") ¥, —P3, "’ (27P)
3,0, +9,0, + G, = MW° + P3,ii® + P03, 1"

+ (J+TDBA +TD40 +

FJDAS, + (J+ TN 0,48, =SB WO — J0, W0 (28P)
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(O — Q) + (02— 0%) + (Q1— Q) = (P+P*)ii°
+ PAG0 + (J+2J7 + Joa 4 Jad) 50,

+ (Je+ T+ Joe + Jo) 50, — (J+ J0) 9, WO — J49, WP (29P)
(0,=0Q)) + (-0 + (G5 - 00) =PFil®

+ (P+POYO+ (Je+ J9 4 Joe + JP) 40,
+ (J+2J0+ I+ J€) g, =0, W0 — (J+ I3, w0 (30P)

where i
0,=0,M,+93,M,, and Q,=0,M,+4d,,M,

These equations are exactly those already derived by Di Sciuva
(1984b).

7 Concluding Remarks

In this paper, a system of linear partial differential equa-
tions governing the motion of moderately thick multilayered
anisotropic shells and plates has been derived.

The reduction of the three-dimensional problem to the bi-
dimensional one is accomplished assuming a displacement
field which allows piecewise linear variation of the u# and v
displacement (thus allowing for the distortion of the deformed
normal to the reference surface), and constant value of the w
displacement. The assumed displacement field also allows the
contact conditions at the interfaces to be satisfied
simultaneously and ab initio. No other simplifying assump-
tions, such as that regarding the smallness of the ratio A/R
(Love’s first approximation) have been adopted. The shear
and rotatory inertia terms are also included in the derivation.

On the basis of the numerical results obtained in studying
multilayered anisotropic plates (Di Sciuva, 1984a-b; 1986), it
is hoped that the present theory should give better results than
the conventional shear deformation theory and do not require
the introduction of the shear correction factors. Moreover, the
present approach may be employed to develop refined shell
finite elements via the finite element displacement method (Di
Sciuva, 1985a-b), which has been found to be not feasible by
the conventional shear deformation approach. Here, for re-
fined shell finite elements we mean elements constructed on
the basis of the formulations which take into account the
distortion of the deformed normal to the reference surface.
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Plasticity in shells is often contained near the ends of a segment where the bending
stresses are significant. Outside of this local neighborhood the behavior is elastic.
Thus, an axisymmetric shell can be divided along its axis into a purely elastic region
away from an end and the local region where plasticity is present. The moment-
curvature relation in the elastic-plastic region is calculated using the Tresca yield
condition. Use of the Tresca yield condition greatly simplifies this derivation

because the principal directions are known. This moment-curvature relationship is
“exact’ in the sense that only the standard assumptions of thin shell theory are
made. The solutions of the elastic and plastic regions are matched at their intersec-
tion for an efficient numerical solution. The technique is used here to study the semi-
infinite clamped cylindrical shell with an internal pressure loading.

Introduction

The typical pressure vessel is a thin-walled shell of revolu-
tion. It is well-known that the stress in such a vessel is essen-
tially given by the ‘“membrane’’ solution except in the local
vicinity of stiffening rings, or any other geometric discontinui-
ty, where additional ‘‘bending’’ stresses occur. A purely
elastic design for a vessel made of a ductile material to be load-
ed once is overly conservative. Plastic limit analysis, such as
detailed in Hodge (1959, 1963), is useful but does not give any
information about residual stresses or about the strains pre-
sent. For a long pressurized cylinder with an end ring stiffener,
limit analysis predicts that collapse occurs when the membrane
stress reaches the yield stress. However, in the linear elastic
solution the stresses at a discontinuity may far exceed the
membrane stress. Thus, moderately ductile materials may fail
before the load predicted by limit analysis.

As a section of a shell becomes plastic, generally one of the
surfaces yields first. Then, as the load is increased the plastic
zone spreads through the thickness and the other surface may
also begin to yield. To avoid the difficulty of accurately con-
sidering the elastic-plastic behavior through the thickness, ear-
ly investigators, such as Hodge (1963), used approximations to
yield surface in terms of shell stress resultants for rotationally
symmetric shells. It was assumed that the entire shell section
yields simultaneously, producing an elastic-perfectly plastic
relationship between the shell strain measures, the curvatures
and midsurface strains, and the moment and force resultants.
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This is sometime referred to as the ‘‘sandwich’’ shell approx-
imation since it is similar to the behavior of an idealized shell
made of two thin layers of material separated by a constant
distance.

The yield condition is then a function of the stress resultants
of the shell. This is much simpler than considering the state of
stress at each material point through the thickness. Hodge also
developed the two-moment limited interaction yield condition
by neglecting the interaction between orthogonal forces and
between orthogonal moments. This approximate yield condi-
tion has been used to study plate (Lance and Onat, 1962) and
shell (Leckie, 1965) problems.

The objective of this investigation is to develop an efficient
method of elastic-plastic analysis of cylindrical shells without
resorting to approximations of the yield condition in terms of
the stress resultants. The method is then applied to the
problem of the semi-infinite clamped cylinder loaded by inter-
nal pressure as illustrated in Fig. 1. The results can be applied
to many pressure vessels and tanks with fixed ends.

To obtain ‘‘exact’” relationships between the strain
measures and the stress resultants, the elastic-plastic con-
stitutive relations valid for the material at a point must be in-
tegrated through the thickness incorporating the usual
assumptions of shell theory. The Tresca yield condition.is used
here because for axisymmetric shells the principal directions
are known and remain constant. It is shown in a following sec-
tion that for plane stress, with some modest restrictions, the
current state of stress, can be found as a function of the cur-
rent applied strains. Assuming that the shell is in a state of
plane stress and that the Kirchhoff-Love hypothesis is correct,
this solution is integrated through the thickness to give
“constitutive’’ relationships between the strain measures and
stress resultants,

These elastic-plastic constitutive relations are combined
with the well-known equilibrium and strain-displacement
equations, valid for small deflections, to give the complete
description of the elastic-plastic pressurized cylinder.
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Fig. 1 Geometry of a clamped-end, pressurized semi-infinite cylin-

_drical shell. Ay is the extent of plasticity, if any, on the outside, while A
is the length of the plastic zone.
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Fig. 2 Axial and hoop stresses on the inner and outer diameter of an
elastic, clamped-end pressurized cylinder

Elastic Solution

As a preliminary to the elastic-plastic analysis, the linear
solution for the problem of Fig. 1 is presented here. It will be
used to determine where yielding first occurs. It is also needed
for the elastic-plastic solution where the cylinder is concep-
tually divided into elastic and plastic regions.

The linearized form of Reissner’s (1950) equations for the
axisymmetric deformation of shells of revolution are given in
matrix form by Steele and Skogh (1970). These are modified
here for the cylinder in nondimensional form. Axial position is
x[2Rc]'/? where x is dimensionless, the terms in the bracket
give it the proper dimensional value, and ¢ = #/(12(1 -
v?))/2, The dependent variables are the axial bending moment
resultant M,[Y%/4), the transverse shear H[Y#(6(1 -
v?)c/R)Y2/4], the rotation of the shell midsurface x[Y(3R (1
— v%)/2¢)""?/2F], and the radial displacement A[YR (3(1 —
v}))V2/2E], where Y is the yield stress. Also in the equation is
the pressure p[Y?/R] and the axial force resultant N,[Y7]. The
advantage of this form of the equations is that each of the
variables that may be prescribed as a boundary condition is
present in the vector unknown.

598/ Vol. 54, SEPTEMBER 1987
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For internal pressure loading of a closed-end cylinder, the
axial stress resultant is found from static equilibrium to be

N, =+ 2

=" o)

the solution of equation (1) which satisfies clamped boundary
conditions at x = 0 is

M, 0
2 2-wp 0
- 172
X [3(1 - vz)] 0
h 1
1—i
2— 2 4
+ Real ( V)pl/z el +ix 3)
[3(1 - VZ)] 2
1+
When x = — 7, the exponential in the complementary solu-

tion is only four percent of its value at the edge and thus is
essentially insignificant. This corresponds to a physical
distance of 7(2Rc)'/? which will be referred to as the ‘“‘elastic
decay distance’’ hereafter.

The stresses on the inner and outer diameter are plotted in
Fig. 2. It is seen that the maximum stress is the axial stress on
the inner diameter at the clamped edge. Since the hoop and ax-
ial stresses have the same sign, yielding will initiate when o, =
Y on the inner diameter. The pressure at which this occurs is

2
Pu= — @
1+2-v) [3/(1 - vz)]

The elastic solution suggests that as the pressure is in-
creased, the outer diameter will eventually yield under the con-
dition ¢, = —Y. THis will be verified by the elastic-plastic
analysis. ‘

FElastic-Plastic Moment-Curvature Relationships

Use of the Tresca yield condition is convenient for the study
of axisymmetric elastic-plastic shells because for those
problems the principal stress directions are known and un-
changing. The Tresca yield surface for plane stress is shown in
Fig. 3. Assuming that the yielding material at a given point in
the shell stays on the same side of the yield surface, the plane
stress problem can be integrated to give current stresses as a
function of the current strains. This solution, combined with
the standard geometric assumptions of small deformation
shell theory, was then integrated through the thickness of the
shell to give the elastic-plastic moment-curvature re-
lationships.
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Fig. 3 Tresca yield surface showing the directions of plastic strain in-
crements at several positions

Plane Stress Solutions. Consider the problem where all
yielding occurs under the condition ¢, = ¥, with0 < 0, < Y.
Let e, and e,. be the total current principal strains. For a
loading history of the virgin material, the principal strains
may be taken as the following functions of 7, which grows
monotonically with time.

e =f(1) .

€= g(T) €3¢
If at some time the strains decrease, the material would be
back in the elastic regime. This would not affect future
yielding which is assumed to take place on the same side of the
yield surface. Thus, it may be assumed with no loss of
generality that fand g are continuous nondecreasing functions
with

)

S0)=g0)=0 ©®
f)=g)=1 9

Yielding will initiate when o, = Y, the yields stress, at some
time, 7,. Let f(7,) = f, and g(7,) = g,. The elastic stress-
strain law for plane stress (Timoshenko, 1970) gives

-——E——— (fyelc + ugyeZC> 8)

Gl(Ty) =Y= - )

E
0,(7y) =m<gyezc + nyelc) )]

The associated flow rule for the Tresca yield condition
(Kachanov, 1974) gives the plastic strain increments during
plastic flow as

de’ = de,
def= 0 (10)
de§ = —de,

Expressing the total strain increments as the sum of the elastic
and plastic parts

de, =de +de} =de$ + de,

(11)
de; =des
The incremental stress-strain relations give
E
dUI =m~|:de‘f+1} deg] (12)
E
:—z-]-—_y—z)l:del —dep +v dez]
E
da, :w)—[de2 +u<afeI —de,,)] (13)
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Fig._4 . Dis‘tribution of axial stress through the thickness when: (a) Only
the inside is yielding; and (b) both sides are yielding

For perfectly plasticity, do; = dY = 0, thus the plastic
strain increment can be found in terms of the two applied
strains

de,=de, +vde, = [f’ (1)e,.+vg’ (T)eZE] dr

Integrating this from the initial yield at 7, to the current
state at 7 = 1, and combining with equation (8) gives

ep = (1 —fy)elc + V(1 _gy)elc
" Y
=e tvey—(l—v )7
Now the current stresses may be found as a function of the
current total applied strains. Integrating equations (12), (13),
with equations (8), (9) as initial values gives

(14)

o, =Y

(15)
oy, =vY +Ee,,

For the case when all yielding is on the opposite side of the
yield surface by g, = - Y, the analogous relations are

o,=-Y
(16)
02 e VY‘+‘ Eezc
When the yielding is contained on the side of the yield sur-
face defined by ¢; — ¢, = Y, it can be shown (Brooks, 1982)
that the stresses are

_E ( + )+ Y
0= 2(1 — V) €1t ey 2
an

E ( + ) Y
Oy = ——reo—— —_—
25509 €ret ey 2

Integration into Moment-Curvature Relations. The elastic
solution already given for the clamped semi-infinite cylinder
with internal pressure is well known (Kraus, 1967; Siede,
1975). Yielding begins on the inner diameter when the pressure
is high enough to cause the axial stress to reach the yield stress.
It was initially assumed, and later verified by the analysis, that
as the pressure increases, yielding throughout the plastic zone
for material near the inner diameter is with o, = Y and that
when the yielding begins on the outer surface it is under the
condition ¢, = —Y.

The normalized moment, M, and axial force, N, are defined
such that M = =1 is the ultimate moment the cross section
can carry if there is no axial force (i.e., N = Q)and N = 11is
the ultimate tensile load that can be applied with no moment

SEPTEMBER 1987, Vol. 54/ 599

Downloaded 03 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



10 e —
Both
Sides -exact |
—~ 08 [ Yielding ]
X [ N\ _—approx. sol. |
o 7 — Approx. i “
“‘>:‘ G 3
N F 4
= 06 r ‘ Ultimate
= Inside Morment
g I Yielding ]
5 o4t -
= 1 ]
© ]
x - .
< g9 L Elastic J
0.0 Y TV S SV WHNE VA S S OO S S SR N VUSSR VA VOO S B S SO
0.0 0.2 0.4 0.6 0.8 10

Axidl Force (N“Yt or pR,2Yt)

Fig. 5 The moment at the clamped end versus internal pressure. Also
shown are boundaries between purely elastic, inside yielding, and both
sides yielding regions.
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Fig. 6 Axial moment.curvature relation with constant axiat force for
several values of axial force

loading. Figure 4 shows the axial stress distribution through
the shell thickness for loads above yield. There are three
distributions of special interest. The combination of moment
and force that causes each can be determined solely from con-
sideration of the equilibrium of the cross section. For a given
axial force some moment will cause the inside to just reach
yield, as shown in Fig. 4(¢) with {; = —¢/2.

M= ——3%—(1~N) (18)
As the moment is increased the outside will reach yield, as
shown in Fig. 4(b) with {, = ¢/2, when

M= —%(I—N)(l +2N)

Finally, the entire section becomes plastic at the ultimate mo-
ment as in Fig. 4(b) with ¢, = .

M=N*-1 (20)

Equations (18) through (20) are plotted in Fig. 5 dividing the

600/ Vol. 54, SEPTEMBER 1987

(19)

N—M space into elastic, inside yielding, and both sides
yielding regions. This figure is valid as long as there is no
unloading of the yielding material and all of the yielding is
under the condition g, = *7.

The axial stress profile through the thickness after only the
inside has yielded is shown in Fig. 4(a). The strains are still
assumed to vary linearly through the thickness. For given mid-
surface strains and axial curvature (the hoop curvature is zero
for cylinders), the strains are known everywhere. Integrating
the stress-strain law, either the elastic law or the appropriate
choice from equations (15) or (16), through the thickness gives
the axial moment and force. The equations can be
manipulated to give the axial curvature x[3Y (1 — v?)/2Ef] in
terms of the moment and force.

_ ~64(1-N,) [2+ M, ] -2
B 27 1-N,
Figure 4(b) shows the stress profile after yielding has in-

itiated on both surfaces of the shell. The moment-curvature
relationship for this case is

@n

K

-4

-172
k=——|1~ N2 +Ma] 22
e ()
In each case the hoop stress resultant is
Nfl=VNa+6h (23)

The moment-curvature relationship is plotted in Fig. 6 with
N, varied as a parameter, but held constant for each curve.

Solution

In the elastic solution, the stresses peak sharply at the
clamped end, so it was expected that the plasticity would be
localized near the end. Following the approach of Steele
(1968), the cylinder is divided into a semi-infinite region that is
completely elastic and the region near the end where there has
been plastic flow. Each section is analyzed independently and
the displacements and stress resultants are matched at the
intersection.

The axial stress resultant is known from static equilibrium
(2). The moment at the intersection of the two regions is then
calculated from equation (18) with the assumption that
yielding at all axial positions starts on the inner diameter
under the condition o, = Y. This assumption was confirmed
by the analysis. The unknown quantities are A, the length of
the plastic zone, and #,, x,, and H,, the radial deflection,
rotation, and transverse shear at the end of the plastic zone.

Approximate Solution. The equilibrium equations for the
cylindrical shell are

dH 4
—— =, (N, —D) 24
[3(1 - VZ)]
am,
i =H 25

The analysis of the elastic-plastic problem can be simplfied by
dropping the variation of transverse shear from the
equilibrium equations in the plastic zone. As long as the
plastic zone is small (as it must be, at least at the outset) this
term should have a small effect. The moment in the plastic
zone then is just a function of the moment at the intersection,
M,, which is known from equations (2) and (18), and the
unknown transverse shear, H,, given by

M, (x) =M, +H,x (26)

Initially all of the yielding in the plastic zone is on the inner
diameter, so the moment-curvature relationship of equation
(21) can be used throughout the plastic zone. Substituting
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equation (26) into equation (21) gives the curvature in the
plastic zone.
. -4(1—Na)[1 3H x ]—2
3 4(1—-N,)
This equation may be integrated through the plastic zone,
applying the clamped boundary conditions at the end, to give
the radial deflection and the rotation at the intersection of the
two regions.

@7

_ 16(1-Np? 3H,A
X=9A, [3H0A+4(1 —N) ] 28)
641~ N)> 3HoA 1 3H,A
0 27HE [2 [1 4(1-N) ] 3H,A+4(1 —N)]
(29)

At higher pressures, the outer diameter will also yield near
the clamped end. The moment, M,, required to cause the
outer edge to yield at some given pressure level is given by

Journal of Applied Mechanics

equations (2) and (19). From equation (26), the position where
this occurs is

M, - M,
H,
Substituting equation (26) into the moment-curvature equa-
tion (22) gives the curvature near the clamped end.

A= (30)

—4 ~-1/2
x=—3—[l+2N—3N2+3HOx] for A; <x<A 31

For 0 < x < A,, equation (27) is still valid. The rotation and
deflection at the end of the plastic zone are

16(1 — N)2 A 8
L N B - LAE IE)
2H, 3H,A, +4(1-N) 1 9H,
64(1 - N)3 3H,4, 3H,A,
o= [o] |- ]
27H 4(1-N) 3HyA, +4(1 - N)
(33)
8 16
+ AT — ]+——[I‘3~1‘3]
9H0[ Al 81HZ L'
where
1/2
r =[1+2N~3N2+3H0A]
172
T = [1 +2N - 3J\ﬂ+3HOA1] (34)

The solution for the elastic region is obtained (using the
complete equilibrium equations) with the boundary conditions
that M = M, and H = H, at the intersection. This gives the
rotation and deflection at the intersection as

Xo=2M,—H, 35)

2-v)p
[3(1 B DZ)] 172

Setting the above equations equal to either equations
(28)-(29) or (32)-(33), as appropriate, gives a pair of coupled
nonlinear equations in the unknowns A and Hy. These equa-
tions were then solved by iteration with starting values ob-
tained from the elastic solution.

o= —My+Hy+ (36)

Numerical Solution of Exact Equations. When the exact
equilibrium equations were used it was not possible to in-
tegrate analytically the moment-curvature relationship
through the plastic zone. Therefore, the equations were
numerically integrated with assumed initial values at the end
of the plastic zone and the results compared with the boundary
conditions at the clamped end. The moment at the intersection
of the elastic and plastic zones is known from equation (18).
The method of solution is to assume this moment and an
estimate of A, exist at the intersection of the regions. The
elastic solution then gives H, and x, by equations (35), (36).
These are used as the initial values in the elastic-plastic equa-
tions which are then integrated until x = 0. If # = 0 at this
point, then the problem is solved. Otherwise the initial
estimate of h, is changed and the process is repeated until
convergence.

Results

The results of the computations for both the approximate
and the exact equations are plotted in Figs. 5 and 7 through
10. All results are for » = 0.3. It is seen that the two solutions
agree well. As expected, the agreement is best during the early
stages of yielding and there is some deviation at higher
pressures.
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The growth of the plastic zone as the pressure increases is
given in Fig. 7. The maximum length is only about ten percent
of the ‘‘elastic boundary layer.”” Thus, the plastic region is
contained within a small distance from the clamped end as was
initially expected from the elastic solution. This is why the ap-
proximate solution is fairly accurate even at relatively high
pressures. Since the plastic zone is so short, the results in this
paper may be applied to any cylinder which is long enough to
be modeled as semi-infinite for the elastic solution.

Figure 8 shows the boundaries between-the plastic and
elastic parts of the cross section as if one made a cut through
the thickness and marked the edge of the yielding area. The
boundaries are shown for several values of pressure. The
plastic area moves in from the clamped end and from the sur-
faces of the cylinder with increasing load. This verifies that
there is no unloading in the plastic zone, which was an
assumption of the analysis.

Figure 5 shows the variation of the moment at the clamped
end (i.e., the maximum moment in the cylinder) with the
pressure. Plotting the moment on this figure in this way allows
one to see how close the section is to the ultimate load carrying
capability when the calculations were stopped.

The moment in the approximate solution grows more slowly
than in the exact solution. To see that this is reasonable, con-
sider the term that was dropped from the equilibrium equation
(24) in the approximate solution.

N;, *szNa‘i‘Eh —p= —p[l _Ty] <0

The hoop strain ¢, was taken as approximately zero in the
above inequality because 4 and x equal zero at the clamped
end and the plastic zone is short. It would have to be quite
large to change the sign of the dropped term. Thus, the drop-
ped term increases the magnitude of the transverse shear, and
thus that of the moment also, as one integrates away from the
end of the elastic region.

The calculations were stopped just before the axial moment
at the clamped end reached its maximum possible value. The
axial resultant N, is about one-half at this point. The hoop
stress in the membrane solution away from the end is twice N,
or almost one. Since at N = 1 the whole cross section is
yielding under pure tension, the pressure could not be in-
creased further or the cylinder would burst in the membrane
region, regardless of the state of stress at the clamped end.

Thus, even though there is a severe elastic stress concentra-
tion at the clamped end, the collapse pressure is that which
causes yielding in the membrane solution. The limit analysis of
Hodge (1963) gives the same result for the collapse pressure,
Physically, this seems reasonable for a material that has no
strain limit. The shell yields at the clamped end, but the defor-
mation is constrained by the membrane region until yielding
also occurs there. Actual failure could occur earlier if the
bending strains at the end became larger than that permissible
for the material.

The maximum strain in the cylinder is the axial strain on the
inner surface at the clamped end. This is shown in Fig. 9 as a
function of the applied pressure. At a pressure ninety-five per-
cent above that which causes initial yield, the strain is 17.5
times the elastic limit strain (Y/FE). Thus, many ductile
materials would survive loading until general yielding in the
membrane region. Because the maximum strain increases so
slowly during early yielding, cylinders made of most common
structural metals would survive pressures significantly greater
than the elastic limit.

Figure 10 shows the stresses on the inner and outer surfaces
of the cylinder at a pressure of 1.8 times the elastic limit
pressure for the exact solution. The analogous curves for the
approximate solution give essentially the same results (Brooks,
1982).
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Conclusions

A very efficient method for elastic-plastic analysis of ax-
isymmetric cylinders has been developed. Since the results are
all given in dimensionless form they can be applied to any
cylindrical shell.

The numerical solution of the equations can be considered
exact, given the standard shell assumptions which were made.
The method was so inexpensive that hundreds and even
thousands of points were used in the numerical integration
through the plastic zone. Because of this, these results could
be useful to compare against other numerical methods. One
complication would be that most general methods use the
Mises yield condition rather than Tresca, as was used here.

An important assumption was that the plastic zone would
remain small. This was based on the fact that the elastic ‘‘edge
effect”’ solutions decay rapidly with distance. If the plastic
zone becomes large, the method in its present form might be
ineffective. This can be seen by considering the elastic com-
plementary solution, It has four exponential solutions, two of

Transactions of the ASME

Downloaded 03 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



which decay and two which grow with axial distance. In an
analytical solution the growing terms can be discarded, but
when numerical integration is used all of the terms will be in-
cluded and can be significant if the integration is over a large
distance. The elastic-plastic solution could have similar
problems, if the plastic zone were to become too large.

Although only cylinders are investigated here, it is not dif-
ficult to generalize the method to the general shell of revolu-
tion. The elastic solution for “‘steep’” shells is similar in
behavior to the cylinder. Thus, for shells where the plasticity
occurs in the ‘‘steep’’ region the results should be very similar
to those for the cylinder. The principal directions are still
known so the Tresca yield condition can still easily be used.
The only real complication is in the constitutive relations. The
change of curvature in the circumferential direction, which is
absent in the cylinder, has to be included.

There are several other items not considered here which
could be important. Only the material nonlinearity is includ-
ed, but geometric nonlinearity could be significant especially
in the plastic zone where the curvature is changing rapidly.
Shear deformation could also be important within this zone.
Including the effect of material strain hardening would also be
a logical extension of the present results.
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Analysis of Pipe Bends With
Symmetrical Noncircular Cross
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Sections

A thin shell analysis is presented for pipe bends with symmetric noncircular cross
sections under in-plane bending or internal pressure, using the static-geometric

analogy and neglecting end effects. Any symmetric shape is possible but the analysis
mainly concerns cross sections with double symmetry; an investigation of two-lobe
(oval) and four-lobe cross sections demonstrates that pipe bend flexibility is almost
inversely proportional to flank radius if the pipe wall is thin. Pressurizing a pipe
bend of oval cross section produces a similar hoop stress distribution to that of a
bending moment straightening the pipe.

Introduction

An exact thin shell analysis for circular pipe bends ter-
minated by flanges or straight pipes and subjected to any end
loading has been published (Whatham, 1986); we now con-
sider the exact thin shell solution for pipe bends with sym-
metrical noncircular cross sections subjected to in-plane
bending or internal pressure, neglecting end effects. Reference
is made to the work of Clark et al. (1952) who obtained ben-
ding and pressurizing solutions for pipe bends with elliptical
cross sections.

The first order linear shell theory of Novozhilov (1970) is
employed but, as the loading generates no shear stresses, the
equations revert to those of Love (1944). Use is made of
Goldenweizer’s static-geometric analogy and no approxima-
tions are made other than those inherent in the theory.

Governing equations are derived in terms of displacements
and stress functions for in-plane bending and pressurization,
although the pressurization is accompanied by an in-plane
bending moment unless the cross section is circular; a reverse
bending solution can be superimposed to obtain the effect of
pressurization alone. The equations are solved by collocation
at equal intervals around the pipe circumference and, as a test
problem, the stresses are calculated in a typical pipe bend for
different degrees of cross section ovality. Pipe bends with two-
lobe (oval) and 4-lobe cross sections are then investigated for
the relationship between flank radius and pipe bend flexibility.

Governing Equations

A segment of curved pipe with a symmetrical noncircular
cross section is represented in Fig. 1 by its middle surface,
acted upon by stress resultants and surface pressure to pro-
duce the displacements u, v, w, and a rotation y about the u
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axis; there are rotations about the other axes but these do not
enter the analysis. The radius of curvature R is through the
centroid of the cross section inside the pipe, and curvilinear
coordinates for the middle surface are 6, n where

0=2ms/c, n=2wl/c, c=mid-wall circumference

From the Novozhilov equations we obtain:

Pipe bend middle surface

Fig. 1
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(i ) Equilibrium Equations

*

d
(5M*)+—~(T*+gM*)+

(6T*)+g =0
. cosp a <sinu > aQ*
6TF — SM*) + T +) _ U2 oo
goT; an‘ D+ a5\ M)~ =eat ()
where Ty =T, /Et, My =M, /rEt, q* = qr/Et,

p=R/ré6=1+y/R,g=r/rg=du/do,r=c/2x

(ii) Stress-Strain Equations

1
Tr= = (eg+ve,)) Mg= ———~12(1 ) (kg +vx,)
T*_ 1 * ..
W—W(EW+VEG) M’l W(K ~+ vky) 2)

where v = (¢/r)?
(iii)

Strain-Displacement Equations

_1<au+w) _1(8( ) 82w> 3
=7\ T8 =2 g B T g @
6":L<_¢21L_ sinp,u+cosuw>
or \ oy 0 p
‘= 1 (61//+sinu<aw_ ))
"% \an | er \ap °*
_ g 1 o
N e P e
where ¥= ——1—< cosk v _iui)
6r\ p on

Strains A and 8 represent the twist and out-of-plane cur-
vature given to the pipe wall if the pipe cross section warps,
but for in-plane bending or pressurizing, without end effects,
cross sections remain plane and these strains are zero, as are
stress resultants P and Q. Incidentally, changes in curvature of
the pipe wall are given by «, —¢,/r, and k, —e,/ry rather than
x, and «g.

Now from Fig. 1

F,= go T,ds

F

v = S: (Qcosu — Psinp)ds %)

M=— S (M, cosp+yT,)ds
o
whence by equations (1)

oF,

where A, is the inside cross section area and p is the pressure in
the pipe.
H

c
A= S yeosuds —ct/2+nt2/4
o

q=p(L—1/2re}(1—1/2r,) . ©)
r,=d8R/cosp

Consider the stress resultants as the sum of the two com-
ponents; for example,

Tr=T5+

Then from equations (2)

Journal of Applied Mechanics

12 12
ric, + vrg ——(1 — v )M}, :——(1 — )M

Y
6,7+Veg—(1—112) ﬂb—(l—vz) @)

=T + vy =T5,—vT},
ﬁricg—M;{b-%uMb _M0(I VM;H
Components Ty, etc.,

pipe bend to give the loadmg, whereas components
are self-equilibrating.

are stress resultants applied to the
"*
wbs etc.,

Static-Geometric Analogy

Consider now the stress resultants generated by equation (3)
by substituting stress functions U, W, V, Y for nondimen-
sional displacements u/r, w/r, v/r, ¥ in accordance with
Goldenweizer’s static-geometric analogy (Novozhilov, 1970).

oU 62W
Mi=———gW T*——(gU)
K a6
M;,*«—L< 1% _sinuU+ cosuW>
6 \ ay o 0
1 /3Y sin
Ti=—(=+ ”(——gU)) ®)
6\ dn P
progdV B BV
580 a0 e ¢
1
where Y= ———( cosu V— ﬂ)
6 0 an

The stress resultants must be single valued, or continuous
around the pipe cross section, but will satisfy equations (1)
whatever the stress functions if pressure ¢ is zero. For the
forces and moment on the cross section, we find by
substituting in equations (4) and integrating

—rEt[ U 8W] i
Y50 Lo
aV . 2
Fyert[ m cosp + Ysmu]a 9

M= rZEt[Ucosu+ Wsmu——)—)—<gU—————aW )]
a6 0

If U, W, V, Y are single valued then F,, F,, M vanish and
the stress resultants generated will be self-equilibrating.

The governing equations are now derived from equations
(7) by writing the strains in terms of displacements and the
self-equilibrating stress resultants in terms of single valued
stress functions U,, W, V,, Y,,.

12
U, " — (1= p2)oM
Y
W, s | ~(1—R)8T:
[A] —— = (10
ur | M |y, 8Ty, —voT,
w/r Vy — M, + voM;,

where matrix A4, given in Table 1, involves differentials in 6
only.

Applied stress resultants M;,, T,,, Mg,, Tj, are now re-
quired which give the loading on the pipe and also satisfy
equations (1). This differs from the analysis for circular cross
sections (Whatham, 1986) where the governing equations
satisfied equilibrium and T7,, P; were only required to give
the loading.
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Tablel Matrix A

Up Wy u/r w/r
_35(1—1/2)5;5 —%(1—»2)6g —Si?g—vﬁa%(g ) —%%6%1“'5:7;
(1—u2)s£5(g ) —(1~»2)5%2 | fi—zﬁ—ua% _%_Mg
Si_z*iﬂaa% _ﬁ;s—"wag —1126%@) > %

Table 2 Oval cross section constants

bla ral/c A/wrt B Cy Cliellipse)
1 1 1 0 0 0
1.1 0.9511 0.9966 —-0.0714 0.1679 0.1730
1.2 0.9046 0.9877 —0.1360 0.2862 0.3018
1.3 0.8608 0.9750 —-0.1945 0.3705 0.3979
1.4 0.8198 0.9596 —-0.2476 0.4308 0.4696
1.6 0.7457 0.9247 —0.3400 0.5038 0.5618
1.8 0.6815 0.8880 —0.4171 0.5381 0.6097
2.0 0.6260 0.8521 —0.4821 0.5508 0.6309

c t '\/ s
A:S yeosuds, Aj=A—-\-— - }ar
o ) r 4

Furthermore, if the governing equations had been in terms Rir =2
of My, Ty, €, K sa.tisfying equilibrium angl compatibility, tir = 0.05
we would have had to include the last of equations (4) in terms v = /2T * N
of My,, Ty, and equated to zero to obtain self-equilibrium and p* = priEt Tna 1.80p

the same equation in terms of —e¢,, ¥, equated to zero to en-
sure the displacements were single valued.

Although end effects are neglected, an earlier paper
(Whatham, 1981) described how the effects of a rigid flange or
a tangent pipe could be included.

Applied Stress Resultants for In-Plane Bending

Stress functions can be used to generate these stress
resultants because ¢ is zero; if V,, Y, are zero then, by equa-
tions (5) and (9), F, and F, also vanish. The following multi-
valued stress functions were derived from equations (9) to give
a bending moment M on the pipe and single valued stress

resultants.
U, = M*§cosy Fig. 2 T, for pressurizing an oval pipe bend
W, =M*@sin 11 . -
Va Y =0 # (1 Applied Stress Resultants for Pressurizing
h . _ 2 oo Stress resultants could not be found which would simply
where M —_M/27rr Et. pressurize a noncircular pipe bend; the stress resultants which
By equations (8) were used pressurized the bend but at the same time imposed a
Ty, = —M*gcosp . bending moment on the cross section, requiring a bending mo-

ment applied in the opposite direction to neutralize it. Writing
(12) equations (1) in terms of applied stress resultants and neglec-
ting M?,, M3,

na’

My, = —M*cosp

5= (M*/pd)sin’p

d sin
ML=0 30—(6T§a)+-p—liT;a=0
These stress resultants were substituted in equation (10) to. . . . (13)
obtain the solution for pure in-plane bending. Ta/To+ Tya/ 1, =q*/1
606/ Vol. 54, SEPTEMBER 1987 Transactions of the ASME
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Fig. 3 Segment of middle surface

dx W S t
= X

dy
35 o

5R|

Fig. 4 Example of symmetrical cross section

As t—0then(q, T

7

o» Toa)— (0, Tya, Ty,) and hence

_ " 1 I
[6T§‘acosu] =—p*p [62] (14)
w2 #o
where
p*=pr/Et
If the cross section has double symmetry, then d=1 at
o, =7/2and
- 1
fa =Tp*p (8%~ 1)/bcosp (15)

T7,=pd(p* — gT},)/cosp
At the flanks (u= £ 7/2)
[y, =2Ty,=p*/8
For a finite wall thickness, solving equations (13) with T3,

T}, q* replaced by Ty, — Tj,, T — T2, ¢* — p* gives

= t vy r)
Iy A T R SR o
fa (] (2)' g r,, p

- t Yy r
T* - T* — < — ) *
nae e 2r 8 P

* _ AAK
Mna_ 911_0

(16)
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The distribution of 77, in Fig. 2 indicates that a bending

moment is produced when the pipe cross section is oval; sup-
pose this moment is given by

M= ~C,Rar’p (17)

where coefficient C, must be determined. For cross sections
with double symmetry

(18)

c 27
C =l S yTads=2S > (& )d@
Rartp Jo” " o CCOSu rcosp

whence C, may be determined by quadrature. As it is indepen-
dent of ¢ and R, the bending moment by equation (17) for a
doubly symmetric shape is proportional to the bend radius,
the pressure, and through wr? the area A enclosed by the mid-
surface but is independent of wall thickness. Applying equa-
tion (18) to an elliptical cross section gives Lorenz’s result
(Clark et al., 1952)

A a?
Cl(cllipse) = J) <1 - b2 )

where b,a are the dimensions of the major and minor axes;
Table 2 gives C, for a class of oval cross sections which will be
described later and C, (ellipsey for the same circumference ellip-
tical cross sections.

The stress resultants from equations (15) and (16) were
substituted in equations (10) to obtain the solution for com-
bined pressurizing and bending; for pressurizing alone the
bending moment from equation (17) was applied to the pipe
bend in the opposite direction and the solutions added.

(19

Expressing the Variables and Solving

Stress functions U,, W, and dimensionless displacements
u/r, w/r were expressed as Fourier series in # with appropriate
parity but V,, Y,, v/r, ¥ could be expressed more simply.
Rotation « in Fig. 3 is a measure of v/r and ¥ because

v/r=—opb
(20)
and as a check, the warping strains A, § are zero by equations
(3).

There is a constant component H,, of force in the wall acting
in a direction parallel to the pipe bend axis as shown in Fig. 3
and this component happens to be a measure of ¥, and Y,

Vy=H}pd
Y, = Hfcosp

Y= —acosu

(21)
where
43 =H,/rEt

Stress resultants P, Q, are zero by equations (8) and, in the
case of in-plane bending, H), is the total force because V,, Y,
and hence H,, are zero. We note that « is zero in a pressurized
torus but H, is not.

If the Fourier series for the variables are truncated to N
terms there are 4N+ 2 coefficients to be determined in addi-
tion to ratios a/n and H}/n—for in-plane bending or
pressurizing, /9y in equation (10) is replaced by 1/%. The
four governing equations were expanded to the required
4N +4 equations by collocation at the mid-points of N+1
equal intervals around half the circumference; these equations
were then solved with N=32 which gave converged solutions
in all cases. For circular cross sections, the governing equa-
tions were also expanded by equating the coefficients of like
terms (Fourier analysis) which gave the same solution for the
same N.

Defining the Pipe Cross-Section

A randomly generated symmetrical middle surface is shown
in Fig. 4, defined by angle p as a function of distance s

SEPTEMBER 1987, Vol. 54/ 607



Table 3 Multi-lobe cross sections
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p=0+p,sinf+ p,sin20+ . . . 22)

where
0=2ws/c

The function g=du/d0 is easily calculated but the ratio
t/r, = gt/r must nowhere exceed 0.3 for shell theory to apply
(Whatham, 1986).

Cartesian coordinate y of the outline is required in order to
calculate &; taking the centroid of the cross section inside the
pipe as origin, we see from Fig. 4

5

dx =cosuds, hence x= — S cosuds
(23)

5

dy =sinuds, hence y=y, — S sinuds

enabling x,y to be determined by quadrature.

Coefficients u,, u,, etc., for a particular cross section are
derived by curve fitting and, for continuity of x and y, it is
necessary that

c 27
S sinuds = rS sinudf =0
[

o

s (24
S cosuds = rS cosudf=0
o

(2
The sin p integral is zero because sin p is an odd function of
0 but the coefficients of equation (22) may have to be adjusted
to eliminate the cos u integral. For example, the cross section
in Fig. 4 was generated by

w=0+0.5sinf — 0.9452sin28
+0.3sin36 — 0.4sin46 25)

where the coefficient —0.9452 has been adjusted for that
purpose.

We now consider the continuity of a class of multi-lobe
cross sections shown in Table 3, defined by ’

p =0+ Bsinm@ (26)
where m =number of lobes
For these sections ]
2T 27
S cosudf = S cosfcos(Bsinmb)dé (a) (VX))
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Fig. 5 Thin wall pipe bend distortion from in-plane bending

a/2

b/2

Fig. 6 Quadrants of oval cross sections

27
— S sinfsin{Bsinmb)dé (b)
o

Integral (a) is zero because the integrand is an odd function
of 0; to determine integral (b), formula 8.514-6 of Gradshteyn
and Ryzhik (1980) yields

sin(Bsinm6) =2 Y Jyye, | (B)sin(2k + 1ymb
k=o

where Jy,, (B) are Bessel functions. Integral (b) then becomes

(28)

i 2%
2); J2k+1(B)S sinfsin(2k + 1)m6df (29)
k=o o
Irom orthogonality, integral (b) is zero if m> 1 but not when
m=1, unless J,(B) =0 which requires that

B=3.8137, 7.0156, etc.

Such shapes are absurd because the contour crosses itselt, so
we must have m> 1 and the circumference is then continuous
regardless of B.

In-plane bending distorts circular pipe bends with thick
walls (¢/r=0.1) to an oval shape but thin walls (¢/r=0.01)
distort as shown in Fig. 5 where segments X remain almost
stress free and the pipe bend deflection depends on segments
Y. Two and four-lobe cross sections were used to investigate
the relationship between pipe bend flexibility and flank radius
rr, the cross sections being defined by equation (26) with
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m=2, B=—(1—c/2xr)
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BENDING

1
o m=4, B=—T(1—c/21rrf)
06~ 61F2T
ORESSURIZING - Two-lobe oval cross sections were then investigated further
CRo and the relationship between B and major-to-minor axis ratio
oo 3(59“592)7 b/a is given in Table 2; quadrants of two cross sections in Fig.
6 show that, if b/a is less than 1.4, they approximate the ellip-

tical cross sections analyzed by Clark et al. (1952).

10 | | | I ] | | |
0 20 40 60 80 100 120 140 160 180

N Results

Fig. 8 Hoop stress on outside surface—oval diameter ratio 1.4 Figure 7 shows the outside surface hoop stress distributions

from in-plane bending or internally pressurizing a pipe bend
T T of circular cross-section. The stresses cannot be added to ob-
tain the combined effect of bending and pressurizing because
. there is a nonlinearity; pressurizing maintains circularity of
the cross section and counteracts the ovalizing effect of the
bending moment whether the bend angle is being opened or
closed. But if the pipe cross section is noncircular, then
pressurizing and bending solutions can be added.

Figures 8 and 9 show the hoop stress on pipe bends of oval
cross section from a bending moment which opens the bend
and also the hoop stress from the combined effects of internal
pressure and a bending moment C,Rxr?p which closes the
bend. The stresses from the combined loading are relatively
small and hence, by superposition, the stresses from pressuriz-
%e:SenFMZr ing alone approximate those from a bending moment which

DRESSURIZING - opens the bepd, tending to straighten the pipe. Thls supports
e \GRp the observation of Clark et al. (1952) regarding pipe bends of
O =(Ser + Sog 12 | elliptical cross section.

: Factors enabling the deflections under bending moment or
pressure to be calculated have been published for a range of
- oval pipe bends in which R/r=1.25-20, t/r=0.01—0.1 and
b/a=1-2 (Whatham, 1983).
| I L L ! l l l Results of the investigation of pipe bends with two and
0 20 40 60 80 100 120 10 160 180 four-lobe cross sections plotted in Fig. 10 show that, for cross

o sections with double symmetry, flexibility is almost inversely
Fig. 9 Hoop stress on outside surface—oval diameter ratio 2.0 proportional to flank radius r, if the pipe wall is thin

6 T T T T
R/ir=2.5 b/a=2

t/r= 005 Cy=05508
v =03
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(¢/r<0.05) and the bend characteristic A=4n*R¢/c? is less
than 0.1. This is also the asymptotic result of Clark et al.
(1952) for elliptic pipe bends written as

V31— )Mo

= 31
« wr2E G

Conclusions

Equations have been presented for an exact thin shell
analysis of curved pipes with symmetrical noncircular cross
sections when subjected to in-plane bending or pressurization,
employing Goldenweizer’s static-geometric analogy. There is
no restriction on the symmetrical cross section shape, pro-
vided the wall thickness-to-radius ratio does not exceed 0.3.
End effects were neglected but an earlier paper (Whatham,
1981) described how end effects from, for example, a rigid
flange or a tangent pipe could be included..

Hoop stress distributions showed that, for oval cross sec-
tions, pressurizing has approximately the same effect as a
bending moment which tends to straighten the pipe. Pressure
and bending moment solutions could be superimposed unless
the cross section was circular. Calculations for two and four-
lobe cross sections showed that the flexibility of pipe bends
with double symmetry is almost inversely proportional to
flank radius if the pipe wall is thin and the bend radius
moderate,

610/ Vol 54, SEPTEMBER 1987

The work has resulted in the publication of factors giving
the deflection under bending moment or pressure of a range of
pipe bends with oval cross sections.
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1 Introduction

An important factor in the design of composite structures is
their response to impact events. Events such as tool drop and
runway kickup are examples of impact on aircraft structures.
During impact, localized stresses are generated which can
cause premature failure. Accurate prediction of these stresses
is important in advanced composite materials as a first step in
assessing structural sensitivity due to impact. Advanced com-
posites, due to their relatively low strength in nonfiber-
reinforced directions (e.g., out-of-plane), exhibit sensitivity to
the lateral loading which occurs during an impact event. This
results in delamination (separation of plies) and transverse
cracking (in the direction perpendicular to fibers in an in-
dividual ply) as well as fiber breakage.

Current research has been aimed at separating the local con-
tact problem from the dynamic problem such that analysis or
test data from statical indentation laws may be used in the
analysis of dynamical transients (Lal, 1983; Sun and Chat-
topadhyay, 1975). The solution to the contact problem for an
infinite half-plane (Conway, 1956) has been employed with
some success by Greszczuk (1975) but is limited to the infinite
boundaries in the analysis. Recently, Tan and Sun (1985) con-
ducted static indentation experiments to determine the contact
laws to be implemented into subsequent finite element
analyses. The present solution is analytic and is used to
develop the static indentation laws based on ply properties
and, more importantly, the localized deformation such that
failure criteria may be applied.

2 Axisymmetric Elasticity Solution

To solve for the localized loading in a homogeneous, or-
thotropic plate, of thickness # and radius R,, the axisym-
metric boundary value problem shown in Fig. 1 is solved.
While the assumption of through-the thickness homogeneity
may be severe, subsequent comparison with test data will
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Thick Composite Plates Subjected
to Lateral Loading

An analytical solution for an orthotropic plate subjected to general lateral loading is
presented. The solution uses a stress function approach to obtain the localized
stresses and strains due to the loading by an axisymmetric rigid sphere. Plots of load
versus local indentation are compared with experimental test data previously
reported in the literature. The analysis agrees well with the experimental data and
could be used in conjunction with failure criteria to predict damage initiation in such

demonstrate its utility for laminates constructed from thin
plies. The plate is supported along its edges and a moment M,
is applied via superposition along its perimeter to approximate
the far-field loading outside of the local perturbations due to
the axisymmetric load distribution caused by contact. For
small strains under the assumption of axisymmetry, the
following kinematic relationships apply:

_ oy, _aw
= Tor = T a9z
)
U, _ Ou,  aw
€op = - Yz = oz or

Here, u,, is the radial displacement and w is the displacement
in the z direction. The assumption of axisymmetry provides
that /96 is identically zero. The compatibility conditions
associated with the above assumptions are:

a
€rr —'5; (régg) =0
Pe, ey vy _

az? or? ardz

The constitutive properties for a cylindrically orthotropic
material can be represented as:

@

Impacting sphere

) = Distributed moment

f = Distributed shear

Problem schematic

Fig. 1
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{erreﬁﬁezz I = [ay] { araﬂgz I

Yrz = Ay Oz (3)
where g;; is the engineering compliance matrix. For the present
problem, the material is furthermore assumed to be

transversely isotropic in the r—6 plane. In terms of the
engineering constants, the constitutive properties are thus:

B 11
a, = azz—E—‘E—M— o |
ap = - o ’ B @
E, Ey b1
_ Ve Vo, = G. Gg
T TR, T Ea
The governing stress equilibrium equations for axisym-

metric problems in the absence of body forces may be written
as:

60,., + aarz O —Ogp =0

or 0z r

®)
da,, + do,, 49

ar 1174 r

Combining equations (2) and (3) to represent the compatibiity
in terms of the stress components, the compatibility condi-
tions become:

a
ar
[r(ay0, +ay 05 +a;30,,)]1=0

52 P ©

—— [ay,0,, + 1,04 +A(30,,] + —5
622 [ 1t¥%rr 12960 13Y%z2 ar?

Ay 0y +A12009 + 0130, —

d%o,, B

ardz

In the absence of body forces (or if body forces are derivable
from a potential) a stress function y (r, z) (Lekhnitskii, 1963)
is introduced satisfying the first equilibrium equation of equa-
tion (5) and equation (6) such that:

lay; (0, +0gg) +as30,] —ay,

d (% b 3y )
e +_ +
o dz ( ar r ar ¢ 972
a >y 1 ay 32‘//>
= - — +
%0 dz <b ar? * r or Yo
a 3y ay 3y @
c
= — +— +d )
Oz 3z (C ar? r or 3z?
i) 3y 1 oy %y )
= - e +
Ire or < ar? * r or a dz%
where
_ alay —ag)
A
p = ap3(a3 +ag) — a0
A .
(8
c aj(ag —ap)+aay
A
d = a}, —a,
A
A = ayay—di,
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Equations (5) and (7) are combined to obtain the governing
equation in y:

a* 1 0 Yy 1 oy 62¢>
—t— +— + +
<6r2 7 6r> ( ar? r or ez
82 %y oy 3y ®
c
O S E
ar? <c ar? r o or az2
Equation (9) may be further written in the form:
v?viy=0 (10)
where
a? 1 0 1 92
e (St o) 1
Vi ( ar? r or s? 0z (1
and
2_4 1724172
5= [a+c:|: [(a;dc) d] ] (12)

A solution for ¢ is sought in the form of equation (13)
which is separable in r and z:

Y=Y, ful(2) gn(r) (13)

m=1

The edge boundary conditions (traction free) for a supported
plate may be approximated by harmonics of a Bessel function
of the first kind:

g r) = Jy(wyr) (14a)
with
thm
on =" (14b)
and
Ja (“'m):O (14¢)

This satisfies the condition that the solution of y be regular at
r equal to zero. Substitution into equation (10) results in an or-
dinary differential equation in z. The solution of this equation
may be satisfied by equation (15):

fm (2) :Amefl“’mz +Bm392“’mz + Cmesl“’mZ -}—Dme_XZ"’mZ (15)

for real distinct roots s; and s,. The constants 4,,, B,,, C,,,
and D,, are evaluated from the upper and lower surface
stresses as specified in the boundary conditions.

3 Boundary Conditions

The actual boundary conditions for the plate away from the
point of load application are neither simply-supported nor
clamped since the edge is elastic. The arca of interest,
however, is the very localized region near the point of contact.
Thus, as an approximation to the edge conditions, a constant
moment is imposed on the plate to properly adjust the bending
stresses o,, and og. The magnitude of this bending moment is
calculated using the procedure outlined by Love (1927). A mo-
ment is calculated at a distance away from the point of load
application. This moment is then invoked on the plate edge
and the results of this solution are added to the current simply-
supported solution via superposition. This method is validated
by the fact that the standard plate solution is recovered in a
short distance away from the local perturbations as will be
subsequently shown,

On the top surface of the plate, the loading p(r) is known
and may be expanded as a Fourier-Bessel series of the form:

P =Y Budy (@pr)

m=1}

(16a)
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Fig. 2 Hertzian contact loading

where

Rp
S p(NrJ, (w,r)dr (16b)

A —

Tt (w) R

The boundary conditions at the top surface (z equal to —h/2)
are:

Uzz = —p(r)
g, = 0

rz
On the bottom surface of the plate, (z equal to 4/2) the boun-
dary conditions are as follows:

=0
2z (18)
g, =0
Invoking these boundary conditions in equation (15) results in
the expressions for the constants 4,,, B,,, C,, and D, con-
tained in Appendix A.

{amn

o

z

4 The Hertzian Assumption

As an approximation, the load distribution is assumed to be
Hertzian in nature. This assumption is valid based on recent
experimental data generated by Tan and Sun (1985) and sup-
ported analytically by Sankar (1985) for the small indentation
to indentor-radius ratios considered here. The loading
assumption for a rigid indentor is shown in Fig. 2. The loading
distribution (Hertzian) is of the form:

r ) 2 )3
R,
where p,, is the maximum load intensity and R, is the radius of
contact. The Hertzian loading is expanded as a Fourier-Bessel
series of the type as shown in equation (16). The 3,, are ob-
tained by using equations (16) and (19) with the integration in
equation (16) extending up to the radius of contact, R,.

For the contact problem, the indentor is assumed to be rigid
such that the indentation is an explicit function of R,. This
assumption is valid for metal indentors where the stiffness of
the indentor is much greater than the E,, of a composite
material. (A typical value of E_, is approximately 10.6 GPa.)

In order to determine the unknown constant p,, the strain is
integrated with respect to z to obtain the displacement w as:

() =p, (1-( 19

%y 1 Yy ] 0%y
w=—a; ((b+1) [ 32 +T 7 +2a Y >+
3’y ay 4 o
c a
i <c ar? +——r—— ar +d az* )

Finally, the approach «, is defined as the maximum. indentor
penetration as illustrated in Fig. 3 based on an indentor radius
R,. From geometry and the rigid indentor assumption the ap-
proach « is calculated according to:

a=R;— (R} —R?)? (21)
as well as the fact that
a=w (0, —h/2)—w(0, h/2) (22)

Journal of Applied Mechanics

Ri Rigid indentor
j
I'g

é l "vj = approach g
| il

\Plate

z
Fig. 3 Rigid indentor contact schematic

The solution procedure is as follows. A unit p, is invoked
and the approach « is evaluated at the center of the plate (r
equal to 0) as the difference between the deflections on the top
surface and the bottom surface. The unit amplitude p, is
linearly scaled until the approach as determined in equation
(22) is equal to that as determined in equation (21). The total
load P is then determined by integration of the loading func-
tion, expressed in equation (19), over the contact surface to
obtain:

B 27R%p,
T3

The solution is now complete. For a given radius of indenta-
tion, the axisymmetric stresses and strains in an orthotropic
plate may be determined based on the assumptions that the in-
dentor is rigid and the constant stresses are Hertzian in nature.
The solution is illustrated in the following numerical example.

P (23)

5 Analytical/Experimental Comparisons

A [0/+45/0/—45/0],, laminate of graphite/epoxy was
analyzed to compare with test data generated on the same
layup by Tan and Sun (1985). The assumed ply data based on
Hercules AS1/3501-6 graphite/epoxy prepreg system (Lagace,
1982) is:

E,, = 130.8 GPa

E,, = E; = 10.6GPa

G, = G;; = 6.0GPa

v, = vy3 = 0.28

vy = 0.34

G,; = 3.9GPa
Thickness = 0.134 mm

To determine the three-dimensional constitutive properties
in an average sense, the three-dimensional stiffness matrix
based on the above ply properties was rotated in the x-y plane,
summed and averaged through the thickness. As the laminate
is balanced and symmetric, the following average engineering
properties based on the above procedure are:

E, = 87.8 GPa
E, = 21.4GPa
E, = 11.9GPa
G,, = 4.25GPa
G, = 5.42GPa
vy = 0.60
v, = 0.20
v,, = 0.30

Note that the in-plane shear modulus, G,,, does not enter
into the problem from the condition of axisymmetry. The
above plate is not transversely isotropic but using the proper-
ties generated along both axes (x and y), the analysis was con-
ducted using x as the major axis and y as the minor axis. These
properties were used in an axisymmetric fashion via equation
(4). Under the transverse isotropy assumed in the present
analysis, the r, @ constitutive properties correspond to the x
and y direction depending on the in-plane (major or minor)
axis used in the analysis. The current analysis was found to be

SEPTEMBER 1987, Vol. 541613
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Fig. 4 Major axis contact load versus detiection

much more dependent on the through-the-thickness properties
than the in-plane properties. Hence, the analysis was con-
trolled by the engineering constants E,;, G,,, and G,,.

Using the technique outlined above, the case of a rigid 12.7
mm diameter sphere was used for comparison to data ob-
tained in tests under the same conditions (Tan and Sun, 1985).
Two types of local indentation tests were conducted on
laminated beams with either direction (major or minor) along
the beam axis. An aspect ratio of 0.05 (plate thickness/plate
radius) was used for the analysis since the classical plate solu-
tion (Love, 1927) is recovered outside of these boundaries and
only the very local deformations are of interest in the present
problem.

Solutions for the major axis loading are compared with the
experimental data generated by Tan and Sun (1985) in Fig. 4.
Here, the nondimensional depth parameter { is defined as:

&= (z+h/2)/h

Fifteen harmonics of the loading function p(r) were used
(equation (16)) such that oscillations of less than two percent
in the loading, as expanded as a Fourier-Bessel series, were
present, Excellent agreement is found between the analysis
and the actual test data as the error is less than 1.5 percent.
The agreement for the minor axis solution shown in Fig. 5 is
not as close due to the geometric nonlinearities noted by Tan
and Sun (1985). The low flexural modulus in the y direction
caused more of the indentor to come in contact with the plate
effectively reducing p, and increasing R, as a function of the
load. The current model is incapable of handling such
nonlinearities and is thus in error by approximately 8 percent
from the test data. These results may, however, be adequate as
input to other analyses depending upon the particular

application.

614/ Vol. 54, SEPTEMBER 1987
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Fig. 5 Minor axis contact load versus deflection
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Fig.6 Contact compressive strains (at r equal to 0) as a function of nor-
malized depth

6 Contact Strains

The strains generated due to the contact problem are of par-
ticular interest in developing failure criteria. These strains are
used to predict incipient damage due to the localized loading.
The strains may be calculated via equations (3) and (7) and are
presented for the previous example for an approach, «, of

0.032 mm.
In Fig. 6, the through-the-thickness strains e, are plotted as
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Fig. 7 Bending strains (at r equal to zero) as a function of normalized
depth

a function of depth at the center of the plate for a loading of
231 N at the center of the plate. The strains begin at a finite
value and decay to zero at the bottom surface (¢ equal to 4/2).
Figure 7 is a plot of the bending strains at the center of the
plate (o is equal to o,, at r equal 0). The strains are com-
pressive at the top surface and become tensile through the
thickness. The neutral axis is not at the midplane of the
laminate. It is also interesting to note that the bending strains
are nonlinear through the thickness in the elasticity solution.

A plot of the shearing strains at the laminate midplane is
shown in Fig. 8 as a function of radius. The shearing stress o,,
is zero at r equal to zero as required by equations (7) and (14).
This figure illustrates how quickly the local stresses in the con-
tact region die out away from the point of load application. In
fact, at r/a equal to 0.4, the standard plate solution is
recovered and hence classical methods are valid outside of this
region.

7 Additional Loadings

Not all loadings can be adequately represented by a Fourier-
Bessel series and hence accurate solutions cannot be directly
obtained. However, if the point load solution can be obtained,
superposition may be used to obtain solutions for more
general loadings.

The point load solution can be obtained by considering a
loading of intensity p over radius c as shown in fig. 9, then the
total load P is pwc?. With the use of equation (165) and taking
the limit as the radius of contact ¢ approaches zero, the coeffi-
cients 3,, become:

P
T J} (u,) R2

The same boundary conditions as employed previously are
applicable such that the simultaneous equations for the
unknown coefficients 4,,, B,,, C,,, and D,, as presented in
Appendix A may be solved. To obtain more general loadings
this solution may be directly integrated using superposition for
any loading function. This solution may also be used for sharp
indentors which are not spherical as presumed in the preceding
analyses.

Bm= 25)
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8 Summary

A relatively straightforward and efficient approach has
been presented to solve for the deflection and strains in a com-
posite laminate subjected to lateral loading. Even with the
assumption of homogeneity, the analysis agrees well with test
data and can be used to predict localized strains which can
then be utilized with appropriate failure criteria to predict
damage initiation due to contact loading. The model cannot
account for all of the geometric and material nonlinearities ex-
perienced during large deformations and loadings but does
provide useful data to predict damage thresholds and damage
extent due to contact or impact type problems. The present
method offers advantages over finite element analyses in the
linear range since it is a continuous and analytic solution. It is
thus particularily useful in parametric-type studies in contact
problems of orthotropic materials.
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APPENDIX A

Solution for the Constants A4,,, B,,, C,,, and D,,

The constants 4,,, B,,, C,,, and D,, (in equation (15)) may
be obtained by placing the expressions for ¥ in the equations
for g, and o,, (equation (7)) at the mth harmonic.

O = w?n [(—csy +ds?)Ameglw’"z
+ (a5, + ds}) Bt + (ds, —ds) cpe1ons

+(cs, —ds3) D,,e ~5292] J, (w,,F) A.1)
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o, = ol [(L+as}) A,e19m + (1+as}) B,e 2°n
+(1+as})c,e519m* + (1 +as3) D,,e
17%m 2 m
—Szwmz] Jl (wmr)

The boundary conditions expressed in equations (17) and (18)
are invoked at each surface.

With the 3,, known for any given loading, the coefficients
A,,B,, C,,and D, are obtained by solving the simultaneous
equations at each harmonic m:

-
(—cs; +ds}lemum1h2  (—cs, +ds})eoms1h2

(—cs; +ds})eomh2 (s, + ds3)evmah/2

1+ ashe~ms1h/2 (1 + as})e~wms1h2

1+ ash)e=ms11/2 (1 + as})eoms2/2

(cs; —ds3)e—oms2h2 (csy — ds3)evms2h’?

(cs; —ds3)e~oms1h72 (cs, — ds})e—ems2h/2
(1 + as})ewms1/2 (1 + as3)evnms2h/2

(1 + as?)esmsih/2

(1 + as})e—“m2h’2 J

A m 6 m
B,, 0
S B (A.2)
D, 0
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Buckling of a Rectangular Frame

P. Seide

Department of Civil Engineering,
University of Southern California,
Los Angeles, CA 90089-0242

Revisited

An investigation of the buckling under uniform beam load of a rectangular frame
with columns restrained by linear rotational springs indicates that for certain ranges
of bending stiffness ratio, length-height ratio, and support rotational stiffness

parameter, the antisymmetrical bifurcation mode of buckling does not exist and
buckling occurs at a symmetrical deformation limit load. The ranges of parameters
Jfor which this phenomenon may be important are studied.

Introduction

It is an accepted fact in Horne and Merchant (1965) that
single story frames having members with primary bending
moments will buckle in an antisymmetric mode at a load less
than the symmetric limit load. The basis for this belief is
found in the investigations of Chilver (1956), Chwalla (1938),
and Lee (1963) of the behavior of frames with columns simply
supported at the base. During the course of an investigation of
the problem for clamped frames, results at variance with the
above behavior were obtained. For the particular values of
frame geometric and bending stiffness parameters in-
vestigated, no antisymmetric bifurcation point was found.
Failure occurred when the symmetric load-deformation curve
reached a limit point. It was decided then to redo the problem
for a frame restrained at its base by linear springs (Fig. 1) and
to investigate the variation of the critical load and mode of
buckling with the various parameters. The derivation of the
pertinent equations and a discussion of the calculated results
are given herein.

a= 2/

LA

Eplp

E.I

o

Fig. 1 Rectangular frame with elastic torsional restraint
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Derivation

1 General Stiffness Relationships. The end load-end
deformation relations for an axially loaded member of
uniform bending stiffness can be expressed in the following
form (see Fig. 2 and Horne and Merchant, 1965)

p
ot “
Myt < Va N _>!
8,
[
i
f
4 !
l
I
6) 3
. v :
—1-V, 1
k)"‘h ‘)J " i"—
P

Fig.2 Positive directions of forces and moments: (a) horizontal beam;
(b) vertical column
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pp?
Uy (24)
Vi) .
& ()= (WAJ) =3( )= d3( N =2¢,())— 7%/ (2b)
(W\/ﬁztan—;—ﬁ
&, (J) = =d3( )+ 4 () (20)
v 1 _ o v—.
s = TR mifeotml]) a)
$a( )= ’rm”@fw_ D 2¢)
s - o <
A=z(tan_2_ﬁ— Tﬁ). @)

If the member is restrained by a linear rotational spring of
stiffness C at end 1 so that

e

0

2 Symmetric Frame Deformations. In analyzing the
symmetric deformation of the frame, let the magnitude of the
uniform load on the horizontal member be taken as 2P./L so
that the load in each vertical column is P,. Since the distortion
is assumed symmetrical about the center line, the equilibrium
of only one of the joints need be considered. The end displace-
ment of the elastically restrained vertical column on the left at
the upper joint is a rotation — 6 (Fig. 3), so that the moment in
the column at this joint is given by equations (4) as

B30+ 2o (i)
3 .]c HC 1 Jc ECIC
My =— 6 @)
EL‘IC . H
1+ HC ¢3(./c)
with
. P.H* ®
Je =R T

The compressive axial load in the horizontal beam is unknown
and will be denoted by P,. The moment in the beam at the left
joint is the sum of the fixed-end moment due to the uniform
load and the moment due to end rotation such that

W, =0 Ba) W, =W,=0 %)
A Mi==CO o 01=—0,=—9. (9b)
the pertinent and load-end deformation relationships may be Thus equations (1) and (5) yield
determined as
[ ET EI , . EI EI i
v, 73—{%(J)"‘“fé’"[‘f’l(/l)%(l)‘d’%(])]} ——F—Z[%(J)J'_W%(D:I W,
! “@
EI
M, | 1+ ‘[CTd’a( ) 0,
E][ EI ] EI{¢(.)+EI¢(,)]
T ¢2(])+75‘¢1(J) IRAL J o™ J
The cases of frames simply supported or clamped at the base P BT
are obtained by putting C equal to zero or infinity in the 1 =—C—-“&[¢3(jb)—¢4(jb)]0 (10)
equations. $:(Jp) L
Finally, if an axially compressed member is subjected to  with
uniform transverse load g, the fixed-end reactions are given by . P,L?
Jp=— ET an
¢ T Lplp
Vi q—i— The total moment applied to the joint is given by
E.I
M m( NHgt? )4 Bl :
v 1 ) EJ $3(Jc) HC é,(Jc)
d C M=Mg+M, ==¢
V. q— =Me 0T Ty -
J 2 - ECICqS )
My —m(jgt? HC e
where E,1,/L . . 7%j, L
o o R 3= ba (il 0+~5E - ) )=0 (1)
m(p=———-.
' 2¢,(J)

618/ Vol. 54, SEPTEMBER 1987

from which the angle of rotation may be obtained.
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Fig. 3 Symmetrical deformed shape

The axial load in the beam is equal in magnitude but op-
posite in direction to the shear force in the column at the joint.
With the beam axial load considered positive in compression,
the use of the first of equations (4) and equation (11) and the
substitution of the expression for # given by equation (12)
yields the following relation between j, and j,

+ L’ L
Bl ( I ) ¢2(Jc) ¢1(./c) 1
E,J, \ H El ) $2(J5)
Cé‘¢3(.]c)
jo= 13
" jb¢(')+ECI“¢>(') "
THCTE B i
E.L EJI/H 193 Jp 4UJp
+ ,
HC 4)3(]0)
3 Infinitesimal Antisymmetric Deformations of the

Frame. In order to investigate the possibility of a bifurcation
of the symmetric deformation state, assume that for a given
distributed load additional infinitesimal antisymmetrical
deformations of the frame occur, i.e., a sideways motion — 6D
and equal joint rotations — 8¢ (Fig. 5). The column axial load
parameters change by equal and opposite amounts since the
vertical load on the beam remains constant. The use of equa-
tions (4) then yields the shear in each column at the upper
joints, correct to first order terms, as

vk, E . /H*
}=7 s 000+ 25050,(J0) |0
V§2 1+ECIC¢()
HC 3lJe

oD
~ {8100 + 2001 (0030 — 8301

+ 00+ 20, (o |80+ {81050 + 5

El. .

HC¢3(.IC)[ ' +ECIE . ]}06

—T d2(Je) H—C¢1(Jc) e
+ Hcd)ii(./c)

(14

where the upper sign refers to the left column, the lower to the
right column, and primes indicate differentiation with respect
to the argument. The column shear forces change by equal
amounts indicating that the beam axial load is unchanged.

The joint moment in the columns and in the beam are given
by equations (4) and equations (1) correct to first order terms
as

Journal of Applied Mechanics

Fig. 4 Deformed shape with antisymmetric perturbations
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Fig. 5 Variation of column axial load with beam axial load
(EplplEcl, =1, LIH=2)

Md} S * a0+ 250100 o

¢3(jc)

#0200+ T 0100 = [a 0+ 0o o0

6500+ 210
el i
HC v Bede T e
—T[m(m —c26,032)] {ovi. as)
¢3(.]c)
M E,I
! }= * (2220640 - 9 U
Mb2 L
P.L EI,
- 66. 16
TR (16)

Finally, the change in axial compressive load in the columns
is equal to the change of end shear in the beam. Then

2 Bh (B) g0,

§f. = ——
jc 7('2 ECIC
The infinitesimal horizontal load required to be applied to the
frame to provide the infinitesimal antisymmetrical displace-
ment is the sum of the column shear forces. Thus

an
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§V=—(Vh+ V&) (18a)
while the infinitesimal joint moments required to produce the
infinitesimal antisymmetric deformatlons are given by virtue
of equatlon (12), as

— (M4 + M) = —(ME +M,,). (185)

The use of equations (14) to (17) yleld the infinitesimal an-
tisymmetric load-deformation relations as

HYSV
2E.1,

ctc

HM
El

ctc

o8 (JE)+ [¢ (JIP3(Je) — d3(J)] ¢2(jc)+

For buckling in an antisymmetric mode setting the determi-
nant of the resulting stiffness matrix of equation (19) equal to
zero yields after much manipulation

Je=

HC E,I,/L

EJ1,/H

vj. =0 @n

1 e

equations (20) and (21) have been obtained previously in a

somewhat different form by Galambos (1960) and by Appel-
tauer and Barth (1961).

Results and Discussion

Calculations were first carried out for simply supported and
clamped frames having the relative stiffnesses and dimensions
Eyl,
E.l,

=1

L.—
=2

¢1(./c)

ey JEdey
C¢3(jc) HC S(Jc)

¢'2(Jc)+ Ee c¢1(./c) )

¢2(jc)+ C‘C‘d) (.I(_‘) !

2 E,,/L
w2 EJ/H

$2(Jp)0

El, .
=0l

Ed
Py cle . ,
EbIb/L ( 2 H d)3(‘/c) Hcd)l(./c)

E.I . E.I, ,
+
U7 63(J.) HC b3(J.)

SD/H
J L (19)

17

S

where primes indicate differentiation with respect to the argu-
ment j, and § is given by equation (12). Buckling in an an-
tisymmetric mode is possible if the determinant of the stiffness
matrix of equations (19) vanishes, for then the frame may be
in equilibrium with small antisymmetric displacements
without the imposition of antisymmetric loads.

4 Buckling of Frames With Loads Applied at the
Joints. Results for a frame elastically restrained at the base
and with the vertical load applied only at the joints may be ob-
tained from the previous equations. In this case j,, 6, and the
fixed-end beam moments vanish prior to buckling. The
criterion for buckling in a symmetric mode is obtained from
equation (12) by setting the infinitesimal symmetric joint stiff-
ness dM/d# equal to zero to vield

.)+Ec1c )
630 J; “I_‘I_C“‘bl(]c

E,I,/L
EJ,/H

=0. (20)

+ECIC¢ (Jo)
HC 3l Je
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These are the values treated by Horne and Merchant (1965).
Equation (13) was solved, with the use of computer code
DRTMI of Anon (1970), for the lowest values of j. corre-
sponding to a range of values of j,. This scheme was adopted
since for both types of support the values of j. increase to a
maximum as j, increases and then decrease, as shown in Fig.
5. The maximum values of j,. represent critical loads for sym-
metric deformation since the frame cannot be in equilibrium
for larger values of loading. The maximum values of j. ob-
tained are 0.6174 for the simply supported frame and 0.4044
for the clamped frame. The anomaly of the ostensibly stiffer
structure having the lower symmetric critical load may be at-
tributed to the clamped frame having a much larger beam
axial load.

Another interesting phenomenon is revealed by an examina-
tion of the antisymmetric bifurcation point. For each set of
values j, and j,, corresponding values of the determinant of
the stiffness matrix of equation (19) were calculated. For the
simply supported frame the determinant vanishes at a value of
J. 0f 0.1409 whereas for the clamped frame there is no value of
J. for which the determinant vanishes. Thus the symmetric
limit load is the buckling load of the clamped frame while the
simply supported frame buckles in an antisymmetric mode.

The effect of finite rotational restraint on the critical loads

- of the same frame is shown in Fig. 6. Calculations of the sym-

metric limit load and the antisymmetric bifurcation load were
made and indicate that the symmetric limit load decreases with
increasing support stiffness whereas the antisymmetric bifur-
cation load increases. The two loads coincide for a value of
support spring flexibility parameter E.I,/HC of about 0.18,

- below which the antisymmetric bifurcation point ceases to ex-

ist. The frame thus buckles in an antisymmetric mode with in-

Transactions of the ASME
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Fig. 6 Variation of critical loads with support torsional stiffness
(EplplEcle =1, LIH=2)
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Fig. 7 Comparison of various methods of calculation of symmetric
critical load (Eplp/E 1, =1, LIH=2)

creasing load as the support rotational stiffness increases until
a critical value of stiffness is reached. For larger values of sup-
port stiffness buckling occurs in a symmetric mode with
decreasing critical load.

Also shown in Fig. 6 is the antisymmetric buckling load with
the load applied at the joints (equation (21)) which is
reasonably close to the values obtained from the nonlinear
analysis. This is not the case with the symmetric buckling load
with the load applied at the joints. The results shown in Fig. 7
indicate that the discrepancy between the values obtained
from equation (20) and the symmetric limit loads given by the
nonlinear analysis increases drastically as the support rota-
tional stiffness increases. For the simply supported frame the
ratio of the two loads is 1.90 whereas for the clamped frame
the ratio is 5.75. The buckling loads obtained using the values
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Fig. 8 Variation of column and beam axial loads and antisymmetric
bifurcation load with bending stiffness ratio (L/H =2, C = )

of beam axial load given by linear theory and assuming the
beam and column loads to be applied at the joints are shown
in the figure by the middle curve. These values are closer to the
results of the nonlinear analysis but are still considerably in er-
ror and fail to predict the decrease of critical symmetric load
with increasing support rotational stiffness.

The foregoing investigation has indicated a change of buckl-
ing mode from antisymmetric bifurcation to a symmetric limit
point with increasing support torsional stiffness for a par-
ticular class of frames. To determine whether this is always the
case, a series of calculations were carried out for clamped
frames with a value of L/H of 2 and varying values of bending
stiffness ratio. The results of the solution of equation (13) are
shown in Fig. 8 together with the values for which the determi-
nant of the stiffness matrix of equation (19) vanishes. The
results indicate that the symmetric limit load is critical for
values of bending stiffness ratio E,1,/E I, less than about 2.1,
while the antisymmetric bifurcation load is critical for larger
values. Thus the range of frame parameters where a change of
buckling mode occurs is limited. The effect of various approx-
imations is shown in Fig. 9, which indicates, as before, that
the antisymmetric bifurcation load, where it exists, is affected
very little by prebuckling deformations whereas the symmetric
limit load can be calculated accurately only by means of a
nonlinear analysis.

The complete range of parameters for which the symmetric
limit load is critical is indicated by the results of Fig. 10 where
symmetric limit loads and antisymmetric bifurcation loads are
shown for clamped frames having various bending stiffness
and dimension ratios. If the symmetric limit load
predominates for a clamped frame it may be critical for an
elastically supported frame and should be investigated. If,
however, antisymmetric buckling predominates for a clamped
frame it will be predominant for an elastically supported
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Fig.9 Comparison of various methods of calculation of symmetric and
antisymmetric critical loads (L/H =2, C = o)

frame and can be calculated with reasonable accuracy by
neglecting prebuckling deformations. It can be seen, however,
that generally symmetrical buckling is important only for
frames for which the beam bending stiffness is less than the
column bending stiffness. The maximum stiffness ratio
E,I,/E I, for which symmetrical buckling predominates
decreases with decreasing length-height ratio from a value of
about 1.0 for L/H of 5 to a value of about 0.1 for L/H of 1. It
should also be noted that the neglect of support fixity by the
assumption of simple support is always conservative. For
simply supported frames, antisymmetrical buckling
predominates and is satisfactorily calculated by assuming
beam and column loads to be given by the results of linear

theory.
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Rotation Theory of Elastic
Anisotropic Plates

A general nonlinear theory for the dynamics of elastic anisotropic plates that ac-
counts for transverse shear strains and moderate rotations is presented. The theory
contains, as special cases, the von Kdrmdn classical plate theory, the firsi-order

shear deformation theory (i.e., the Reissner-Mindlin plate theory) and the third-
order shear deformation plate theory. The theory is characterized, even for isotropic
plates, by strong coupling between various equations of motion.

1 Introduction

In geometrically nonlinear theories of elastic anisotropic
plates one often assumes that the strains and rotations about
the normal to the midplane are infinitesimal and retains the
products and squares of the derivatives of the transverse
deflection in the strain-displacement equations (the von Kar-
man assumption; see Medwadowski, 1958; Ebcioglu, 1964;
Chia, 1980; Reddy, 1983 and 1984a). The full geometric
nonlinearity (implied by the strain-displacement equations of
nonlinear elasticity) in shell theories was considered by Naghdi
(1972), Librescu (1975), Yokoo and Matsunaga (1974), Habip
(1966), and Pietraszkiewicz (1979), among others. Considera-
tion of full geometric nonlinearity not only results in complex
equations, but is not warranted in most practical problems.
On the other hand, the von Kdrmdn nonlinear theory does not
account for all moderate rotation terms that could be of
significance in the analysis (especially in stability problems) of
plates. The small strain and moderate rotation concept was
used in the classical theory of plates and shells (in which the
transverse strains are neglected) by Sanders (1963), Koiter
(1966), Reissner (1958), Pietraszkiewicz (1980, 1984), and
Schmidt (1984) and in refined plate and shell theories by
Wempner (1973), Naghdi and Vangsarnpigoon (1983), and
Librescu and Schmidt (1986). Additional large rotation
theories can be found in the works of Ranjan and Steele
(1980), Kayuk and Sakhastskii (1985), Nolte et al. (1986), and
Tura (1986).

The present study deals with a new higher-order theory of
anisotropic plates that accounts for transverse shear strains
and moderate rotations. The theory is a generalization of the
classical plate theory, the first-order shear deformation (i.e.,
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Reissner-Mindlin) plate theory, the refined theory of Kromm
(1953, 1955), and the third-order shear deformation theories
of Reddy (1984a, b). The theory is based on an assumed
displacement field and orders of magnitudes of linear strains
and rotations. The associated strain-displacement equations
are presented and the equations of motion are derived using
the principle of virtual work. Specialization of the equations
of motion for various well-known existing theories is
demonstrated. A detailed account of the strain-displacement
equations, constitutive equations and the equations of motion
of the first-order shear deformation theory with moderate
rotations is presented. The latter should aid the development
of the finite element models of the theory.

2 Notation and Basic Assumptions

Points of a three-dimensional continuum ¥V are denoted by
their orthogonal curvilinear coordinates x=(x!,x%,x%).
Covariant and contravariant base vectors at points of the con-
tinuum are denoted by g; and g/, respectively. Latin indices are
assumed to have values 1, 2, 3, and the Greek indices have
values 1, 2. The plate continuum in the undeformed con-
figuration is defined by the Cartesian product of points in the
midplane £ and the normal [— A/2, h/2]:

Voo [ 1]
- 272
where h denotes the constant thickness of the plate. Let x*
denote the curvilinear inplane coordinates and x? be the nor-
mal to Q. The metric tensor components of Q are denoted by

8o =8oBg> 8P =gegf, gB =gy =1
ar

B = o
where r is the position vector of a particle (x*, x?) at time ¢, 68
is the Kronecker delta, and n is the unit normal to the
boundary of Q.
The displacement vector of a point in the plate at time ¢ is of
the form

g,°g°=080, g3=n 6))

u=u"g, +uin=u,g% +u;n )
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where the Einstein summation convention on repeated
subscripts is assumed. The covariant components of the
Green-Lagrange strain tensor are given by

1
fijZT(uin+ujii+umlium|j) 3)

where a vertical line denotes covariant differentiation (see
Reddy and Rasmussen, 1982). The strain components ¢; can
be expressed in terms of the linearized strains e; and rotations
wu as

1 1 1
ey=e;+ =" e el + -5 (e,;0] +e,,;wl) + - @] 4)
where
1 1
eij:—z_(uilj"'ujli)’ wij=—2“(uiu—uj|i) (5)

We now assume that the strains ¢; and rotations w; are of
the following magnitude (cf Librescu and Schmidt, 1986):

e;=000%), w,=0(0%), w,=00), <<l 6)

Equation (6) implies that the strains and the rotations about
the normal to the midplane are small, and that the rotations of
a normal to the midplane are moderate. Such assumptions are
justified in view of the large inplane rigidity and transverse
flexibility of composite laminates.

Neglecting terms of order (#4) and higher in the strain-
displacement equations (4), we obtain (cf Librescu and
Schmidt, 1986):

1 1
3 3
€up =g T 5 (e34wp + €35w3) + 2 W3,Wh

=e +—L( d+e 3)+—1— 5
€a3 = €43 > EraW3 T €330, ) Wia W3

1
€33 = €33 + )35 + “‘Z“wmwg‘ M

where the underlined terms are of order (63).

3 Displacements and Strains

The present theory is based on the following assumed varia-
tion of the displacement components across the plate
thickness:

u, (x8,x3,1) ul (X8, 86— x3us ., + f(xXul(xP, 5
Uy (B, 3,0 = ug(xP, )+ i§(xP,¢) ®)

where fis a specified function of the thickness coordinate x3.
Note that the transverse deflection is assumed to be independ-
ent of x3 and consists of two parts, one due to bending and the
other due to transverse shear, The separation of the transverse
displacement into two parts allows the representation of non-
vanishing shear strain at clamped edges. When &9 is zero, then
the linear portion of ¢;; vanishes at a clamped edge because
ug , =ul =0 there (cf Huffington, Jr., 1963; Krishna Murty,
1986). The particular form of displacement field is assumed in
order to include the displacement fields of the classical plate
theory (set #§ =0 and u!=0), the first-order shear deforma-
tion theory (set #g =0 and f(x*)=x3[1—4/3(x*/h)?]), among
others. Note that in all derivations presented here no special
form of f(x?) is used, to keep the generality of the theory.

For the displacement field in equation (8), the strains for the
moderate rotation theory become (consistent with the assump-
tions in equation (6)),

eaﬁ =€gﬁ +x36é5 +fKD(ﬂ
€q1 = €2 +8EL + X3 K0 + X kly + fely + fEEL,
€33 = €5 + 8% + 87843 &)
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where g =df/dx?, and
1 1 . .
€25 =T(”§m + “8|a)+7(u3’|a + U8 1)U + U4 15)
etle = uglaﬁ

L
Kap = 2 (ualﬁ+u6|a)

|
6332 P (ugla—utailauglﬁ)
éo ——1 (vl +ug, ul
T o F UG Ug)
o B— 1 0 0
Ka3"‘_2 U3 U3\
1 _ 1
Koy = — P ugl)\au)\

1 1

€x3 = 3 Unia¥3 1)
é —l—u1 u}
o3 — ) PN N

1
[+ S 0
€33 = —UF |, US|

2
&y = —ul ity
2 1 1,,1
€33 =—2—Umua (10)
4 Equations of Motion
The dynamic version of the principle of virtual

displacements is used to derive variationally consistent equa-
tions of motion associated with the displacement field in equa-
tion (8). The principle can be stated (see Reddy, 1984c), in the
absence of body forces and prescribed tractions, as

0= SOT [SV (oifaei,»)dV+ Sﬂ qéusdA — Svp(u,ﬁd,-)dV] dr (11

where ¢ denote the contravariant components of the sym-
metric stress tensor, g=qg{x*) is the distributed transverse
force per unit area, and p is the density of the material of the
plate. The superposed dot denotes the time derivative,
u=0u/dt. Using the strains in equation (9), equation (11) can
be written as

T h/2
0= S [S {S [0°8 (€35 + x> Belg + [0k o) + 20°%(8els

4] Q —h/2
+ g6E9, + X38K% + X3 gdly + fOeks + f30éls) + 0% (5eds + g0E3;
+8%888;) — pugdus — () us 1,005, — pftul sul + px® (usdus
+0ugus ) — fo (ugduy, + 8udug) + pfx* (U, 00y + 515, 1)

—p (1§ + U9)(0u8 + 64]dx® + q (6ug + &2‘3’)} dA]dt (12)

Following the standard procedure in the development of plate

theories, we ~introduce stress resultants, couples, and
analogous higher-order quantities,

h/2
et ot Pty = | o122, e
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h/2

(@, 0% R*,R*,8%,5) = S L, 0008’ x%g, f, fe)dx’

—h.

o w2
R =" o g g (3

Note that the introduction of the moments, couples, and
higher-order quantities is necessary to reduce the three-
dimensional theory to a two-dimensional one. Substituting the
relations (13) into equation (12), we obtain
T
0= S ﬂ [N 8es + MBoels + PBoi g
o Q
+ 20862, + O6E9, + R*6k% + R*bxly + S8ely + S*5el,
+ N38€gy + N36e, + N36ég, + g (bug + 5ilg)
— 1, [25u8 + (ug + U3)(01i3 + 843)] + 1, (UQ0113 , + 611213),,)

— K (ug8ul + 8ugul) + I 6l +6ug k)

= 1,115,,0U8\ — B 81, )dA Yt (14)
where I’s denote the inertias,

n2

I,= S pdx?
—h2
h/2

I = S px3dx’
—h/2
h/2 s

[ =

A S —h/2 pfx
w2 s

L= S—h/z p(x°)*dx

N h/2

= v

~h/2
12

g={" pr2ae as)

The equations of motion of the theory are obtained by
substituting equation (10) for the strains in terms of the
displacements (w2, ug, 43, ul), integrating by parts to transfer
differentiation from the displacements to the stress resultants
and couples, collecting the coefficients of the various virtual
displacements, and invoking the fundamental lemma of the
calculus of variations. We obtain the following six equations:

dud: NO g —(QPug ) g +(QPuly |y = 1,40 — 1,ii3 o + IT{ i,

bug: M8 | g+ INB(u$ g + 88 10)] I~ (Qot4312) I

- (Ra |O(ug|o() lﬂ + (ﬁau{li) |ﬁa _(Sau[li lo +(N3ug|tx) |ct

2 .-1 3
ala +12u01|a _IZuglaa

—(Neul) |, =q+1, (i + 49) + 1, i°
80g: [N (ugip+ 831p)] |y + O Lo =g +1, (1§ + i3)
Sul: PP Iﬁ-—Qﬁ(6aﬁ+ug|ﬂ)+1§"u‘3’mﬂ+§’3 gt

— (5Pu$1,) lg = Nul, + NPu3,, = Kt — L1, + B, (16)

where the underlined terms are due entirely to the inclusion of
moderate rotations (i.e., over and above the von Karman
nonlinear terms).

Equations (16) can be specialized to the three different
theories discussed earlier. The equations are summarized
below:

() Classical Plate Theory (i13=0, ul =0)

Journal of Applied Mechanics

NeB g — (QPuf\o) g =1,

M8 laﬁ + (N“"ué’.,g) I —(Q“u;?la) |ﬁ
_(Ro( |au‘3’w) Iﬁ + (N3Ug|a) |ut

=q 1,05+ 1103 o — 118 g a7
(i) First-Order Shear Deformation Plate Theory (u$=0,
J=x%

NeB g+ (QPul) g = 1,49+ 1,11,

O Ly + N8 ig) | =g +1,i8

M1, — QB (8,5 + u%15) — Noul + RP lgul = I 1o + i, (18)
(iii) Third-Order Shear Deformation Plate Theory
(ug=0, f=x [1 ——:—(x3 Ih)ZD
NeB 1o+ (QBul) lg =1, 40 + I i,
QI+ (N3 ) |, = q+1,43
PPy — OF (B + 18 15) + S8 lgul — NPul = Idio + Biil, — (19)

Note that several other theories can be obtained from equa-
tion (16) as special cases. For example, the refined theory of
Kromm (1953, 1955) can be obtained by setting #§=0.

5 The First-Order Theory With Moderate Rotations

In view of the extensive use of the first-order shear deforma-
tion theory (most often referred to as the Reissner-Mindlin
plate theory or simply the Mindlin plate theory) in practice,
the detailed equations of the theory with moderate rotation ef-
fects are presented here. Librescu and Schmidt (1986)
presented such a theory, but the governing equations given
there were in terms of the resultants instead of displacements.
It is informative to note that the substitution of the
displacements and their gradients for the resultants into the
equations given by Librescu and Schmidt (1986) will give rise
to many additional terms which, by the assumption in equa-
tion (16), should be zero. To make use of the relations (16)
these additional terms must be expressed in terms of the
strains e; and rotations AN

Displacement Field
1, (X531 =ud (3B, 1)+ xPul (x£,0)
Uy (x5, 3,6y = ug (%, 1)
Strain-Displacement Equations

20

— 0 3.1
eaﬁ'—eaﬂ +Xx Gctﬁ
— 0 3.1
€30 €5y T X €3,

¢2Y)

— 0
. €33 = €33
with

1 1
Egﬂz‘z—(ugw +uf§1a)+—2 U5, US 1

1
fclxﬁz—z (uh1p+4bia)
0 — 1 [ 1 ! 1,,0
63&‘T(u3|a+ua)+ 2 uﬁulﬂu

[ _ 1,1
€30 ™ 5 Uplp |y

22)

[ J— 1,,1
€33 = Uy

2
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Equations of Motion
NB g+ (QPulg) lg = 1,88 + 1y,

Ma@ ‘6_Q5(6aﬂ +u§|ﬁ)—N3uL+Rﬂ |ﬁu}¥=llu‘;+12ii2,

(N*Pug\p) g+ Q% |, =g+ 1,48 23)
where
h/2 .
et pety = o an
—h/2
h/2 ) ; d 5
o R) = (1, X
(@ R%) S—//zo (1,x%)
h/2
A= S oy 24)
—h/2

Constitutive Equations of a Laminate

le W ’All A12 A16 A13 Bt B2 BlG “ . 5(1)1 W
NZ A12 A22 A26 A23 B12 BZZ B26 6‘2)2
N6 Ale A26 A66 A36 B¢ BZ6 BGG 26‘1)2

P, N3 r= Al3 A23 A36 A33 Bl3 BZS B36 P 6573 L
Ml Bll BIZ Bl6 B13 D1 pi2 Dlé el
M 2 B2 BZZ BZ6 B23 D 12 D22 D32 Eéz
gM 3J wBlé 326 366 B36 D16 D26 D66 J L2€{2 J

QZ A 44 A 45 B44 B45 2633
Ql A45 ASS B45 BSS 2613
= (25)
R2 B¥% B D% D% 26;_3
Rl B45 BSS D45 D55 2613
where NI' =N!, N2=N2 N2=N¢ etc., and
47,89,00= 33 {7 0 (102,00
k=1 Y%~-1
(i, j=1,2,3,6) (26)

N being the number of layers in the laminate, Qi{k)are the
elastic coefficients of kth layer in the laminate coordinate
system, and (xj_,, x}) are the x3 coordinates of the bottom
and top of the kth layer. The coefficients AY, BY, and DV for
i, j=4, 5 are defined in equation (26) except that QY,, are
multiplied by appropriate shear correction factors. Inspection
of the equations of motion (23) reveal that the moderate rota-
tion terms couple all three equations of motion. Recall that the
von Karman nonlinearity is present only in the third equation.

6 Closure

A higher-order shear deformation theory for the dynamics
of general anisotropic plate that accounts for moderate rota-
tions is developed. The theory contains, as special cases, the
von Kdrmdn analogs of the classical plate theory, the Reissner-
Mindlin plate theory and a third-order shear deformation
theory. All equations of motion of the theory are strongly
coupled. The detailed equations of the first-order, moderate
rotation, shear deformation theory of laminated composite
plates are outlined. A close examination of the virtual work
statement shows that the displacement finite element model of
the first-order theory still requires C° elements for the approx-
imation of the five displacements (12, ul, ug). The develop-
ment of finite element models of the moderate rotation
theories presented here awaits attention.
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Nearly Circular Connections of
Elastic Half Spaces

In this paper we solve the elasticity problem of two elastic half spaces that are joined
fogether over a region that does not differ much from a circle, i.e., the problem of

Hu aii an Gao an exter.nal planar crack leaving a nearly circular uncracked connection. The method
we use is based on the perturbation technique developed by Rice (1985) for solving
James R. Rice the elastic field of a crack whose front deviates slightly from some reference

geometry. Quantities such as crack opening displacement and stress intensity factor
are derived in detail o the first order of accuracy in the deviation of the shape of the
connection from a circle. In addition, some results such as the crack face weight
Junctions and Green’s functions for a perfectly circular connection are also dis-
cussed under various boundary conditions at infinity. The formulae derived are used
to study the configurational stability problem for quasistatic growth of an external
circular crack. The results, derived when the crack front is perturbed from circular
in a harmonic wave form and is subjected to axisymmetric loading, suggest that a
perturbation of wavenumber higher than one is configurationally stable under all
boundary conditions at infinity. The perturbation with wavenumber equal fo one,
which corresponds to a translational shift of the geometric center of the circular con-
nection, turns out to be configurationally stable if any rotation in the remote field is

Division of Applied Sciences,
Harvard University,
Cambridge, MA 02138

suppressed and configurationally unstable if there is no such restraint,

Introduction

Rice (1985) developed a method of solving the elasticity pro-
blem of a planar crack whose front differs slightly in location
from that of some reference geometry. It has been applied to
cases such as semi-infinite planar cracks with slightly
nonstraight fronts (Rice, 1985; Gao and Rice, 1986) and inter-
nal somewhat circular cracks (Gao and Rice, 1987). The latter
work (Gao and Rice, 1987) has shown that the perturbation
method is not only convenient but also remarkably accurate in
determining crack opening displacement and stress intensity
factors for crack configurations that differ moderately from a
circular reference geometry. The internal circular crack pro-
blem was addressed much earlier in a perturbation sense by
Panasyuk (1962), and Gao and Rice (1987) compare their ap-
proach to his. Rice’s perturbation method can be carried out
immediately for a tensile crack if the solution for the stress in-
tensity factor distribution is known along the reference crack
front due to a pair of concentrated wedging forces acting to
open the crack at an arbitrary location on its surfaces. Such a
point force solution, sometimes called the crack face weight
function after Bueckner (1970, 1973) and Rice (1972), was

Contributed by the Applied Mechanics Division for presentation at the
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derived by Stallybrass (1981) for an external circular crack,
i.e., a circular connection between elastic half-spaces under a
traction free boundary condition at infinity. Following
Stallybrass’s work we are also able to clarify ambiguities in
some previously proposed solutions in the literature (e.g.,
Kassir and Sih, 1975; Tada et al., 1973).

In this paper we therefore solve for the crack opening
displacement and tensile mode stress intensity factor for a
slightly noncircular connection. The notation § (F) is used in
what follows to denote the variation in some field variable ¥
from its form for the reference circular crack to that for the
perturbed crack shape.

Consider two isotropic, homogeneous three-dimensional
elastic semi-infinite solids joined over some slightly noncir-
cular connection of bounding contour ¢. A Cartesian coor-
dinate system x, », z is attached so that the joining planes lie
on y = 0 and the origin of the coordinate system is assumed to
coincide with the center of some convenient reference circle.
This configuration forms an external crack with its front ¢
described by some function a(s) where a(s) is the distance
from the origin of the coordinate system to the position s
along the crack front; a(s) is nearly constant, and is constant
on the reference circle. The crack system is subjected to some
distribution of fixed forces that induce ‘“‘Mode 1°° tension
along the crack front. We may note that in this case when the
crack grows into the connecting ligament, a(s) decreases.
Therefore, we represent the crack growth from the reference
circular shape to the actual shape by —éda(s). In this cir-
cumstance it can be shown, following Rice (1985), that the
variation in opening displacement Au (x,z) between upper and
lower crack surfaces at location x, z, when the crack front is
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altered from the reference circular front by — da (s) in presence
of the fixed load system, is

—_ 2
8lAu (x,2)] = —%ﬁ_l @)Cm(s)k(s;x,z)aa(s)ds (1)

to first order in a (s). Here K°(s) is the Mode 1 intensity fac-

tor induced along the reference crack front by the fixed load -

system and k(s;x,2) is the intensity factor that would be in-
duced at arc length position s along the reference front by a
pair of unit wedging forces opening the crack at location at
X, z; k(s; x, z) can be called the Mode 1 crack face weight
function. This weight function is discussed in detail in Appen-
dix A. Here the intensity factor K is defined so that K/~/27e is
the asymptotic form of the tensile stress at small perpendicular
distance e from the crack front on the prolongation of the
crack plane within the connection.

Crack Opening Displacement

We choose the reference crack as a perfectly circular con-
nection of radius a and adopt polar coordinates for conve-
nience so that s = af’ in equation (1). Here the polar coor-
dinate angle 8’ is measured from the positive x axis, increasing
towards the positive z axis. To emphasize dependence on the
reference circular radius a, we introduce the notations
K% (s) =K [0:a] and k(s; x, 2)=k(0'; r, 8; a) for the intensity
factors induced at ¢ along the reference crack front, respec-
tively, by the given load system and by a pair of unit wedging
point forces at polar position r, §. Then equation (1) becomes

2(1—p?) (2r
E So

x K°[0"; alk@®’; r, 0; a) a da(®’) db’ )

S[Au(r,®)]= —

where 6a(8’')=a(§’)—a. Also, we introduce the notation
Au (r, 0) = Au® [r, 8; a} to describe the opening of a perfectly
circular connection of radius ¢ under the given loadings.

We can also derive K° [6'; a] by the law of superposition
when some distributed load p(r; 8) is acting on the external
crack faces

2r poo

xwsa="{"pe, 9 k@0 0 0dods B
The problem of general tensile loading can also be described in
this way when p(r, 0) is equated to the tensile stress which the
general loading would induce at r, 8 in the absence of the ex-
ternal crack.

To find the opening displacement field for a perfectly cir-
cular connection, we impose a uniform crack growth, i.e.,
Sa(0') = ba in equation (2). Then dividing both sides of equa-
tion (2) by éa and lettering 6@ — 0, we get

0AU°[r, 6; a] 2(1 —»?) gz"
da B E 0
X K°[07; alk(8'; r, 6; a)a db’ 4)

Noting that Au® [r, 8; a]=0 when @ = r (only crack faces
open), we integrate over the crack size variable a’ and get

(1—1)2) S21r Sr

Ofp g gl =
Aullr, 6, al=2 i o Vs
xKO'; a1 k@'; r, 0;a’)a’ da’ do’ %)

Substituting equation (3) into (5), we get the following
general crack opening displacement for external circular

cracks,
2 pr op2m poo
S S S Sa, k(0'; 0, ¢;a)

0 a JO

(1-v?)
0 . =2

Aullr, 8; a] % |

xk(0';r,0;a’)a’'p(o, ¢) pdpdd da'df’ (6)
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If we switch the order of integration with respecttoa’, 6’ and
o, ¢, we therefore could rewrite equation (6) as

27 =)
8l 1 6a= T DG 06, 9) plo, 6 0dpds ()
where
. B (1—1/2) Smin(r,p) S‘Zr
D(r, 6) P, d))’_z E a 0
Xk(0’; p,0;a’)Yk(0';r,0;,a’)a’ di’ da’ 8)

is clearly identified as the crack face Green’s function for an
external circular crack, and it is further discussed in detail in
Appendix B and also in Appendix D.

Equation (6), or equation (7) combined with equation (8),
gives us the formula to determine the crack opening displace-
ment for a perfectly circular connection. The integrals in those
equations can be carried out once the loading system p(r, 6)
and the crack face weight function k(8'; r, 6; @) is known.
The function k£(8’; r, 6; a) is discussed in Appendix A and
presented under various boundary conditions at infinity. The
most general form of k(8'; r, 6; a) is given by equation (4-9)
of Appendix A under traction free, completely unrestrained
displacement conditions at infinity. For convenience we pre-
sent it here too:

k’;r, 0 a)=G;1)‘3‘/T {[COS_I (%)

aNr: —a? }
a?+r*—2ar cos (0’ —6)

+3 [% cos-! (—g—)+(1~—‘:22—) w] cos (0'~9)} ©)

When the shape of the connection is slightly noncircular, it
is convenient for purposes of calculating the opening Au (r, 6)
along the ray at any particular angle § to take the radius of the
reference circular crack front to be a circle of radius equal to
a(f). We then are able to let r approach simultaneously both
the reference front and the actual perturbed front. This pro-
cedure, as described in earlier papers (Rice, 1985, Gao and
Rice, 1986, 1987), is necessary to retain the correct asymptotic
behavior near the crack front as is crucial for the calculation
of the stress intensity factor along the perturbed crack front.
Then equation (2} becomes,

A=) (27 orpr. T
= SO KO[6; a(6)] k(075 1, 0; a(6)

6 [Au(r, 0)]=2

X [ a®)—a(@')] a®) 4o’ (10)

Equation (10) plus equation (6) then gives the total opening
displacement as

Au(r, ) = Aullr, 6; a(®)]+ 6 [Au(r, 6)]

a-» S2{S N
2 5 . aw)K"[e,a]k(e,r,&,a)a da

+ K°[0'; a®k(0'; r, 6; a(6)) [a(@)—a(@’)]a(())} do’
(1 _ VZ) 2rpr
2 E go Sa(of)

x KOO'; a’) k(8’;r,6;a’) a’ da’ db’

(1)

where the last = means equal to first order of accuracy in
q(@’) ~ a(f). Equation (11) can be used to evaluate the open-
ing displacement for a slightly noncircular connection if one is
given the shape of that connection (i.e., the function a@")).
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Stress Intensity Factors

Stress intensity factors can be extracted from the near tip
behavior of the crack opening displacement, as indicated by
equation (B-13) of Appendix B. The same relation holds be-
tween 6 [Au(r, 6)] and 6K(6), the first order variation of inten-
sity factor as

slau(r, 8)]= %‘"—2)
x {61((0) “(?W 710 [a(d) - r)3/2]} (12)

where again the variations are from the reference circular

front, of radius equal to a(f), to the perturbed front.

Substituting crack face weight function (9) into equation (10)

and letting r — a(f), we get the following asymptotic formula
20— |r—a®)

27
7E Ta(0) So

) 2 a0 2a(®)
X K°[8"; a(0)] {\/a—((; + a(6)24 sin® [(0—0')/2]
6V2 cos (0" -0)

T } [a(6)— a(6")] db’

Comparing equation (13) with (12), we see immediately that
the variation in stress intensity factor is
SK(0)=K(6) — K°10; a(0)]

1

=— PV Szw KO0’ a(®) 11 —a(®’)/ a(®)]
27 0

S[Au(r,0)] =

(13)

+6cos (6’ —0) } do’ (14)

et
4 sin? [(§' —6)/2]

Here PV denotes principal value. Equation (14) gives the for-
mula to evaluate the stress intensity factor when the shape of
the connection, i.e., a(f’), and the loading configuration, i.e.,
KO [8; a(6)], are known.

In fact, equation (14) is correct only when we do not have a
displacement-restraint type of boundary condition at infinity,
i.e., when the crack system is subjected only to fixed forces.
Similar to the discussion in Appendix A, we treat some typical
displacement boundary conditions at infinity in the following.

(i) ‘“Clamped’’ at Infinity, i.e., Fixed Against Any Displace-
ment. In this case, the crack face weight function should be
k,(8’; r, 6; a) of equation (4-6) of Appendix A. Following
the similar steps leading to equation (14), we have

2r KO[97; a(0)11 —a(f’)/ a(f)]

do’
0 sin?[(8’ — 6)/2]

135

6K () :-8_17? PV S

(i) Free Vertical Motion But Fixed Against Rotation. In
this case, the crack face weight function should be
k,(0"; r,8;a) of equation (4-7) of Appendix A. Similarly we
have

27
61((0):% PV So K [07;a(0)] [1 —a(0’)/a(6)]

1 ’
X {1 Y snl [0 —0)/2]} db (16)

(iii) Free Rotation But Fixed Against Vertical Displacement
Along y Axis. In this case, the crack face weight function
should be k,(0"; r, 8; a) of equation (4-8). Therefore,
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1 27
oK(0) =5 PV So K° [07;a(0)] [1 —a@’)/ a®)]

+6 cos (0’—9)} dg’ a7

x {_—__1

4 sin?[(0’ —6)/2]

From now on, for conciseness we will refer to the above dif-
ferent cases of boundary conditions at infinity by their case
number, e.g., case (i) represents fixed displacement at infinity,
and the case of equations (9), (13) and (14), for which there is
no restraint against displacement at infinity, will be called case

(iv).

Growth Mode of an External Circular Crack

The previous elastic analysis of somewhat circular connec-
tions may be used to study the configurational stability of the
fracturing process of a bonded circular area between two large
elastic solids, at least when this occurs quasistatically (e.g., by
fatigue load cycling or sustained load corrosion) under elastic
fracture mechanics conditions. We study the configurational
stability of the mode of growth as a concentric circle of
diminishing radius for an external, initially circular, crack
under some spatially fixed axisymmetric loading system. Since
any somewhat noncircular crack growth profile could be
represented in terms of a Fourier series, it will be sufficient to
consider the following perturbation of the front in a harmonic
wave form:

a(®)=a, — Re [Ae™) (18)
where g, is a real constant, n is an integer, 4 is a constant
(possibly complex) and |4|/a, << 1. We assume that the
quasistatic growth rate of the crack increases with the intensity
factor at the same location along the front. Then a small har-
monic perturbation of wave number n can be said to be con-
figurationally unstable (increase in amplitude |4|) during sub-
critical crack growth if the intensity factor K(0) is decreased
from K°[0; a,] when a(6) exceeds a, and increased when a(6) is
less than a,, and configurationally stable if the opposite is
true. That is, crack growth is likely to amplify the forms of
those unstable wave configurations, if any exist. Of course,
the growth or decay of the harmonic perturbations is
understood to be superposed on the uniform axially symmetric
diminuation of a, in describing the total crack growth.

Since the applied loading is now considered axially sym-
metric relative to the reference crack center, K°[8’; a] =
K°[a], i.e., it is independent of angle. Substituting equation
(18) into equations (14), (15), (16), and (17), carrying out the
integrations, and expanding K°[¢] to the linear term in a
Taylor series about a,, we have to the first order in |4],

dK?® .
K(0) =K [a,] - {——[LO]+L K[a,] } Re [Ae") 19)
dagy 2a,
where for case (i), n, = n; for case (if}, n, = n + 2; for case
(i),
-5 n=1
n =
n otherwise
and for case (iv),
-3 n=1
n = (20)
n+2 otherwise

Clearly if the sum within the curly brackets in equation (19) is
positive, any perturbation from circular of the corresponding
wavenumber would be diminishing, i.e., configurationally
stable since K attains the smallest value at the places where the
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crack has grown most, i.e., where 4e™® = |A4|. For conve-
nience we name this sum by H(n,) to emphasize its dependence
on the number »n, (which further relates to wave number #) so
that the critical, neutrally stable situation can be said to be
reached at a number n¢ (niot necessarily integer) satisfying
H(n§) = 0. It is easy to see that when n, > nf the quantity
within the curly bracket in equation (19) becomes positive and
it becomes negative if the opposite is-true. Therefore, n; < n§
must be satisfied for a configurationally unstable wavy mode
perturbation. It can also be noticed that the translational shift
mode, i.e., n = 1 is most likely to be unstable for cases (iif)
and (fv) since n; < 0 in those cases, and higher modes (n > 1)
are more likely to be unstable for cases (i) and (i) since n; =
7 in those cases. Hence it might be suitable to conclude here
that case (ji) when points at infinity can only move freely in the
vertical direction and are fixed against rotation is the most
stable crack system while case (/i) when points at infinity can
only rotate freely about a fixed point on the central axis y is
the most unstable system, especially for the translational mode
n=1.

Remotely Applied Centered Force; Imposed Remote
Displacement

Consider, for example, that a remotely applied tensile force
F is transmitted across a circular connection with no net mo-
ment about the center of the connection. The case (iv) for-
mulae of the last section apply here and

daK®

da,
By equations (20), we know that n; = n + 2 for n > 1.
Therefore, H > 0 for n > 1 so that all perturbations of
wavenumber greater than one are configurationally stable.
For the translational mode, i.e., whenn = land n;, = — 3, it
is obvious that H < 0 so that this mode is configurationally
unstable. In fact, equation (19) becomes whenn = 1,

K=K° [1+3 Re(Ae?)/ay] 22)

We get the same relation by applying equation (B-8) of Appen-
dix B, for a connection under remotely applied force and mo-
ment, as in this case the center of the connection has simply
been shifted by an amount |4 | so as to generate a net moment
equal to F|4| about the § = 90° — arg (A4) axis (here arg (4) is
the phase angle of A4). Therefore, equation (22) is valid even
for a shift of any finite amount. This suggests that transla-
tional shift is very likely to occur when the crack system is sub-
jected only to a centered force. It should be noted that the
shape the crack will take after finite amount of growth is hard
to predict because once the translational shift occurs the net
moment thus generated has to be considered. The stress inten-
sity factor will become nonuniform along the shifted circle,
and thus it will not remain circular.

A case is studied in Appendix C for which the crack system
is subjected to a fixed vertical displacement of amount equal
to ¢ at infinity and the stress intensity factor and crack open-
ing displacement thus induced are also derived there. Under
this displacement boundary condition, the crack face weight
function should be &, (8';r,0;a) of equation (4-6). Hence by
equation (C-4) of Appendix C, we have

nl_

1 ko gy = S0 72 ko gy 1)

H(n))= 2
0

2a,

Ec
KO [6; aj]=———r 23
[0; al RN (23)
Therefore,
dK®  n, (n—1) Ec
= 4L K== T >0 (4
7 day, ' 2a, 21— »?Wrdd @9

for n = 1. Equation (34) indicates that the translational mode
is neutrally stable while perturbations of higher modes are
stable. Growth in a circular shape should occur in this case.
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The above results suggest that in a displacement controlled
tensile test where we fix the amount of remote vertical
displacement of a specimen which is constrained against rota-
tion, growth in a circular shape should occur. In the load con-
trolled tensile tests where a fixed, originally centered load is
applied to the specimen (weight load, for example), a
nonuniformity of growth which begins as an amplification of
any initial nonuniformity in the translational shift mode is
likely to take place, so that the crack could hardly grow in a
uniform manner.
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APENDIX A

Crack Face Weight Function for an External Circular
Crack

From equation (6) to (8) of the text it is clear that the for-
mulae for the crack face opening displacement all require the
knowledge of crack face weight function k(8';r,8;a), i.c., the
stress intensity factor induced at 6’ along the reference cir-
cular front by a pair of unit wedging forces at r, # on the crack
faces outside the circular connection. As pointed out by
Stallybrass (1981), this weight function solution depends on
the boundary condition at infinity. Examples of such boun-
dary conditions at infinity could be vanishing displacements or
traction free conditions. In the following we follow Stallybrass
(1981) and categorize the forms of crack face weight function
under different boundary conditions at infinity.
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The normal stress distribution within the circular connec-
tion on the prolongation of the crack plane due to a unit point
wedging force pair acting to open the crack faces at location r,
@ is the same as the stress field induced within a circular punch
area due to an externally applied unit concentrated force on
the surface of the half space at the corresponding location.
That stress distribution was derived by Galin (1953) using
potential theory and later by Stallybrass (1981) using an in-
tegral equation approach and, for the case when the solid is
restrained against displacement at infinity, the stress at loca-
tion p, ¢ in the connection is

1 Vr? - p?
w2Jal = pt p*—2rp cos{p—9) +r?

%) (0, 93r,0) = (A-1)

Equation (4-1) enables us to calculate the net force and
moments hence generated on each horizontal plane (planes
parallel to the crack plane), i.e.,

a p2rn
== [ " oXo,63r.) oo + 1

2
=— cos ™! (_a_) (A4-2)
T r
The net moment generated about the 8§ + 90° axis is
a p2w
M= " 0 cost ~0)08to.65r.0)0dpdg + 1
2 a a a2 172
=~—r[cos“ (——>+———<1— 5 ) ] (r>a) (A-3)
T r r r

where we also explicitly emphasized the dependence of P and
M on position variable r, where the unit point force acts.

Since the stress distribution (A-1) represents the case when
all displacements vanish at infinity, the above calculated net
force P in (4-2) and net moment M in (4-3) are balanced by
“reaction’’ force and moment from the restraint at infinity. In
the situation when we have traction free boundary condition
at infinity, i.e., when there is no restraint against displacement
there, the ‘‘reaction’’ force and moment should be taken off
by superposing equal, oppositely sensed force and moment at
infinity to achieve such boundary conditions. Therefore, two
auxiliary problems should be discussed prior to the full presen-
tation of crack face weight functions, namely, the circular
connection subjected to remote net centered force P and net
moment M about the § + 90° axis at infinity. Fortunately the
stress distribution induced within the circular connection due
to these loadings have been derived by Sneddon (1951) as

P(r)
off) (P,¢;r,0)=m (r>a,p<a) (A4-4)
and
o0 (odir ) = PO D (spca)  (A-S)

2raiNa? — p*

Equation {4-4) and (A4-5) represents the stress distribution in-
duced within the circular connection by net tensile force P(r)
and net moment M(r) about 8 + 90° axis at infinity. By the
rule of superposition discussed before, the total stress distribu-
tion within the circular connection area would be (i) equation
(A-1) if infinity is ‘‘clamped”’, i.e., with no displacements; (i)
equations (A4-1) plus (4-4) if the solid is allowed only to move
freely in the y direction (or vertically) but is fixed against rota-
tion at infinity; (jif) equations (4-1) plus (4-5) if the solid
could only rotate freely without displacement of points lying
along the y axis at infinity; (fv) equations (4-1) plus (4-4) plus
(A-5) if the solid is free to move without any restraint against
displacement at infinity.
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Assembling all the discussion made so far, we list the crack
face weight function at the following typical boundary condi-
tions at infinity:

@ “Clamped” at Infinity, i.e., Fixed Against Any
Displacements. In this case, the crack face weight function is
simply

kg0 ;r,05a) =lim_ ~2w(a—p)al?) (0,8";r,0)
—a
’ (4-6)
N V(r? —a?)/an?

T @k +rt—2arcos(6’ —0)

Former discussion shows that the difference between solution
under this condition and the solution under the condition of
traction free, unrestrained displacement conditions at infinity
lies only in terms representing the effect of a net force P as in
(A-2) and a net moment M as in (4-3). Therefore, in solving
the elasticity problems of a circular connection, in the first
step we use above k, as crack face weight function and in the
second step we study separately the effect of the remote tensile
forces and/or or moments and combine the results with those
of the first step. An example of this way of thinking will be
shown in Appendix B in deriving the crack face Green’s
function.

Solution (4-6) matches the point force solution proposed by
Kassir and Sih (1975), although they failed to specify the
limitation of the boundary condition at infinity on their
solution.

(i) Free Vertical Motion But Fixed Against Rotation at In-
finity. In this case, the remote tensile centered force P of
equation (A4-2) should be superposed. Therefore, the crack
face weight function is

k,(0";r,6;0) =lim_ V2r(a—p) (042 (0,07;r,6)
s

+0lf) (0,07 ;r,0)] :_(W

(e ) aNr? —a? ] )
% [cos ( r * a*+r? —2arcos(0’ —0) -7
Note that this equation (A-7) coincides with the solution pro-
posed by Tada et al. (1973), although they also did not specify
the condition under which their solution would be valid.

(#i}) Free Rotation But Fixed Against Vertical Displacement
Along y Axis at Infinity. In this case, there is an additional
contribution from the superposed net moment only,
Therefore,

k8”5, 050 =1lim_ ~2m(a—p) [of) (0,0";7.0)
P
avr? —a?

(ma)’’? {az +r% —2arcos(6’ —6)

+3 [% cos~! <_;’_)+(1— ‘:22 )m] cos(0” - )] (4-9)

(fv) Traction Free at Infinity. In this case, contributions
from both net force and net moment should count, and we
have the following solution by Stallybrass (1981)

ku(e ’ ;r,ﬁ;a) = hm_ v 27l'(a - p) [0_%1) (9;0 ! ;rya)

p—a

+0ff) (0,075r,0) + 033 (0,0"5r,60)] =
(leos ()
X COS — 1+
r
2 172
(L) +a--5) " | cost0’ )}
r r
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+ 00 (p,073r,0) =

aN'r? —a?

’
+3 [—— cos !
a* +r*~2ar cos(f’ —9)] a

(4-9)
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APPENDIX B

Crack Face Green’s Function; Opening Displacement
for Circular Connection under Remotely Applied Force
and Moment

Equation (9) of the text gives the expression for the crack
face Green’s function as ’

min{r,p) 27
S a S 0

X k(0 ;p,0;a" Ye(0' ;r,0;a"Ya’da’ db’ (B-1)

Temporarily let us impose the condition that all the
displacements vanish at infinity. In this case, we could replace
crack face weight function & in equation (B-1) by k, in equa-
tion (A-6). Therefore, replacing £ by k; and D by D, in equa-
tion (B-1), we have

-

D(r,0;0,0) =2

1— V2 min(r,p) SZW
Dd(r,ﬁ,p,¢)=2 E7r3 Sa 0

Nr/a’,06—6")\p/a’ ,¢—0")

df da’ B-2
NN P “ 52

where
XMk, 0) = (1 —k*)/(1 — 2kcosd + k%) (B-3)

has been introduced for conciseness of the formulae, follow-
ing Sankar and Fabrikant (1982).
Now consider the following transformation

re=1/r; p*=1/p; a*=1/a; x=1/a’ (B-4)
It may be shown that equation (B-2) becomes,
1 -2 a* 2w
D=2 |
a(r.0:p.9) Em3rp Jmaxeept Jo
/1*,0— 0 )N(x/p*,0—0’
/7 YNx/p* b )d0’dx (B-5)

32— r*2 X2 _p*2
The integral in equation (B-5) has been studied by Gao and
Rice (1987). They pointed out that above integral can be
reduced to a pseudo-elliptic integral, and by a standard
transformation they proved

S“‘ SZW N/1,0 — 9N/ 06— 67) o,

dx
o VX2 —r*2 \[x2 - p*2

max(r*,p*)

(B-6)

\/(a*z _ r*Z)(a*z —p*2)>

T
arctan 2

d*
where d* = Vr*2 —2r*p*cos(@ — ¢) +p*2. Using equations
(B-4) again to transform back to the original variables, we
finally have,

—v N = aD) ok — ad)
Dy(r,0;0,8) = il arctan (__(ra)(—pa)>
ad

B-7
En*d (B-7)

where d = ~r? —2rp cos(6 — ¢) + p2is the distance between r, §
and p, ¢. Equation (B-7) matches the corresponding formulae
given by Galin (1953) and Stallybrass (1981). It is discussed
also in Appendix D. The above result looks very similar to the
crack face Green’s function for internal circular cracks given
by Gao and Rice (1987), which is not unexpected because of
the similarity of crack face weight functions in this case.
Recall that equation (B-7) represents the crack face Green’s
function when the condition of vanishing displacement field at
infinity is imposed. This has been called case (/). We know
from Appendix A that by superposing a net force P of equa-
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tion (4-2) and net moment M of equation (4-3) about § + 90°
axis, we can get rid of the restriction on the displacement field
at infinity and achieve the traction free boundary condition
there with no restraint against displacement, case (iv), and can
similarly deal with cases (i) and (iif). Therefore, to calculate
the crack face Green’s function for cases (i), (iif), and (iv) we

‘need to study two auxiliary problems, namely, crack opening

displacement under remote applied centered for F and mo-
ment M, where the moment M is now assumed to be about the
90° axis for convenience.

Consider that the described external circular crack system is
subjected to a remotely applied tensile force F with a net mo-
ment M about the § = 90° axis. In this case, K° [0';a] is given
by Tada et a. (1973) (also, see Neuber, 1937, and Sneddon,
1951) as

aF+3Mcosf’
202\ na
Substituting equation (B-8) into equations (5), (6), and using
(A-8), one may easily find
A u[r,6;al A-v¥) 2=
da ~TE (ma)? S

K° [07;a] = (B-8)

(F+3M cos 6’ /a)

0

(oo () + o o=

r —2ar cos(0—0")
. 2 172
+3[Lcos~l<i)+(1~ ”2) ]cos(()’—())}d@’
a r I

A (2 o (D)1 ]
=— = |cos™H—) +—
TE a2 r r2_a2
+3Mcos€[3r _l<ar>+ 3r a? :I}
——— | —=—cos ! {— -
3 2a r NrP—a 2N -a
(B-9)

a

Now we integrate over the radius of the connection between a
and r, as in going from equation (5) to (6), and find that

Aul[r,0;al=2 (1;1;2) {g cos“‘(—f-)

+3Mcos€[r _1<a>+<1 az)‘/z]}
| —cos 1 {— ——

2a? a r r?

If we replace F' by P(p) of equation (4-2) and M by M (p) (also
the axis of the moment is changed to ¢+90°) of equation

(A-3) of Appendix A, we therefore could rewrite equation
(B-10) as

(B-10)

(1-%)
w2Eq
+ 3IM(r)M (p)

2a?

If we combine equation (B-11) and equation (B-7), we have,
for case (iv)

Aullr,0;a] =4 {P(r)P(p)

cos(¢—0)} (B-11)

g LTV (a (P —a)p*—a*)
D(r.0;0,4)=4 Ea {7 arctan ( — )
+P(r)P(p)+3ML‘¥Wﬂ cos(qs—o)} (B-12)

where P(r), M(r) are given by equations (4-2) and (4-3). We
also observe that the symmetry is indeed preserved in equation
(B-12). The M terms are deleted in (B-12) to give D for case
(i1), and the P terms are deleted to give D for case (iif).

In going from equation (B-8) to equation (B-10), we have
just shown an example of how to calculate the crack opening
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displacement from the knowledge of the distribution of stress
intensity factor along the crack front. It is, of course, also
possible to go in the reverse direction, i.e., to extract the in-
tensity factor distribution from the near front behavior of the
opening displacement. When r — g%, cos~'(a/r) —
V2(r—a)/a and (1~a*/r?)""2 — 2(r=a)/a , so that equa-
tion (B-10) shows

(1-»?) ( F
E 2aNTa

+ 3Mcos()> r——a+0[( a)32]
) F—
2a*N ma 27

A—vY) |r—a ) o
7 N . K°[8;a] + Ol(r — a)*?]

The latter version of equation (B-13) represents the known
asymptotic behavior of crack opening displacement near the
crack front for any tensile crack.
When r — o, cos™ ! (a/ry — =/2,
(1-v%) {F M
E a * 2a?
Equation (B-14) shows that the crack faces far from the front
would tend to be linear flat planes (free of stress) with slopes
about 8 = 90° of £3M(1—v?)/(2a°E). These planes would
ultimately contact when M # 0, invalidating the present solu-
tion, if the jointed solids are truly unbounded half spaces,
although this need not be a problem in practice for finite
joined bodies, especially if the mathematically planar crack
represents a shallow notch cut-out,

Aulir,6;a] =8

=8

(B-13)

9
AUO[r,05a] ~ ! C;)S } (B-14)

APPENDIX C

Stress Intensity Factor of an External Circular Crack
with Fixed Displacement at Infinity

Assume that the elastic solid is subjected to a fixed amount
of vertical displacement at infinity as following

(C-1)

where sgn(y) = y/lyl for y ## 0, and the same coordinate
system as used in the text is adopted and x = r cos §. We solve
here for the stress intensity factor induced by this displace-
ment in equation (C-1) and the crack opening displacement
function.

Referring to equation (B-14) of Appendix B, we know that
under remotely applied centered force and moment the crack
faces far from the crack front would tend to become linear flat
planes (free of stress). We also observe that under the imposed
remote dispalcement field (C-1), crack faces far from the front
should approach the same displacement field at infinity
because the stresses approach zero there. Therefore imposing
a fixed displacement field at infinity (v — = o) is equivalent
to imposing a net tensile force and a net moment at infinity for
an external circular crack. Now consider a crack system sub-
ject only to a tensile force F and a net moment M at infinity
but otherwise traction free. From Appendix B, we know crack
opening displacement far from the crack front is

(11— [F+ M rcos0}
E a 24> a

Aullr,0;al=u, o ~u_q

Ui =(c+ax)sgn(y)

Aullr,0;a] ~

Now let
(C-2)
Comparing both sides of equation (C-2), we find the following

relations
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2Eac B 4B o

1—52 T 3(1-12)

Therefore by equation (B-8) and (B-10) the stress intensity
factor induced is

F= (C-3)

E  c+2accos @

K°[0;a] = Cc-4
0:a] =~ N (-4
and the crack opening displacement is
4
Aylr,0;a] = — {c cos™! (i)
i r
’ a a2\ 172
+ @a cos 0[—— cos‘1<—>+(1— 5 ) ]} (C-5)
a r r

APPENDIX D

General Displacement Green’s Function and Stress
Field for Internal and External Circular Cracks

When a three-dimensional crack system is subjected to ten-
sile loading that is symmetric relative to the crack plane, it is
known that the elasticity equations and boundary conditions
can be satisfied if the displacement and stress field are written
as (Galin, 1953; Green and Zerna, 1954; Meade and Keer,
1984)

u,==2[(1—»?)/E1Y+[(1 +»)/Ely3Y/3y

u,=[(1+v)/El0(F+yY)/dx

u, =[(1+v)/El0(F+yY)/dz
where F and Y are harmonic functions related by aF/dy =
(1-2»)Y. The coordinates are set up in the same manner as in
the text with the crack on the y = 0 plane. The stress com-

ponents that enter crack surface boundary conditions are
calculated from stress-strain relations as

0,,= —3Y/3y+yd*Y/3)?

0,, =y0*Y/8ydx, 0, =ydY/dydz
It is seen from equations (D-2) that there is no shear traction
ony = 0. Thus the problem of loading on the crack face is one
of finding a function Y satisfying V2 Y =0, vanishing at infini-
ty (at least for case (i)), and generating stress o (x, z) and open-
ing gap Au(x, z) on y = 0 given by
o(x,2)=—03Y/9yl,_o and Au= —[4(1—v*)/E]Y1,_o+ (D-3)

(a) Internal Circular Cracks. Now we consider the

elasticity problem of a three-dimensional elastic solid with an
internal circular crack of radius equal to @ subjected to a point
force pair in the =y directions acting at &£, % on the crack
faces. According to equations (D-1), (D-2), and (D-3), we for-
mulate following problem,
v2Y =0
Y=0 when x?+z2=a;
AY/dy= —8(x—~£)6(z—n) when x2+z2<a; y=0
Y=0 at oo

Let us denote the solution to equation (D-4) as Y = H(x, ¥, 2;
£, ). It is known (Galin, 1953) that

D-1)

(D-2)

y=0
(D-4)

arctan

1
H WIhZ58,s ==
(x2:z:8.m) oy

{x/(az—éz—nz)(az—xzﬂyz—z”R)] (D-5)

V2ad

SEPTEMBER 1987, Vol. 54/ 633

Downloaded 03 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



where
A =(x—E£)?+ -1+
R2= (02 —x? -

P2 — 222 + daty? (D-6)

Replacing Y by H in equations (D-1) and (D-2), we then get

the displacement Green’s function and stress field at an ar-

bitrary location in space. Specifically, the crack face Green’s
function is seen to be

_ 2
Dzt =8 (0,280
_Ad—» V(@ - - )@ -~y
= 7hd arctan { o (D-7)

If expressed in polar coordinates, equation (D-7) becomes,

) NP Y )
D(r,0;p,q§)=:4—5|_12—E;—2 arctan{ (a ‘;Cg(a ! )} (D-8)

where d reduced to /12 — 2rp cos(8 — ¢) + p2. Equation (D-8)
coincides with the solution derived through the perturbation
analysis by Gao and Rice (1987, Appendix A).

(b) External Circular Cracks. Now we consider a similar
crack system but with an external circular crack, or a circular
connection of radius equal to ¢ subjected to a point force pair
in the +y directions acting at £, n on the crack faces with zero
displacement at infinity. In an analogous way we formulate
the problem as solving

viy=0

Y=0 when x*+z%<a; y=0
dY/3y=—58(x—£)8(z—n) when x*+z*=aqa; y=0 (D-9)
Y=0 atoo

Note that in this formulation we imply that there is no
displacements at infinity and hence the solution thus generated
can only be applied to case (/) of the text. The solution to
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equation (D-9), dentoed hereas Y =L (x, y, z; £, 1), was given
also by Galin (1953) as

1
L(x,y,z;6,m7) = ——— arctan
(x.y,5:8,m) oy

2 2_ 2 2 2 2 _ 42
Z\/(E +92 —a?)(xr +y +z’—a +R)} (D-10)

V2ad

where d and R are given by equations (D-6). Similarly if we
replace Y by L in equations (D-1) and (D-2) the displacement
Green’s function and stress field at an arbitrary location in an
elastic solid with an external crack are generated. Specifically
the crack face Green’s function can be extracted and expressed
in polar coordinates as

_2 V=~ dd)
Dd(r,6;0,¢)=—%—)—arctan{ (0 ‘Zza)f(’ a)} (D-11)

Equation (D-11) coincides with (B-7) of Appendix B, where
the crack face Green’s function is derived by the perturbation
formalism.

Let us note that by using the solutions of equations (D-5)
and (D-10) for Y in equations (D-1), we can compute the
displacements u,, u,, and u, at (x, y, ) due to unit opening
point forces acting on the crack faces at (¢, 5, 0), for the
respective internal and external circular crack cases. By the
elastic reciprocal theorem, those very same results for ., uy,
and u, also represent the opening gaps Au on the crack faces
induced at (£, , 0) by unit point forces at (x, y, z) in the
respective x, y, and z directions. But from the knowledge of
that opening gap Au in the vicinity of the crack front, one may
also calculate (e.g., equation (B-13)) the tensile mode stress in-
tensity factors induced by the unit point forces at (x, y, z) in
the respective x, y, and z directions. These stress intensity fac-
tor defined the x, y, and z components of the tensile mode vec-
tor weight function h as introduced by Rice (1972, 1985).
Hence, although we do not further pursue the details here, the
results of this Appendix allow calculation of the vector tensile
mode weight function at general field points for internal and
external circular cracks.
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The Dynamic Energy Release Rate
for a Steadily Propagating
Antiplane Shear Crack in a

J. R. Waiton

Department of Mathematics,
Texas A & M University,
College Station, Texas 77840
Mem. ASME

Linearly Viscoelastic Body

The steady-state propagation of a semi-infinite, antiplane shear crack is recon-
sidered for a general, infinite, homogeneous and isotropic linearly viscoelastic body.
As with an earlier study, the inertial term in the equation of motion is retained and

the shear modulus is only assumed to be positive, continuous, decreasing, and con-
vex. A Barenblatt type failure zone is introduced in order to cancel the singular
stress, and a numerically convenient expression for the dynamic Energy Release
Rate (ERR) is derived for a rather general class of crack face loadings. The ERR is
shown to have a complicated dependence on crack speed and material properties
with significant qualitative differences between viscoelastic and elastic material. The
results are illustrated with numerical calculations for both power-law material and a

standard linear solid.

1 Introduction

A central issue in fracture mechanics is the development of
fracture criteria. A great many experimental and analytical
studies have addressed this topic in the nearly sixty years since
Griffith’s pioneering work. One fact that has emerged from
this effort is that the choice of a fracture criterion is very much
dependent upon the particular scenario considered. For exam-
ple, the notion of a critical Stress Intensity Factor (SIF) has
provided a highly successful criterion for quasi-static crack
propagation in linearly elastic material. Important factors for
the success of the SIF in this setting are that it is often easily
computed and that the Energy Release Rate (ERR) can be
determined in a simple manner from it. However, such is not
necessarily the case for dynamically propagating cracks in
viscoelastic material. Indeed, it is shown in this paper that for
such models, the ERR may have a much more complicated
dependence upon crack speed and the viscoelastic moduli.

Several studies of dynamic viscoelastic crack propagation
have appeared in the literature, beginning with Willis’ treat-
ment of a steadily propagating, semi-infinite, Mode III crack
in an infinite viscoelastic body (Willis, 1967). Using the
Wiener-Hopf technique, Willis was able to construct the SIF
for material that can be modelled as a standard linear solid. In
1977 Atkinson and Coleman used a perturbation technique to
construct approximations to the SIF for a semi-infinite, Mode
I crack propagating in steady-state through a viscoelastic
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layer, also modelled as a standard linear solid. In 1979, Atkin-
son and Popelar employed the Wiener-Hopf technique to
analyze a semi-infinite, Mode III crack that suddenly begins to
propagate at a constant speed through a viscoelastic layer sub-
jected to constant antiplane loading. A fairly general con-
stitutive relation in terms of differential operators is assumed.
In 1980, Popelar and Atkinson consider the corresponding
Mode I problem. In each of these last two papers, Atkinson
and Popelar produced formal expressions for the SIF which
were evaluated only for a standard linear solid. Using a local
work argument, they also exhibited expressions for the ERR
that are based upon the singular stress solution.

In 1982, using somewhat different analytical methods,
Walton reconsidered the problem in Willis (1967). Under quite
general constitutive assumptions, considerably more so than
those adopted by Atkinson et al. which exclude, for example,
the important class of power-law material, Walton con-
structed a simple expression for the SIF which exhibits quite
clearly and precisely its dependence upon crack speed and
material properties. More recently, this analysis was general-
ized to the case of a Mode III crack in a layer (Walton, 1985).

In this paper the methods in Walton (1982) are extended to
carry out the calculation of the ERR. The notion of ERR con-
sidered here provides a phenomenologically meaningful and
mathematically convenient fracture criterion for dynamic
viscoelastic crack propagation. An essential feature of the
model is that a Barenblatt type failure zone is assumed to exist
at the crack tip. Use of the Barenblatt model not only
simplifies the calculation of the ERR but, much more impor-
tantly, it introduces an additional length scale and produces
bounded stresses and strains which result in the ERR having a
fundamentally different dependence upon crack speed and
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material properties from that derived by Atkinson and
Popelar using the singular fields. For example, it is shown
below that in the limit of vanishing failure zone length, the
ERR equals the product of the square of the SIF and a simple
function of crack speed and the glassy values of the
viscoelastic shear modulus. This is in agreement with the result

of Atkinson and Popelar (1979) and also Kostrov and Nikitin -

(1970). In contrast, when the failure zone has a nonzero
length, the ERR is the product of the square of the SIF and a
function of crack speed and the full form of the viscoelastic
shear modulus, not just the glassy properties. Moreover, it is
shown here that while the SIF is a monotonically decreasing
function of crack speed, the ERR can exhibit much more com-
plicated, nonmonotonic behavior depending upon combined
viscoelastic and inertial effects. As discussed later, this has in-
teresting implications with regard to stable versus unstable
steady-state crack speeds.

The Barenblatt model has been utilized extensively in elastic
fracture mechanics. This author would be remiss in not calling
attention to Barenblatt’s seminal 1962 paper. More recently,
the Barenblatt model has been applied to studies of quasi-
static viscoelastic fracture, most notably in Knauss (1973) and
Schapery (1975), in which it was observed that whether a
failure zone is incorporated or not significantly affects the
behavior of the ERR.

Utilizing the techniques of this paper, this author has
recently completed the analysis of the considerably more
complicated corresponding Mode 1 problem. Moreover,
L. Schovanec and this author have also recently calculated the
ERR for two parallel, interacting Mode III cracks. Both of
these investigations are the subject of forthcoming papers.

The specific boundary value problem considered here is that
corresponding to the steady propagation (to the right) with
speed V of a semi-infinite, antiplane shear crack in a general,
homogeneous and isotropic, linearly viscoelastic body. The
shear modulus, p(#), is assumed only to be a positive, nonin-
creasing, and convex function of time, ¢. The governing equa-
tion of motion for the out-of-plane displacement, u;, is

prdAus=p u;,

where A is the two-dimensional Laplacian, A = (8%/dx}) +
(3%/9x3), and p* de denotes the Riemann-Stieltjes convolution

wrde= Si u(t—7)de(7).

Upon adoption of the Galilean variablesx = x; — Vi, y = x;,
the boundary conditions may be written

8
Uzs(x,0)=$(#*du3)=f(X), x<0

u;(x,0)=0, x>0

a; (%) —0, X +yr—oo

where o;; are the stress components and f(x) is a system of
tractions moving with the crack.

The starting point of the present investigation is the solution
derived in Walton (1982) for the above boundary value pro-
blem. It was shown in Walton (1982) that two cases arise
naturally in constructing the solution: 0 < V < C* and C* <
V < Cwhere C* = (u(o0)/p)"? and C = (u(0)/p)'/? are the
elastic shear wave speeds corresponding to the equilibrium and
glassy values of the shear modules u (7). For 0 < V < C*, the
stress field is that for static elastic fracture and is therefore in-
dependent of crack speed and material properties. Whereas,
for C* < V < C, the stress field is both speed and material
dependent. Specifically, the SIF, X, is given by
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-1

—1r0 1
—g 05,0 1xl 2 dx, 0sV<C*
w — o0

K= (1)

1 10 i}
——S o5 (x,0)Ixl 2 el¥dx, C*<V<C
T —0

where g7 (x) (g* (x)) denotes the restriction of g(x) tox < 0
(x > 0) and q, is the unique positive constant such that

Va, |, m(oe sedi= (V/CYu0). @)

In order to calculate the ERR, the object of principal in-
terest in the present study, it is necessary, as discussed earlier,
to modify the above boundary value problem by the introduc-
tion of a Barenblatt type failure zone. Specifically, it is now
assumed that two loads are acting on the crack faces: the ap-
plied (external) tractions o;;(x, 0) discussed above, but now
denoted o (x), and cohesive (failure) stresses o7 (x) acting in
a failure zone of length a, immediately behind the crack tip.
The only assumptions about o7 (x) are that a, is small relative
to some length scale @, associated with ¢, (x) and that K, +
K, = 0 where K, and K, are the SII’s corresponding to o,
and o}, respectively. Hence the effect of the failure zone is to
cancel the singular stresses ahead of the crack tip and thereby
produce a cusp-shaped crack profile behind the tip.

The ERR, G, for steady-state crack propagation is now easi-
ly shown to be given by

0
G= S o7 (x) ug; (x,0)dx 3)
o

where u;(x, 0) is the crack face displacement corresponding to
the combined loading ¢, + o7 . Thus G has the interpretation
of the work input to the crack tip, i.e., the energy available to
the crack tip for propagating the crack. Unlike for elastic
material, G for viscoelastic material is not merely a simple
function of K. Rather, as is evident from Walton (1982), u3,
(x, 0) has a complicated dependence upon the loading o, (x,
0), making impracticable the direct numerical evaluation of
equation (3). In the next section, a computationally conve-
nient expression for equation (3) is derived for a special, but
still fairly general, class of loadings ¢; and o7 .

2 The Calculation of G

For simplicity of argument and clarity of result, the ERR,
G, given in equation (3) will be calculated first for a simple
special case. Specifically, the external load, o, (x) and failure
zone stresses, o7 (x) will be assumed to have the forms

o5 (x) = L%

o7 (x) = —Lje"/"/

where a,/a, << 1. (cf Sills and Benveniste, 1981). For a,/a,
small enough, the fact that o (x) does not have support in
some small, compact, interval behind the crack tip will have a
negligible effect on the results. The assumptions (4) then clear-
ly incorporate the salient features of the Barenblatt model,
namely, a set of cohesive stresses and associated length scale a,
and a length scale g, associated with the applied load o; such
that o7 cancels the singular stresses produced by ¢, and a,/a,
<< 1. It should be noted that in this case, equation (3) is
replaced by

—oo<x<0 @)

0
G= S 97 ()us, (x,0)dx. )

In order to present the results in a suitable nondimensional
form, it is useful to introduce certain parameters. First a
characteristic timescale, 7, is defined and the shear modulus
given the form
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w(t) =pom(t/7)
where m (s) is a nondimensional function of s with 1i5n m(s)
= land p, = lim p(¢). Also useful are the nondimensional
f—00

parameters «, 3, v, € and \ defined by

a=C*r/a, B=q,a, y=V/C* e=as/a, \=L;/L,. _(6)
It should be noted that @ and 3 can assume any positive value
while v must be such that 0 < y < C/C*. Also, 8 = 0
whenever 0 < V < C*,

The desired expression for G is most easily expressed in
terms of the Carson transform, #1(s), of m(t) defined by

@

m(s) =m(0)+ S e~ Sdm(t).

0

1t is useful to record for future reference the easily derived
formula

B(r) =pem(rr).
It will now be shown that for loads of the form (4), G is
given by
1—(Be)?

1
K? ( 1—e ) 1 [ ]T o
2ie N\ 14+¢e / m(ayle) L1—v*/m(ay/e)
where K = K, = — K is the dynamic SIF. From equations (1)
and (4) it follows easily that

G=

_ Lpe,  Lya, ®)
Vi+Be V148

The derivation of equation (7) from (5) utilizes the Fourier
transform f of a function f. Specifically,

)= S_mf(X)e""”dx
with inverse, f(x), given by
F Lre —ix;
For ==\ swedp.

Applying the Parseval formula for the Fourier transform, it
follows from equation (5) that

oo

o=\ & i, ©

In consideration of equation (4), a straight forward calcula-
tion shows that

sy —aly
67 p)= (1+iamp)
(10)
57 () =
T (~iap)

The integral in equation (9) may be readily evaluated using
residues since, from equations (10), it is clear that 57 (p) hasa
meromorphic extension to the lower complex half-plane with a
simple pole at —i/a,. Moreover, u; ; (x, 0) vanishes for x > 0
from which it follows that &, , (p) = ds, (p) has an analytic
extension, F~ (z), to the lower half-plane with

lim F~ (p—iq)=0.

g—o
Consequently, for G one has
G=LF~(—i/as). ¢80

It remains to evaluate F~ (—i/a,). To this end use will be
made of the following formulas derived in Walton (1982);

i3, (p) =6(p)/G(p), (12)

G(p) = —i sgn(p) i (iVD)7,(iVD), (13)
and

Journal of Applied Mechanics

v ipV) = (1=~*/m(iVpr))/2. (14)

Here one has

6(p)=6-(p)+6&* (p)

o7 (x) =0, (x)+o5 (x)
where 0% (x) (0~ (x)) denotes the restriction of ¢(x) to the
half-line x > 0 (x < 0). It should be noted that ¢* (x) is the
nonsingular stress field ahead of the crack that results from

superposing ¢, and o7 . Moreover, it is shown in Walton
(1982) that

6" (pY= lim F*(2)
Im(z)—0+
where
1 (= d
Fr @) == (g,-10" =" o= (g, —in "2
2mi J —w (1—2)
(15)

with g, given in equation (2). To evaluate equation (15), con-
sider first

lim Fi (),
Im(z)—0+

&t (p)=

in which

dr

(1—2)°
(16)
From the analog of equations (10) for 6, (p), one sees that
6, (p) has a simple pole at i/a,. Since the branch of
(g, —i7)~ /2 must be chosen to be analytic in the upper half-

plane (see Walton, 1982), the integral in equation (16) can be
calculated using residues. Thus for Im(z) > 0,

F}(2)=—(q,~i2)"*[—iL.(q,+1/a,) "'/ (i/a,

1 -]
F@==(g,-0" 5| oz (ng,-in-"

-2)+ 67 (2)(g,—iz) L.

Now letting Im(z) — 0 and adding 6, (p) to &7 (p) there
results

a(p)=Fg (p) +6,(p)
=i L,(q,—ip)"*q,+1/a,)""*/(i/a,~p)

=a,L,(B/(1+B))2(1 —ip/q,)"*/(1 +ipa,). an
Similarly, for 6,(p) one can show that
6,(p) = —a;L(Be/(A+Be)2(1—i p/q,) /(1 +ipas). (18)

Combining equations (4), (8), (17), and (18) one concludes
that

- —ip/q,)"?

5(p) = — 172

6(p)=—a,L,(B/(1+8) (Ut iap) (L ¥ ia,p) 19
Substition of equation (19) into (12) gives

F=(p) =1y, (p) =a, L, (B/(1+B)*(1-e)2,(p) 2, (p) (20)

with
®,(p) = (1 +iap) (1 +iap) !
and
®,(p) = (1-ip/q,)'*/G(p).

®, (p) is obviously an analytic function in the lower half-plane
and in Walton (1982) it was shown that the branches of
(1—ip/q,)"? and «,(iVp) must be chosen so that &, (p) is
also analytic there. Thus one may substitute equation (20) into
(11) making use of equation (13) and (14) to conclude that

Geal L (B/(1+BN*(1—¢) 1-1/(g.ay) 12
=a,L L, 2(1+a,/a))p(Viay) | 1—v2/m(V/ay)

@n
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Combining equations (6), (8), and (21), there finally results the
desired formula (7).

The derivation given above is easily modified to produce an
analog to formula (7) for more general loads of the form

or (x) =LESO e™/ted b, (1)
(22)
(Tf (x)= —LfSO ead hf(t)

where £, (¢) and A (f) are arbitrary signed (not necessarily
positive) measures restricted only to the extent that the re-
quired integrals converge. For example, the special cases (4)
correspond to d h,(t) = d h;({) = 8(t — 1), the Dirac
measure concentrated at £ = 1. As further examples, d %, (#)
= sin(f)dt and d h,(t) = cos(¢)dt produce

(x/a,)L,

and oe 00 = e

)= e
o O =T ey
respectively.

Substitution of equations (22) into (1) followed by an inter-
change of the order of integration results in

Ly, (> :

IK,|= 7 SO (t+B8)~12d h (1)
Lag =
=—f\7—7r—fS0 (t+¢€B)~12d h(1)

where, as before, 8 = a,g,. Corresponding to equations (10)
there is

0 (D) =acLe| | (t+ipa)td h(n)
()

L [
57 (p)= SO (t—ia,p)~'d h, ().

2

Lines (15) and (16) are still valid but with 6, given now by
equations (23). In particular, one has for 7,, (z) > 0 and after

an interchange of integration that
Fr(z)=—1(q —iz)”z—l——aL Smdh (T)Sm (g
¢ ° 2w eTe [ ¢ —o0 ¢
dt
—it) "Y1 +ita,) ! . 24
)T ritan) ™! (24)

The integrand in the inner integral in equation (24) is analytic
for I, (¢) > 0 except for simple poles at ¢ = i 7/a, and t = z.
Calculating the inner integral by residues, there then results

1 ¢ dt
—_ —Jt -1/2 it -1
= S_m (g = i)~ VA(r tita) ™ =

=[(g,—iz) "2 = (g, +/a,) "\ 2]/ (7 + iza,).

If one now lets 7,,(z) — 0 in this last result and makes use of
equation (234) and equation (24) it follows that

G.(p) =06, +8; =a,L.(1—ip/q,)"?

bt dh, (1)
1/2 e
So (B/(7+B)) (r+ipa,) 25) .
For 6f(p) one has
. , * dhs(7)
=— — 172 |V el AL
Gr(p) afo(l ip/q,) So ‘(Bf/(T'*‘BE)) (T+ipaf) ,

the analog of equation (18), which when combined with equa-

tion (25), gives

638/ Vol. 54, SEPTEMBER 1987

G(p)=6.(p) +6,(p)

=(1-ip/q,)"*H(p) (26)
. = eLe / 172
with H(p) = So a 276-+(i:1-;§)) dh,(7)
(- asLy(ef/ (+€eB))?
So (7+iamp) dhy (7). @7

It is easily seen that H(p) is analytic for I, (p) < 0and H(p)
— 0as I, (p) — —oo. After substitution of equations (11),
(12), (23b), (26), and (27) into equation (9) and an interchange
of integration one obtains

3] 1 ]
G=ar, | an (05| vupap (28)

where

H(p)(1-ip/q,)"*
¥ (t,p)= - .
(t—ipapG(p)
As before, the branches of v,(ip¥V) and V1—ip/q, can be

chosen so that i sgn(p) V1—1i p/q,/v,(ipV) is analytic for
I,,(p) < 0. Thus, ¥ (4, p) is analytic for I, (p) < 0, except

for a simple pole at p = —it/a,. Evaluating the inner integral
in equation (28) by residues, yields finally
L. H(—it/a;) - 172
G=—L g dh, (1) d [ 1= 1/(Be) ]
o v0 1—~2/m(ayt/e)

NED

with H( —it/a;) defined in equation (27).

The two integrations required to evaluate equation (29)
make it much more cumbersome to calculate numerically than
equation (7), though still much easier than calculating G
directly from either equations (3) or (5). However, since ¢ <<
1, it is not unreasonable to take dh (¢) = 5(¢ — 1), i.e., to
take the simple form (4b) for ¢; (x), since the details of the
failure zone stress are not significant. Formula (29) then
simplifies greatly to

29

_ n”
G= ! [ 1 1—/(66) ]1
be  M(ay/e) L—~2/i(ay/e)
; _ —ady 12
H(—i/as) = 5 (eB/(1+¢€B))
© dh, (1)
12 e
T aelep So (r+1/6) (1+B)172

subject to the auxiliary constraint
a 172 ® dh,(t)
IN1+Be 2}, e

In the next section, the qualitative behavior of G is in-
vestigated by considering the special cases of a power-law
material and a standard linear solid.

3 Numerical Examples

The formula (7) will now be applied to the special cases of a
standard linear solid and power-law material. First considered
is the standard linear solid, which is modelled by a constant
Poisson’s ratio and a shear modulus, u(¢), of the form

p(2) = po, (1 +qe="r)
=pm(t/7).
It follows that 1 + n = (C/C*)? and m(s) is given by
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Fig. 1 kversus v’ for a standard linear solid withy = 10 and « = 0.1,
1.0, 10.0

s + t t t t — + t ¥ |
tog (¥)

Fig.2 g versus log(y) for a standard linear solid withy = 10,¢ = 0.01, «

= 0.1, 1.0, 10.0, 100.0

_1+s(1+9)

m(s
(s) ) (30)
From equations (2) and (30) one easily shows that
2y
Go=— it D @31

TV ((149) =)
It should be noted that the restriction 0 < ¥V < C corresponds
to0 < 4% < 1 + 5, and moreover, thatg, = 0for0 < y < 1,
From equations (7), (8), (13), (30), and (31), one readily ob-
tains the formula

-2.0 ' _ ' 2.0 4.0

log (y})
Fig. 3 g versus log(y) for a standard linear solid with 5 = 10, A = 10.0,
and « = 0.1, 1.0, 10.0, 100.0

-6.0 -4.0

In Fig. 1, k is plotted against v’ = y/V1+qyfora = 0.1, 1,
and 10. Clearly, k must vanish as v’ approaches 1.

In Fig. 2, g(a, v, 1, €) is plotted against log(y), where § = vy
for0<vy<landy = (Wop+1 — 1)/(Wn+1 — y)for 1<y
<~p+1, forg = 10, ¢ = 0.01 and « = 0.1, 1, 10, 100. Thus
the failure zone length is assumed to be constant. For many
materials (such as rubber) a more realistic approximation is
furnished by assuming a constant failure zone stress level, L.
This is tantamount to holding A\ constant and allowing e to
vary. From equation (8) one easily calculates € as a function of
A to be

e=[NB+1)—-61"".

Consequently, one may regard g as a function of «, v, %, and
\. Figure 3 is the analog of Fig. 2 for A = 10,7 = 10, and « =
0.1, 1, 10. It should be noted that g vanishes as vy approaches
vn+1 when A is held constant. However, with e constant, g
tends to a nonzero finite limit as v tends to Vg -+1, i.e., as V'
approaches the glassy shear wave speed. Indeed, from equa-
tion (33b) it is casily seen that

(e+on+ 1)(e/m)"?
(e+a(17+ 1)3/2)1/2 :

1—e€
lim_g(eym,6) = ()
7wﬁ_lg(cw 7,€) T5e

The second example considered is a power-law material for
which the shear modulus is assumed to have the form
p(t) =pe,(1+@/r)7"), O0<n<l

=M (/7).
For such material, the glassy wave speed, C, is infinite and
m(s) is given by

m(s)=1+T(1—n)s". (34)

2
G= Z“Le g(a,y,m,€) (32)
where
g(a,’y,n,e)=< 1—e¢ ) (e+ay)
1+e / (e+ay(L+m)2((1 —y)e+ oy (1+9—~2)12
(33)
and

(e+oay)(1 +Be)'?

O=y=l

I<y<(1+9)V2,

1—¢ )
1+e¢
Figure 1 displays a normalized SIF, k = K/(L_Va,), which

from equation (8) is seen to be just &k = (1 + 8)~ 2. From
equation (31), # is seen to be given by

_ (¥-D
T ay(+n) =)

glavna) =

Journal of Applied Mechanics

(1+8) (ay (n+1=2) 1 2(e+ oy (1 + 1))}

From équations (2) and (34) one sees that
1 ,YZ —1 1/n
9= () [ v
Vr/ LT —n)
and hence that
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Fig.4 kversus y for a power-law material withy = 0.3 and o = 0.1,1.0,
10.0
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Fig.5 g versus log(y) for a power-law material with ¢ = 0.1,n = 0.3 and
« = 0.1, 1.0, 10.0, 100.0

B=(v*=DV"/(ay) (35)
where, for convenience, o has been redefined by
a=T{1~n)"C*7/a,.

Combining equations (7), (8), (13), (34), and (35), it may be

1.0

—2.0

-3%0
log ty)

Fig. 6 g versus log(y} for a power-law material with ¢ = 0.01, o =

and n = 0.1, 0.3, 0.5, 0.7

1.0

V passes through C*. A more striking observation is the loss
of monotonicity of g as a function of v for certain ranges of
the parameters. For example, in Figs. 2 and 3, it is seen that
for « = 0.1, g is monotone decreasing in vy, whereas for o =
1, 10 g has a relative maximum on 1 < y < V1+47. As seen
from Fig. 6, for power-law material, varying the exponent n
also causes a transition from monotonicity to having a single
relative maximum. The lack of monotonicity suggests that cer-
tain crack speeds are unstable. In particular, since G has the
interpretation of work input to the crack tip, the y-intervals on
which g is increasing are those on which an increase in crack
speed produces an increase in the work available to propagate
the crack and hence should be considered unstable in steady-
state. Evidently this lack of monotonicity is due to the com-
bined inertial and viscoelastic effects considered here.

It is worth noting that these results illustrate that in contrast
to elastic material, for viscoelastic material, there is no simple
relationship between G and K. Indeed, though K is always a
monotone decreasing function of ¥ which vanishes at the
glassy shear wave speed, G need not be monotone and need
not vanish at ¥V = ¢. Additional insight into the effect of
material viscoelasticity can be gained by comparison with the
ERR, G, for dynamic, elastic, steady-state crack propagation
that arises as a simple limiting case of the analysis presented
above. In the elastic limit, G is seen to be a monotone increas-
ing function of crack speed that becomes infinite at the shear
wave speed. This suggests that for elastic material, all crack
speeds below the shear wave speed are unstable in steady-state
which agrees with results contained in Freund (1986). Thus,

shown that
L2
=22 o (ayme)
2pe
where
1-— n —-1/2 n —~1/2
G e G B I I GO I BNCESAS
1+e¢ € €
g(ay’Y,n,G)=
e leer (ORI CO
1+e 1—(eB)” € €

Figure 4 is a plot of the nondimensional SIF & = (1 + B)~1/2
against y for @ = 0.1, 1, 10, and n = 0.3. Figure 5 shows g
plotted against log () for « = 0.1, 1, 10, 100, n = 0.3, ¢ =
0.01. Figure6haso = 1,e = 0.01, n = 0.1,0.3, 0.5, 0.7. The
case A\ constant is not exhibited here since it results in little
change from the constant e calculations.

Several comments on the numerical results should be made.
It can be observed for a standard linear solid in Figs. 2 and 3

and may be shown analytically for general material that the

slope of the curve g versus + is discontinuous fory = 1, i.e., as
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-1/2
) /(1+B) 1<y

the presence of material viscoelasticity tends to stabilize crack
growth.

This paper closes with a brief illustration of the use of Gas a
fracture criterion. One must postulate the existence of a
critical value of G, G, which may be velocity dependent and
which when exceeded results in crack acceleration. What is
needed then is to invert equation (7) to find the y versus L,
relationship for G = G,,. Turning to the standard linear solid
example, it is evident from equation (32) that the desired rela-
tion requires the inversion of (L,/ie,) = (G/a,p.)"*/(g(a,

Transactions of the ASME



0.2 0.4 0.6 0.8 1.0
L NALT
Fig. 7 1(glos v, 1, )12 versus log(7) with e = 0.01, 3 = 10, and « = 0.1,

1, 10, 100

v, 1, €)Y? for v as a function of the nondimensional load
L,/u.. Figure 7 shows plots of log(y) versus 1/(g(«, v, 7,
€))? fore = 0.01,n = 10, and o = 0.1, 1, 10, 100, where ¥
= vy/Vn+1. The points on the ordinate axis represent,
modulo multiplication by a constant, values of the nondimen-
sional load L,/v,,; the corresponding crack speed may then be
found on the abscissa. It should be noticed that the speed in-
tervals on which the curves are increasing (decreasing) corre-
spond to stable (unstable) crack speeds.
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Periodic Array of Cracks in a Half-
Plane Subjected to Arbitrary

Loading

H. F. Nied

General Electric Company,

Corporate Research and Development,
Schenectady, NY 12301

Mem. ASME

The plane elastic problem for a periodic array of cracks in a half-plane subjected to
equal, but otherwise arbitrary normal crack surface tractions is examined. The
mixed boundary value problem, which is formulated directly in terms of the crack

surface displacements, results in a hypersingular integral equation in which the
unknown function is the crack opening displacement. Based on the theory of finite
part integrals, a least squares numerical algorithm is employed to efficiently solve

the singular

integral equation.

Numerical results include crack opening

displacements, stress intensity factors, and Green’s functions for the entire range of
possible periodic crack spacing.

1 Introduction

In this paper the elasticity problem for an infinite array of
periodic cracks in a half-plane is examined to determine the
stress intensity factors and the crack opening displacements as
a function of the crack spacing. Of particular interest for frac-
ture mechanics applications are the calculated values of the
stress intensity factors for a row of edge cracks subjected to
arbitrary surface tractions normal to the crack surface. It is
well-known that with decreasing edge crack spacing, crack in-
teractions reduce the magnitude of the stress intensity factors
at the crack tips to a level well below the stress intensity factors
associated with a single crack of the same length. Therefore,
generalized solutions for such crack configurations, i.e., solu-
tions which are applicable for arbitrary loading normal to the
crack surface, are more useful for determining the conditions
for sudden fracture in brittle materials that are known to have
a large number of small, equal length, surfaces cracks, than
similar solutions developed for a single crack. Typical ex-
amples of nonuniform stress fields which would be of par-
ticular interest include transient thermal stresses and wedge
loading of the crack surfaces.

The solution for the problem of a half-plane with an infinite
row of periodic edge cracks subjected to uniform axial stress
has been given by Benthem and Koiter (1973) using an asymp-
totic approximation and Bowie (1973) who used conformal
mapping. More recently, solutions for interacting arrays of
parallel edge cracks subjected to specific thermal stress condi-
tions have been developed by Nemat-Nasser et al. (1978) by
formulating the problem in terms of a singular integral equa-
tion with the usual Cauchy type singularity.

In this paper we will consider the elasticity problem depicted
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Discussion on this paper should be addressed to the Editorial Department,
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in Fig. 1; an infinite array of stacked internal cracks, uniform-
1y spaced apart at a distance 4. The special case of an array of
edge cracks (i.e., @ = 0in Fig. 1) will also be considered, with
special attention devoted towards developing a Green’s func-
tion which can be used to easily calculate the stress intensity
factors which arise when the system of edge cracks is subjected
to arbitrary crack surface tractions normal to the crack
surface.

Instead of taking the usual approach of formulating the
problem in terms of a singular integral equation of the Cauchy
type (a consequence of the somewhat artificial step of specify-
ing the unknown function in terms of the derivative of the
crack surface displacements), an alternative approach will be
followed in which the unknown function is simply taken to be
the crack surface displacement. The hypersingular integral
equation which results from such a formulation contains a
singularity of order 1/x2. Integral equations with such strong
singularities have only recently become amenable to direct
numerical solution (as opposed to reducing the equation to an
equivalent Cauchy singular integral equation). Kaya and
Erdogan (1984, 1987), have developed a numerical approach
which utilizes the concept of singular integrals interpreted in
the finite-part sense, a concept which was introduced by
Hadamard (1923). In the present study, it was found that the
finite-part interpretation of the integrals with strong
singularities, which arise in this particular crack problem,
leads to a very accurate and efficient method for numerical
solution.

2 Formulation of the Problem

In addition to satisfying the two-dimensional equations of
equilibrium and the elastic constitutive relationships, the solu-
tion to the problem depicted in Fig. 1 must also satisfy the
following boundary and symmetry conditions

Uxx(()’y) =0 (1)

Ty (0,0)=0 )
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Fig. 1 Array of periodicaily spaced cracks in a half-plane
v(x,nh) =0, (x<a,x>b),n=—o, .., 0 3)
0,, (x,nh) = —p(x), (a<x<b),n=—oo, ..., @

Ty (X,nh) =0, n=—o00, ., . o 5)

where it’s assumed that all the crack surfaces are subjected to
equal and symmetric loading specified by p(x).

The crack problem depicted by Fig. 1 can be conveniently
formulated by applying integral transform techniques to the
two-dimensional equations of elasticity. The resulting algebra
is somewhat simplified, if first we develop the stress field for a
single crack in the half-plane and then use superposition to ob-
tain the expressions for the multiple crack problem. Further-
more, the derivation of the single crack expressions are
facilitated by using superposition to combine expressions for
the uncracked half-plane and a cracked infinite space. For ex-
ample, the x and y components of displacement for the single
crack problem can be written as

u(xy)=u'(e,y) +u?(x,y) (6)

v(x,y) =0 (6y) + V2 (x,p) M
respectively, where the superscript 1 refers to the infinite space
with a single crack and superscript 2 indicates the contribution
due to the half-space. In the same manner the stresses for a
half-space with a single crack can also be expressed by

05 (x,y) =0l (x,y) + % (x,y), (i, j:x,p) ®)
Integral expressions are developed for the variables in equa-
tions (6)-(8) by direct substitution of the applicable Fourier
transform into the two-dimensional equations of equilibrium
and Hooke’s law. After applying the symmetry condition 7,,
(x, 0) = 0 and the shear condition for a single crack 7, (0, y)
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= (), the superposed equations for displacement (6)-(7) can be
shown to have the form

2 (® /1~
u(x,y)=—S ( K+y)A(oz)e‘°‘ysinax da
T Jo 2a
2 (> /1+ )
+——S ( = +x)B(B)e Brcosfy dB )
T Jo 283
2 r® /14
v(x,y)——S ( K+y>A(a)e“’ycosax da
T Jo 2c
2 [ /1—«k .
+———S < +x)B(B)e‘ﬁ"sm6y dap (10)
T J0 20
where
k=13 — 4w, for plane strain (11)
3_—
K:—V, for plane stress (12)

1+

and A (a) and B(B) are unknown functions which must be
determined from the boundary conditions. With the
displacements given by equations (9)-(10) it is not difficult to
show that the components of stress are given by

1 2 r*
=—SO (= 1+ay)A(a)e~¥cosax do
T

3;' Oy
———ﬁ: (1+Bx)B(B)e P*cosBy dB 13)
1 _ o0
o Ty —7;——50 I+ ay)A(a)e~¥cosax da
+LS°° (— 1+ Bx)B(B)e P*cosBy dB (14)
T Jo
71“— Tey _TS: ay A(a)e~Ysinax do
~2 [ px B(8)ePrsingy a8 ()
T Jo

where p is the elastic shear modulus.
If we define a displacement function in the following
manner:
V(x)=v(x,0*)—v(x,07)=20(x,0), (a<x<b) (16)
V(x)=0, (x<a,x>b) 17
and apply displacement boundary condition (3), stress
boundary condition (1), and invert the resulting expressions in
equations (10) and (13); for the case of a single crack (i.e., n =
0) we can obtain the unknowns A and B. Thus, it is
straightforward to show that the y component of stress, in
terms of the unknown crack opening displacement V' (x), fora
single crack is given by
o
1+«

cosat cosox e~ Yda

b o
T % —g V(t)dtg (1+ay)
4,u a 0

(Bt—DeBU+xcosBy dB (18)

1+«
After substitution of the trigonometric identity

o
0

+Sb V(t)dtS (—1+8x)

1
cosatl cosc. =T[cosa(t—x) +cosa(t+x)] (19)
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and evaluation of the definite integrals in equation (18), the
perturbation in the y component of the stress field due to a
single crack located at y = 0 can be expressed in terms of the
crack opening displacement V(x) as

k+1 b
= 7o, (60 = | VG x»an )
where G (¢, x, y) is expressed by
_ =x)r-yr (t+x)P-y?
G =T R T
DH3(t—x)2 -y 2B+ x)* -7
[(t—x)% 4y [(t+x)2+ %)}
2[(t+x)2 -] — 40+ X)?[(f + x)? - 3y7]
[(t+x)2+ )12 [(z+Xx)2+ )3
4 _ 2 2 4
N 128x[ (E+x)* = 6p* (1 +x)* + 7] @1

[(t+x)%+ 24

The complete expression for an infinite array of cracks can
be obtained from equations (20) and (21) by invoking super-
position. That is, the perturbation on the stress field along the
line y = 0 due to an infinite row of cracks, is simply the in-
finite sum of contributions determined from equation (20) for
values of y spaced apart at an interval #. Thus, by setting y =
nh in equation (21), summing on # from — oo to —1 and from
1 to oo, and adding these terms to the limiting expression ob-
tained from equation (20) as y — 0, we obtain the correct in-
tegral equation for an array of cracks. The integral equation
for an infinite array of cracks differs from the single crack
equation in that it has an additional Fredholm kernel as a
result of the summation contributions. Due to symmetry, the
summation of G from —o, ..., =1, 1,..., o can be
reexpressed as twice the sum of Gforn = 1,2, ..., o. For
the case of periodic spacing these infinite sums can be ob-
tained in closed form. Two identities which aid in the reduc-
tion of these sums are (Gradshteyn and Rhyzhik, 1965)

Z”: 1

1
m :7‘2— [ﬂ'x coth mx— 1] (22)
n=1 X
> X2 —n? w2 1
L Gy =g S @3

The closed form expressions which are needed to evaluate the
sums arising out of equations (20) and (21) can be obtained by
successively differentiating equations (22) and (23) and com-
bining intermediate expressions.

After making the substitutions,

y=nh (24)

a= (t;x ) 25)
t

p=- ;’” 26)

in equations (20) and (21), evaluating all sums from 1 to o and
regrouping terms, the net perturbation along the line y = 0
due to the influence of all cracks extending from —oo to + o
is ‘

k+1 b
n T 0y, = Sa V() K, (¢t x,h)dt 27)
where )
K,(t,x,h) = ! ! ! 3w2esch?wo + 5w2esch? :
2( 23X )_F _?'FEZ—"F weesehe o T CSC. 7TB
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— 273« csch?ma coth o — 6738 csch?wf coth 783

+ (B2 —a?) [27r4csch2 73 coth? w8+ n4csch? —%B (28)

Evaluation of expression (20) lim yields
y—0

Sb[ 1 N -1 . 12x —12x2]tht
a L(t=x)?  (t+x)? (t+x)3+(t+X)“ @
1
e, (29)
2u

After combining equation (29) with (27), the integral equation
for the displacement function V(x) can be expressed by

Sﬁb vindt +Sb V(t)[K 1,x)
A (t—x)2 a 1( 3 X
~m(k+1
+K2(t,x,h>]dz:——’5-§“—)—p(x) (30)
"
where p(x) is the specified crack surface tractions, K, is
- 12x —12x2
K (tx)= + + 31
1) (t+x)?2 " (t+x)°  (t+x)? 1)

and K, is given by expression (28). The symbol (£) denotes
that the integral is to be interpreted as a finite-part integral in
the sense of Hadamard (Kaya and Erdogan, 1987).

3 Solution of the Integral Equation

For the case of internal cracks, the integral equation in (30)
can be normalized between — 1 and 1 with the substitutions

_ (b—a) it (b+a)

t > 5 32)
_(b-a)  (b+a)
x= 5 s+ ) (33)
V(1) =$ 7(r) (34)
The normalized integral equation in this case is
S:l 4G Sl V(PL(rs)dr=p 35
el (ML(r,s)dr=p(s) 3%
with
b—a\?
()= (Z52) " (Ky(t0) + Kalth) (36)
_ k+1
p(s)=—m 5 PO (37)
"

The theory of finite-part integrals will not be explored in detail
in this study. It is sufficient to simply state that a Cauchy prin-
cipal value integral can be written as the sum of two finite-part
integrals and that direct differentiation of a Cauchy integral
gives a finite-part integral (Kaya, 1984). For example,

d > i S
713{ a [—x =7, (t—x)?2 dt

Making use of relation (38) it is possible to determine the
finite-part integral for a wide range of kernels. A finite-part
integral of particular interest in this study is given by Kaya and
Erdogan (1987)

jC VI-£2U, (1)
-1

(t—x)?

(38)

dt=—w(n+ 1)U, (¢) 39
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where U, (¢) is the Chebyshev polynomial of the second kind.
If we let

V(r)=F(ry(1-r})? (40)
and expand F(r) in terms of a Chebyshev polynomial series of

the second kind, it is possible to evaluate the resulting finite-
part integrals with the aid of equation (39). Thus,

N
F(r)= EaiU,-(r) (41)
i=0 o
and
N
V(ry= [EIZ,-U,»(r):I(I—rZ)V2 (42)
i=0

Of course the method is not restricted to expansions only in
Chebyshev polynomials and, in particular, power series ex-
pansions seem to be especially convenient for many applica-
tions (Kaya and Erdogan, 1987).

In equation (41) the a@;’s are unknown coefficients, which
once determined specify the crack opening displacement func-
tion ¥(r). Direct substitution of equation (42) into the in-
tegral equation (35) and evaluation of the finite-part integral
given by equation (39) results in

N

Y ~w i+ DU + ()] =)

i=0

(43)

where

+1

h;(s) =S 1 Ui (r)L(r,s)(1—r>)12dy (44)
Equation (43) can be solved by simple collocation. That is, we
can construct N linearly independent equations for the N
unknown a;’s by evaluating equation (43) at N station points
s;. The resulting system of equations for the solution of the
a;’s is given by

N
Eai[—ﬂ'(i—i- DU, (s;) +h,(sj)] =5(s;),
i=0

Jj=01,..., N (45)

where s;’s, for example, can be determined from the roots of
the Chebyshev polynomial of the first kind

2j+1 = .
T,,H(sj):O,Sj:cos( NTl ——2—>,j=0,1,...,N (46)
The stress intensity factors are defined by
2 V()
k,(a =< )1m 47
@)= () im == @7
2 Vit
k,(b):( ot >lim () (48)
k+1/1b N2b—1)

Thus, once F(r) (equation (41)) is known, the stress intensity
factors at either crack tip may be expressed as

k1<a)=(%)«/b;a F(-1)

(49)
2 b—
ki (0) = () =52 Ry (50)
Since F(— 1) and F(1) are given by
N N
F(=1=lim Y] a,U;(x), F(1)=lim Y a,Ui(x) 1)
x=-1iZg . =1 =0

respectively, the values of F(r) at either endpoint in terms of
the a;’s is
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N
F(—1)= Y, a;(i+1)(=1) (52)
i=0
N
F)= Y, a,(i+1) (53)
i=0

For the case of edge cracks, i.e., when ¢ = 0, the normal-
ized integral equation has the form

jﬁllr)—awglf/( YL(r.s)dr=p 54
o o I T r,s)dr=p(s) (9
with

el se X gy 2O

= b s 0= b ) (r)_T3

L(r,s)=0*K, (t,x) +Ky(t,x,h)),

_ k+1

p(s)=—m 5 p{x) (55)

o

As in the case of internal cracks, we can express V(r) by

N
V(r) = [ Y aU; (r)](l —r2)12

i=0

(56)

Substitution of equations (56) into (54) leads to an expression
similar to equation (45) for the evaluation of the unknown
coefficients a;.

i’:ai[{tl———ui(r) L dr

i=0 o (r—s;)?

1
+ So U;(r)L(r,s;)NV1—r? dr} =p(s;) (57)

The difference between this expression and equation (45) is
that a closed form expression for the finite-part integral in
equation (57) is not known. Kaya (1984) has shown that we
can take advantage of the identity (39) by rewriting equation
(57) as

N 1

Lalt,

U (rvi—r?
("_Sj)2

_S‘ Ui (—rN1-r2
o (r+s;)?

1
+ SO Ui (r)L(r,s))N1—r? dr} =p(s;) (58)

and thus the algebraic system of equations for solution of the
a;’s if collocation is used, becomes

N

Ea‘-[—ﬂ(i‘F DU, (sy) +hi(sj)] =p(s;),

i=0

0<s;<1,/j=0,1,2,...,N (59)
where
1 Ui(—r
hi(s;) = SO [—(75531—+ U,-(r)L(r,sj)] 1—r%dr (60)
J

Once the unknown ¢;’s are known for the edge crack problem,
the stress intensity factor is determined from equation (48)
after substitution from equations (55) and (56). Thus, for edge
cracks the stress intensity factor is given by

N
kl(b):(%->@2a,.(i+1) (61)
i=0
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4 Numerical Solution and Resuits

When collocation is used for the solution of equations (45)
or (59), the number of terms N, in the Chebyshev polynomial
expansion, is equal to the number of collocation points s;. It is
not difficult to show that for large values of N, the system of
equations defined by either (45) or (59) becomes badly ill-

conditioned. For example, the determinant of a typical system

of equations from equation (59), for a 10th order Chebyshev
polynomial expansion (N = 11), is of 0(10°%). For a Chebyshev
polynomial expansion of order 24 (N = 25), the determinant
is of 0(10~22). Since, in this study it was desired that stress in-
tensity factors be calculated for arbitrary loading, it was
necessary to use a numerical algorithm which incorporated in-
formation at a sufficiently large number of load points s; on
the crack surface. Thus, to keep the order of the Chebyshev
polynomial expansion relatively low, but still incorporate in-
formation from a greater number of load points than
unknowns, the method of least squares was employed.
Following the usual procedure for deriving the set of Normal
Equations used in the least squares algorithm, the system of N
X N algebraic equations which minimizes the square of the er-
ror for M sampling points is given by

N M M
) ai(EAfjAkj> = 2 B
i=0 j=0 Jj=0
k=0,1,2,...,N (62)
where
Ay=—7(i+DU(s;) +h;(s;) (63)

For the case of completely embedded cracks, the integration
of the bounded kernel implied by equation (44) was handled
numerically using Gauss-Chebyshev quadrature. The
numerical solution of the N X N system of algebraic equa-
tions given by equations (62) results in a very accurate deter-
mination of the stress intensity factors as well as crack opening
displacement (COD). However, for the case of edge cracks,
the integral given by equation (60) requires greater effort to
evaluate accurately. Rewriting equation (60) and temporarily
excluding the portion of the kernel which remains bounded for
all values of r and s, we obtain

I= So [ (r+s)? * (r+s)? *
— 1252

(r+s)*
which exhibits a singular behavior as both s and r
simultaneously go to 0. For r = 0, evaluation of the integral in
equation (64) yields a singular behavior of the form
I _[[(—1)"+l —1]  6(1+2s)
L oss+D s(1+5)2

12s
(r+s)3

] U, (r)(L— )2y (64)

—-4(1+3s+3s2)] ) [ 7r]
+— i+ 1— 65
TR b K (3
and thus we can improve convergence in the numerical evalua-
tion of equation (64) by adding and subtracting the singular
behavior exhibited in equation (65). That is,

(—1i+! -1 12s — 1252 ]*.

=1 182 el (s (res)

SN

. [U,(r)m —sin[(;+ 1)%]]&

(66)

This rearrangement of terms satisfactorily improves the rate
of convergence during numerical evaluation of equation (64),
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Fig. 2 Stress intensily factors for a row of edge cracks subjected to
uniform applied stress 0. Comparison with Bentham and Koiter.

x/b

Fig. 3 Crack opening displacement for a row of edge cracks subjected
to uniform applied stress o.

5_( 2 ) V(s)
T\ 1+ aob'

with the integral in equation (66) calculated using Gauss-
Chebyshev quadrature,

Figure 2 gives the stress intensity factors for an array of
edge cracks subjected to uniform loading o,. The normaliza-
tion parameter S is given by

b
S=
b+h

In this figure the results for an array of edge cracks is com-
pared with Benthem and Koiter’s published results (Benthem
and Koiter, 1973). It can be seen that over the entire range of
possible crack spacing, the two results are almost identical. In
generating the stress intensity factors it was found that an
11-term Chebyshev series expansion was sufficient for highly
accurate results. For example, the stress intensity factor for an
edge crack with S = 0, i.e., # = oo, was determined to be
k/ogVb = 1.121522. For comparison, the exact solution can
be determined from the numerical evaluation of a closed form
expression given by Koiter (1965) and is known to be k/o,Vb
= 1.12152226. It is interesting to note that when S = 0.5, i.e.,
h/b = 1, the stress intensity factor k/cyVb = 0.398662; a
value which is only 35.5 percent of the maximum stress inten-
sity factor for a single isolated edge crack. In Fig. 3 the crack
opening displacement (8), calculated from the mouth of the
crack to the crack tip, is displayed for interacting edge cracks

(67
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Fig. 4 Stress intensity factors at crack tip a, for an array of embedded
cracks subjected to uniform applied stress o (¢ = b ~ a.)
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Fig 5 Stress intensity factors at crack tip b, for an array of embedded
cracks subjected to uniform applied stress ¢p. (¢ = b — a.)

with different A/b ratios. Again, it can be seen that the overall
effect of nearby surface cracks interactions is to greatly reduce
the COD along the entire crack length.

Figures 4 and 5 contain plots of stress intensity factors
calculated for cracks subjected to uniform remote stress o
and located below the surface of the half-space. Note that for
the embedded crack the normalized crack spacing parameter S
is given by

{b—a)
(b—a)+h

In Fig. 4, the stress intensity factors are shown for the crack
tip located closest to the free surface of the plane as a function
of S with (b — a)/a = 1, 10, 100. Figure 5 contains a similar
plot for the crack tip at the point of deepest penetration into
the half-space. In both these figures the dashed line represents
an approximate solution given by Benthem and Koiter (1973)
for the case of a ‘‘stack’’ of cracks in an infinite space, i.e.,
the limiting case when @ = oo for finite crack lengths. It is
remarkable that this limiting case is so closely approximated
when (b — a)/a = 1. This means that the half-space free sur-
face has little effect on the stress intensity factors when the un-
broken ligament length is as small as one crack length. In com-
paring Fig. 5 to Fig. 4'it can be seen that the crack tip located
at the point of deepest penetration in the half-space is relative-
ly insensitive to the crack length/ligament length ratio for S >

(68)

Journal of Applied Mechanics

15 T T T7T L L [T L LA
- f/=10
- h/f =0 2= b-a
1.0
QO
05
h/f=0.4
O o b ' Lo oty
-1.0 -05 0.0 0.5 1.0
(2x-b-a)/4

Fig.6 Crack opening dispiacement for a row of embedded cracks sub-
jected to uniform applied stress .

6=< 2 > V(s)
1+p/ op(tl2)”

0.25. However, at the crack tip nearest to the free surface (Fig.
4), the effect of the crack length to the unbroken ligament
length ratio (b — a)/a is more pronounced, with larger dif-
ferences between the stress intensity factors for different (b —
a)/a ratios seen over a much wider range of crack array spac-
ing. Figure 6 contains plots of the COD 6 for embedded cracks
with (b — a)/a = 10 and various values of crack spacing. For
the case of the isolated embedded crack (h/ (b — a) = o), the
COD is noticeably nonsymmetric for this value of (b — a)/a.
With decreasing distance between interacting cracks (#/(b —
a)), the COD becomes smaller in magnitude, has a ‘‘flatter’’
slope along the crack axis, and appears increasingly
symmetric.

1t is possible to generate the results for concentrated wedge
force loading applied on the crack surface at s = s; by setting
the right-hand side of the integral equation (54) to

2P

) s=35;
p(s)= o (69)
0 s=s;, i#]

where P represents the concentrated wedge force. By sequen-
tially applying unit wedge force loading to the entire crack sur-
face, it is possible to generate a numerical Green’s function for
the stress intensity factors. In a strict sense, the quantities
calculated by using equation (69) represent the response to a
crack surface traction distributed on a small area around s =
s; rather than a concentrated wedge force acting at s;. In any
case the numerical approximation of the concentrated force
loading rapidly converges to a unique solution for the Green’s
function with an increasing number of abscissa load points s;.
Figure 7 is a plot of the numerically generated Green’s func-
tions for the stress intensity factors at the tip of an edge crack.
The function G(s) is given by
G(s):L\/Z 1-s (70)
P
and for different A/b ratios represents the stress intensity fac-
tor resulting from concentrated force loading at a given value
of s (s = x/b). The numerical evaluation of equation (64)
becomes increasingly difficult for very small values of s, i.e.,
when the unit loading is applied close to the crack mouth, due
to the singularity which arises when both r and s simultan-
eously go to 0. Thus, the limiting values given in Fig. 7 for
G(0) were obtained by extrapolating a least-squares curve fit
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Fig. 8 Stress intensity factors due to concentrated force loading
located at crack mouth

polynomial derived from the numerical values of G over the
entire range x/b for a given A/b ratio. It is interesting to note
in Fig. 7 that for certain small values of 4/b the stress intensity
factors due to concentrated force loading close to the crack
mouth have become negative. This indicates that for these par-
ticular values of A/b, wedge force loading at the crack mouth
results in compressive stresses close to the crack tip. Of course

648/ Vol. 54, SEPTEMBER 1987

the negative stress intensity factors are only useful wedge force
solutions if after superposition with another stress field the
resulting stress intensity factor is positive. For nonconstant
stress fields given by o(s) the stress intensity factor can be
determined by superposition from
1
k:.l..g GGs)
Vb Jo V1—s
For values of /b ~ 0.65 and smaller, the contribution to
the stress intensity factor due to concentrated force loading at
the crack mouth is negligible. This can be seen clearly in Fig.
8, which plots the stress intensity factor due to concentrated
force loading located at the crack mouth as a function of the
periodic crack spacing (S is given by equation (67)). For wedge
loading of the crack mouth the magnitude of the stress inten-
sity factor decreases rapidly as the spacing between the surface
cracks decreases. When the value of #/b is between approx-
imately 2 and 0.65, the stress intensity factor due to wedge
loading is negative., Smaller values of 2/b (S > 0.6) yield very
small contributions to the stress intensity factor.

a(s) ds (71)
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Cumulant-Neglect Closure Method
for Nonlinear Systems Under
Random Excitations

Jian-Qiao Sun

Graduate Student.
C.S. Hsu The validity of the cumulant-neglect closure method is examined by applying it to a
e system for which an exact solution is available. A comparison of the results indicates
: ‘rrofisss&ré that the Gaussian closure technique usually leads to a mean-square versus excitation
ellow

strength curve which follows the same general shape as that of the exact solution but
has substantial errors in some cases. The 4th order cumulant-neglect method is
Sfound to be inapplicable and to predict erroneous behavior for systems in certain
parameter ranges, including a faulty prediction of a jump in response as the excita-
tion varies through a certain critical value. On the other hand, for systems in other
ranges the 4th order cumulant-neglect closure method predicts the mean square
response quite well. These two parameter ranges are delineated in the paper. The 6th
order cumulant-neglect closure method is also examined, leading to similar
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conclusions.

1 Introduction

There are two popular closure methods for studying the
statistical properties of the responses of stochastic nonlinear
systems. The first one is the method of non-Gaussian closure
(see Crandall, 1985, for example, and references therein). The
idea of the method is to assume a non-Gaussian probability
density function with adjustable parameters for the response
and to use the moment relations derived from the system equa-
tions to obtain equations for the unknown parameters. The
resulting probability density function can then provide ap-
proximate response statistics. The choice of trial density func-
tions is of course open and important. As shown by Crandall
(1985), when an inappropriate choice is made the approximate
solution becomes worse as the order of the method goes
higher. The second is the method of cumulant-neglect closure
(Wu and Lin, 1984; Ibrahim, 1985). The method simply
neglects the cumulants of system variables above certain order
in order to close the infinite hierarchy of the equations govern-
ing the statistic moments of system variables. It has been
shown by Wu and Lin (1984) that for certain problems this
method is more versatile than the method of non-Gaussian
closure and that, when the external excitation is dominant it
gives better approximations as the order of the method is
higher. However, only a limited range of parameter values is
considered in Wu and Lin (1984). The general question of the
validity of the cumulant-neglect closure method remains open.

It is understood that both methods essentially put con-
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straints on the response statistics. As such, it is important to
know whether the methods yield reasonable approximations
to the true solutions and whether more constraints bring ap-
proximations closer to, or to cause them to deviate further
from the true solutions. A mathematical proof of convergence
of the method for general nonlinear systems is difficult and
not available, What we propose to do is a case study on a class
of systems.

In the paper, we study a stochastic nonlinear system which
was originally studied by Dimentberg (1982) and which has an
exact analytic solution for the stationary probability density
function. We first present the exact solution by Dimentberg.
Subsequently, we study the system by the method of Gaussian
closure and the cumulant-neglect closure method with
cumulants retained up to the fourth order. The purpose is to
find in what way these methods of closure are adequate or in-
adequate. For the cases where the fourth order cumulant-
neglect method is inadequate we study the sources of dif-
ficulties which lead to the inadequacies and give a qualitative
assessment of the ranges of parameters in which the method is
useful. Finally, we briefly study the sixth order cumulant-
neglect method.

2 Exact Solution

Consider the following nonlinear system (Dimentberg,
1982)

i . ¥
x+2ax[l+n(t)]+61x[x2+ 7 ]+92x[1+$(t)]
={(0, ;20, >0 M

where 1(f), £(f) and {(f) are independent zero-mean Gaussian
physical white noises in the sense of Gray and Caughey (1965)
and
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Elp(tn(t+7)] = D,é(7)
E[E(0E(t+ 1] = Do(r) . @
E[5(n§t+ D] = D6(r)

Let v=x, the stationary joint probability density function
p(x,v) is governed by FPK equation

ap ap ] v?
v s =0%x Py +%{[2a(1 —oan)v+B,v<x2-+ e >]p}
32
+ ¥ 30 [(4012D,7 v+ Q“DEx2 +Dr)p]. 3)
If

0D, =40’D, @
then the equation (3) has an exact solution:

col -+ -50)]

px,0)=C ()
vZ 8—«f3
K+ x>+ oD >
where
D; 20 B
= , 6= +Ya, B= 6
“=wp, *~wp, " P wp, ©

1= S S dxdv. @)
— J - v2 8-«
(x +x2 + o )
It can be shown from equation (5) that
E(x?)= ! E@?
x*)= o (v*). (8)
Introducing a transformation
X =rcose v=~Qrsineg, )
we can obtain following results
3 rexp(— Br?)
p(r)-27rCQ W (10)
. ~ * rexp(—Br)
* exp(—fr)
Cl= QS _— 12
i 0 (k+r)p— (12)

When 8>0 and x#0, the stationary statistic moments of any
order exist for an arbitrary § and there is no bifurcation possi-
ble in this case.

An interesting case is when $>0 and k=0. k=0 implying
{() =0, the system is only under parametric excitations. Equa-
tions (11) and (12) become

E() = V(0 S:r'-‘sexp(—ﬁr)dr a3

c-! =7rQS:r‘Bexp(—~Br)dr. (14)

Replacing C in equations (13) by (14), we have a rather simple
expression:
1 TE-8 1

E(x?) = —~— —(1-9).

28 TA-8) 28 (15)

The conditions for the existence of integrals in equations (13) .

and (14) are, respectively,
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6=<2, 6=<1. (16)

Together, the condition for the existence of normalization
constant C and E(x?) is

s=1. a7

It is easy to check that (17) is also the condition for the ex-
istence of statistical moments of any order of the system.
Moreover, =1 is the condition of bifurcation. When §>1,
equation (15) is not valid. This suggests that the trivial solu-
tion exists and is stable. The stationary statistical moments of
all orders are zero. In particular, E(x?) =0. So we have

0 6>1
E()= 40 5=1 (18)

1

%(1—5) s<1.

Equation (18) shows that, as § varies across the bifurcation
point, there is no jump in E(x?). It can also be shown that
there is no jump in any other moments.

3 Cumulant-Neglect Closure Methods

The Ito stochastic differential equations for the Markov
vector (x,v) can be written down from equation (3). Let x, =x,
X, = v, then

dx; = x,dt

dx, = (—2ax, — B, x}x, — ﬁ; x3 — Q2x,)dt + 20D, x,dt j

+ (402D, X} + Q4Dyxt + D)% dW(1)

(19)

where W(#) is a unit Wiener process, 2c>z2D,,x2 is the drift cor-
rection term of Wong and Zakai (1965)
Let

my; = E(xixb) (20)
where E(x}x)) is stationary mixed moment of (i+/)th order.
We are only interested in stationary solutions. From equations

(19), we derive the equations of stationary moments up to the
4th order.

8.4
(v)
2.3 (c)
890 Il T €5 I
8.2 (2)
a.1
2.9 | L 1 1 1 | 1 1 |
[} 2 4 6 8 18 12 14 16 18 2@
R
Fig. 1 Stationary mean square value of the response versus R for x = 0:

(a) equation (18), the exact solution; (b) equation (31), Gaussian closure;
(c) equation (41), the fourth order method; (d) neglected branch of equa-
tion (37)
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mg; =0
8 (1)
(22D, = 2a)my; — Vm g — B,my, _Tz;_ Mgz =0
m“ =O D
B
Mop = Qg + (202D, = 2y = Bymyy =~z miy =0
?
802D, —4 2 By 2
[0 " a)moz— 31m22—2v m04—29 my,
+ Q4D myy + D=0 )
(22
my =0 )
2m, + 22D, — 20)my, — Bymy, ~Q—; My — QPmgy =0
Moy + (82D, — doym,, — 28, my, —2 Q; my,—202m,,
>
+QDymyy + Dy =0
(182D, — 60)my, — 3, My — 3 g; mys — 30%m
+3Q*Dymy, +3Dymg; =0 )
(23)
my =0 h
3my, + (202D, — 20)my, — B, ms, ——Q;— My — Q2 =0
8
2my3 + (8a®D, — daymy, — 28, Mgy —2 Q; My
+Q*Dymyy + Demyy =0
>
B
Moy + (18?D,, ~ 6a)m 5 ~ 36, m3; — 3 Q—; ms
—3Q%my, +3Q*Dymy, +3D.m;; =0
(320°D, — Ba)mgy — 4B,y — 4% Mg —4Q2my;
+6Q*Dymy, +6D 1y, =0 y
24

3.1 Gaussian Closure. Let cumulant functions of x; and
x, be denoted by N\, (x;, X;,, .. .,%; ). In the method of
Gaussian closure we set the cumulants, corresponding to the
moments in equations (21) and (22) of order greater than and
equal to three, equal to zero in order to close the hierarchy of
moment equations at the second order. Then these moments
are expressed in terms of the first and second order moments.
Use the formulas of cumulant functions in (Ibrahim, 1985),
for example, we have the following relations after using equa-
tions (21) and (22)

my; = 0
my =0
25%)
mp = MupMy,
- 3
My = 3moimyy —2mig

Journal of Applied Mechanics

_ 2
My = 3mg
myy = MMy
(26)
_ 2
My = MMy + 2 0My; — 2Me Mg
my =0

Put equations (25) and (26) in equations (21) and (22), we have

My = My=mj=m;=0
27
Mg = Qmy
2 2 2 Dy
861’7720—(801 Dﬂ+Q Dg *40{)”’120_?:0. (28)
When 402D, = 02D, we have
8Bm3, —2(2 — 8)myy — k=0. (29)

Special cases.

1. When D,=D,=0 and 8,>0, from equation (28) we
have
02D, — 4o

88,
The first one is the trivial solution, while the second one gives
the well known bifurcation condition by Gaussian closure (Wu
and Lin, 1984; Ibrahim, 1985; Ariaratnam, 1980):
0’D, =4a.

2. When 8, =0, D, =D, =0 and D,=27S,, then equation
(28) gives the exact linear solution

My =0o0r my, =

e — TSy
07 2002
3. When 40(2D” =02D;, «=0 and §>0, we have from
equation (29)
1

Moy =0 or myy =—(2—19). 30
20 0=75 (2—-9) (30)
Notice that when x=0 (D, =0), the trivial (identically zero)
solution always exists and its stability can be ascertained by ex-
amining its bifurcation into the nontrivial solution. Equation

(30) shows that the bifurcation condition is § =2 and

0 6>2
! 2-06) o6<2
48 '

Once again, there is no jump in #1,, at bifurcation point.

3.2 The d4th Order Method of Cumulant-Neglect
Closure. For the remainder of the paper we take 3>0. Con-
sider now the 4th order cumulant-neglect closure method. In
this method, in the same spirit as in the method of Gaussian
closure, we set the cumulants, corresponding to the moments
of order 5 and 6 in equations (23) and (24), to zero to close the
hierarchy of the moment equations at the order 4. This leads
to
N Xy s

n=5,6; (i,is, ...

. ,x,-n)=0,

) #=(LL, L) 32)
From equations (21) to (24) and (32), one can show that
Mg = Mgy =My =My =My = My = Mag = Mgy =0

Mys = M, = My = M3y = My =5 =0,
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In general m; #0. However, when 4a?D, =Q?D; it can be
shown that m; =0 and

My = Py,
m

My = (33)
304(248m3y + K)my

My =

36610+ 20— 6

Substituting (33) into (22),, we obtain the equation for 11y,
96(Brnyy)° —36(2 — 8)(Brmye)* — [148x
+2(2 - 8)(6 - 3)l(Bryg) — (6—3)Bx = 0. (34)
Once m,, is determined by equation (34), mg, can be com-
puted from equation (33),, m,, from (33),, and m, from
(33),. However, since my, should be nonnegative, it is seen
from (33), that for nontrivial solutions there is a constraint on
My
By = (3 —6)/18. 35)
3.2.1. Purely Parametric Excitation x=0. To proceed
further, let us first examine the case x=0 for which the

analysis is simple and transparent. When «=0, the external
forcing is absent and the excitation is entirely parametric. In

that case we have
18(2 - 6) £/324(2 - 86)2 + 1922 —8)(5 - 3)
963 )

My =0 O My =
(36

The solution m,, =0 corresponds to the trivial solution of
identically zero response which is always possible in this case.
The nontrivial solutions for m,, are obtained from equation

(36). It is readily seen that there are real solutions for m,, only
if

3242~ 8)2 +192(2 - 8)(6 - 3)=0. (37)
This condition in turn requires
6
[ =2,
1 oré (38)

However, for =3, the two real solutions are both negative
and therefore are not valid ones for m,,. For 2<§<3, there is
one positive real solution for m,,, but its value violates the
constraint equation (35) and hence is to be ruled out. Conse-
quently, there are real and valid nontrivial solutions for n,,
only in the range 6 = (6/11). In this range there are positive real
solutions for m,,. But, it can be shown that the solution
associated with the negative square root decreases as the
strength of the excitations D, increases. It is thus physically
not acceptable. This branch of the solution is shown in Fig. 1
by the dashed line. Summarizing the results, we have for the
case k=0

( 6
0 5> —
T
0.2727 6
My = A 3 6:W
18(2— 8) +/324(2— 8)% + 192(2— 8)(6 — 3) 5o 6
i 968 DETH
(39

As readily seen from equation (39), there is a jump in m,, as &
varies across the point §=6/11.

A Discussion.
versus R of the exact solution and the solutions by the method
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Shown in Fig. 1 are the curves of (8 X )

of Gaussian closure and by the 4th order method, where R is
defined as:

1 D,
R= =
26—1 4o
The bifurcation conditions in terms of R are the following

R=1  (exact)

R =1/3 (Gaussian closure)

R=11 (the 4th order method,

not a bifurcation but a jump)

As can be seen from the Fig. 1, the solution by Gaussian
closure has large error consistently for all R>1/3. The 4th
order method gives a better approximation for R = 11 and the
wrong solution for 1 <R <11 and a faulty jump in my,. It is
interesting to indicate why this happens.

For the 4th order method, the condition (32) gives following
moment relations besides some trivial ones:

Mye = 15mpmo, —30m,

Mgy = Mgyl + 6y My, — 6y, 13, 40
= 2

My = MygMgy + 6mgy My, — 6Myymiy

The exact relations corresponding to equations (40) can be ob-
tained explicitly from the exact solution (5) when x =0

502 8
mog =g (1=5) o

1 1]
My, = W(l ——3—>m04 (41)
1 6
My = "ﬂ;(l_T)mm
and
304 o
My :T<1 ——-2—) My, (42)

Comparing equations (40) and (41), one can see that the condi-
tion (32) imposes nonlinear relations on moments. It is
understood that these nonlinear constraints are the causes of
the inequalities (35) and (37) which in turn result in the wrong
bifurcation condition and the faulty jump in moments at
6=6/11 (R=11).

Applying equations (41) to (21) to (24), we find, as might
have been expected, that some of the equations become iden-
tities while others become the exact relations of moments such
as

— 02
Mgy = my
2 —
Q My = 3m22

L @)

—302
myy =30 my,

Q2 6
My =—F— (1 - “") My
P,

28 2

Equations (41), (42), and (43) show that the moments of any
order of the system are linearly related and of a non-Gaussian
nature. The method of cumulant-neglect closure, on the other
hand, requires the moments above certain order to satisfy
some nonlinear relations; this is where the solution by the
method deviates from the exact solution., When the order of
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2.9 9.1 2.2 , 0.3 2.4

Fig. 2 Invalid parameter domain of the fourth and sixth order methods

the method becomes higher, higher-order nonlinear constraint
relations on moments are introduced. The higher-order
nonlinear relations may introduce more constraints like equa-
tions (35) and (37). It is difficult to know whether such higher
order constraints make the approximate solutions converge to
the exact solution. This specific case k=0 considered here,
however, clearly shows that the constraints introduced at the
fourth order level actually make the method invalid and bring
about a faulty solution for a range of the system parameters.

3.2.2. The General Case k#0. Next, let us consider the
general case « #0. Here what we need is to find all the real and
positive solutions of m,, from equation (34) which also satisfy
the constraint equation (35). These solutions will be referred
to as meaningful solutions. A detailed calculation for this task
yields curve 1 in Fig. 2. In this figure, area C+ D is a region in
the Bx — R parameter plane where there exist meaningful solu-
tions. Area A + B of the figure is a region where there is no
meaningful solution because the solutions are either complex,
real but negative, or violating (35). '

The neighborhood near point p on the R axis with R=0.2
needs some special comments. The R coordinate axis, or k=0,
is a special case. As discussed earlier, when «=0 there is the
trivial solution for all positive values of R. The nontrivial solu-
tions exist, however, only for R> 11, according to the fourth
order cumulant-neglect method. As soon as « deviates from
zero, meaningful solutions with small values of m,, appear for
R-values less than approximately 0.2.

Figure 2 implies that it is inappropriate to use the fourth
order cumulant-neglect method for systems with parameters
lying in region A + B. For systems in region C+ D the method
will yield meaningful solutions. It is then important to know
how good are the solutions of the method for these systems.
Here we again compare the results against the exact solutions.
Some of the calculated results are shown in Figs. 3-6. They are
for Bxk=0.1, 0.2, 1.0, and 10, respectively. It is interesting to
observe from these figures that if a system is located in area
C+ D of Fig. 2 and not too near the boundary of the area,
then the predicted mean square of the response is a quife good
approximation to the true value. The cases considered by Wu
and Lin (1984) fall in the area C+ D (with R=0.05); hence,
they have found good agreement between the results from the
4th order cumulant-neglect method and the true. solutions.
This is consistent with the findings of this study. For the
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2.3
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2.2~ 1
{ i exact solution
. | — Gaussian closure
o1l : | — —  4th order method
. . |
. T 6th order method
: i
j . | | | L 1
2,0t
B ! 2 5 3 4 g

Fig. 3 Stationary mean square value of the response versus R for
«k=0.1,8=1, 8x=0.1

B.5
——— exact solution
—+«—-.« Gaussian closure
-—— — 4th order method
2.4~ """ * 6th order method o emeomememer
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Bmao AEERERE
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!
-
e.ff: 1
o
o .
! :
Q.pbu 1.1 ! l 1 |
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Fig. 4 Stationary mean square value of the response versus R for
k=02, 8=1,8=0.2

fourth order method, besides the curve shown in each of Figs.
3-6, there exists also a second branch with much lower Sm,,
values. These are not considered in the above discussion. A
further study is needed if we wish to have a more rigorous
basis for excluding them.

3.3 The Sixth Order Method of Cumulant-Neglect
Closure. Motivated by the results of the fourth order
method, we now study the sixth order method. By keeping the
moment equations up to the sixth order, we have to solve 27
equations together with 15 nonlinear relations for the
moments of seven and eight orders. It has been observed that
under the condition (4), both the Gaussian closure and the
fourth order method give the following result.

44)
which is in agreement with the exact solution. It can also be

shown that there is a branch of the stationary solutions by the
sixth order method for which equation (44) is true. We intend

my; =0, if either /or j is odd.
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“7)
From equations (45) and (47), we obtain the equation for m,,
ao(Bmag)* + a,(Bmyg)® + ay (Bmiyy)? + a3y (Bmyy) +a, =0 (48)
where

Mgy = 630my — 420m3ym o + 35m3y + 2810,

aa s edm @ puts_ Sord

exact solution
Gaussian closure
4th order method

6th order method

2

N | L | |
8.0 8.5 1.8 R 1.8 2.8 2.5
Fig.5 Stationary mean square value of the response versus R forx =1,

B=1, pgx=1

2.8

exact solution

Gaussian closure
4th order method

8.5 6th order method

2.2 | | I i
) . . 2.0 2.5

Fig.6 Stationary mean square value of the response versus R forx =1,
8=10,8t=10

to find and examine such a branch of solution. With equation
(44) and the condition (4), we obtain following three equations

8
22— 6)ymy, Ny B +xk=0

12
3umyg +2(3 = 8)myy — - Bigy =0 (45)
16
Sk + 2(4 — 8)ymgy — T Bmg, =0
and the moment relations
My, = Py
02 Q 6
My = 5 Mg >Mo4 =“5“m60»m06 =W0mg,
02 304 A =Q8
Mgy =~ MlgosMag = o= Mg, Mg === Mo, Moy =5 Mg
(46)
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a, = 288
ay = —144(2—-6)
a, = (2—8)(42—178)— 568«

a; = —(11.756— 26.5)3K~——211——(2 —8)(3~8)(4—8)

a, %[156%— (B—8)(4—8)16x .

Notice that all the relations in equations (46) are in agree-
ment with exact ones. From equations (45), one may also
derive two constraints on m,, to make m,, and mg, positive.
As in the case of the fourth order method, a comprehensive
numerical study for the meaningful solutions of equation (48)
is carried out in the 8k — R parameter plane. The result is curve
2 in Fig. 2. The meaningful solutions are chosen out of several
branches of the solutions of equation (48) strictly based upon
comparison with the exact solutions. Thus area B + Cin Fig. 2
is a region where no meaningful solution exists because the
solutions are either complex, real but negative, or real and
positive but of the value which remains small for all excitation
strength, or decreases as the excitation strength increases.
Area A+ D is a region where there exist meaningful solutions.

3.3.1. Comparison with the Fourth Order Method. It is
interesting to discuss the features of the cumulant-neglect
closure methods revealed in Fig. 2. Area A in Fig. 2 is the
region where the 4th order method is invalid but the sixth
order method is valid. In this region one can expect to improve
the approximate solutions of lower order methods by using the
sixth order method. Area C is the reverse of Area 4. In area
C, the sixth order method is invalid but the fourth order
method is valid. This suggests that in area C, one should stop
at the fourth order method because the higher order method
may not give better approximations. Area B is the region
where both the fourth and sixth methods are invalid. It seems
to suggest that the non-Gaussian closure methods are inap-
plicable in area B. Here, it is interesting to note from Figs. 3-4
that in the area B, the Gaussian closure method, while it does
not give accurate results, does yield a qualitatively correct
response pattern. Area D is the region where both the fourth
and sixth order methods are valid. In the region, the sixth
order method gives better approximations than the fourth
order method if the parameters are located far away from the
boundary of the invalid domain. All the features discussed
thus far are clearly displayed in Figs. 3-6.

4 Conclusion

A nonlinear system under random parametric and external
excitations is studied with the method of Gaussian closure and
the fourth and sixth order cumulant-neglect closure methods.
The approximate solutions are compared with an exact
analytic solution. It is shown that for the fourth and sixth
order cumulant-neglect closure methods one can determine
two regions in the parameter plane. In one region the methods
are invalid and give faulty results. For the other region the
methods give meaningful solutions and, in fact, give fairly
good approximate solutions in most instances.

This is merely a case study on one class of systems. It seems
to indicate that the cumulant-neglect closure method is a very
useful tool, but it also suggests that the validity of the method

.needs verifying when it is applied to general nonlinear systems

under random excitations. One way of verifying is to check the
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results obtained by the cumulant-neglect closure methods with
direct simulation. Another way is to use the statistic
hypothesis testing technique to establish the guideline of
validity of the method. This is, however, a future research
topic and can not be covered here.
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Systems; Part I: Linearized
Differential Equations

Part I of this paper deals with relationships between integrals of a set of nonlinear
differential equations and integrals of equations obtained from such a set by a pro-

cess of linearization. The terms ‘‘total linearization,”’ ‘‘reduction,”’ and ‘‘partial
linearization’’ are introduced, a theorem is stated and proved in connection with
each of these, and the use of each theorem is illustrated by means of an example. In
Part 11, the theorems are applied to differential equations of motion of mechanical

systems.

1 Introduction

The subject of this paper is introduced most easily by
reference to a simple example. Figure 1 shows a mechanical
system S consisting of two particles, P, and P,, each of mass
M, and two light, rigid rods, R, and R,, each of length L. R,
and R, are connected to each other by a revolute joint and a
linear torsion spring of modulus k at P,, and R, is connected
by means of a revolute joint at O to a vertical shaft that is
made to rotate at a constant angular speed .

If u, and u, are defined as ¢, and ¢,, respectively, where g,
and g, are the angles between the vertical and R, and R,,
respectively, and dots denote time-differentiation, then all
motions of S are governed by the four first-order differential
equations: :

g, =u, (1.1)
G2= 1.2)
4y +uyc08(q, — q,) =D (s, + ;) — u3sin(g; — ¢,)
—[k/(ML*)q, —q2)— (/L)s; - (1.3)
11,008(q; — qy) + 211, = 0%, (s, +25,) + ulsin(g, — q,)
+k/(ML)I(g, — q2) - 2(8/L)s, (1.4)

where s; and ¢; denote sin g; and cos g; (i = 1,2), respectively.
These equations cannot be solved in closed form. Hence, to
obtain a description of the motion of S that takes place subse-
quent to an instant at which u;, u,, q,, and g, have specified
initial values, one resorts to numerical integration. In this way
one can generate results such as, for example, those
represented by the two curves labeled g, and ¢, in Fig. 2 or,
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equivalently, those reported in columns 2 and 3 of Table 1,
which apply if g/L = 1s72, ML? = 1 kg m?, k/(ML?) =
1.27289 s-2/rad, Q2 = 0.69773 rad?s~2, and, atf = 0, uy; =
u, = 0,g, = 23 deg and g, = 30 deg.

To check on the validity of results obtained by the means
just described, one can take advantage of the fact that equa-
tions (1.1)-(1.4) possess the integral

G(ul’ Uy, 4y, QZ)=C’
where the function G (the Hamiltonian of S) is given by

(1.5)

a constant

1
G == [u% +2u% + 2u, u,ycos(q, — q,) — Q2(s? + 253 + 2s1s2)]

1

k g
TW(QI_qZ)Z_T(CI+2C2) (1.6)

Fig. 1

Mechanical system
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Tabie 1

1 2 3 4 5 6 7 8 9 10 11

t] g | o9 6 d a2 8 4 i | g
sec deg deg Nm . deg deg Nm Hm deg deg Km
0.0 | 23.0 | 30.0 | -3.0071f| -10.0 0.0 -2.9759 | -3.0062 - 7.0 30.0 | -3.0068
1.0 | 34.9 | 22.5 | -3.0071 2.0 -7.5 -2.9739 | -3.0062 12.5 | 22.5 | -3.0081
2.0 | 24.2 [ 31.1 ] -3.0071 8.51f 1.39 | -2.9736 | -3.0062 - 6.9 | 31.3 | -3.0064
3.0 ) 37.0 | 24.6 | -3.0071 4.7 1 -4.9 -2.9717 | -3.0062 12.7 ) 25.0 ] -3.0075
4.0 | 27.2 | 33.7 | -3.0071]| - 5.1 4.6 ~2.9716 | -3.0062 - 6.6 | 34.6 | -3.0054
5.0 | 40.1 [ 27.6 | -3.0071 8.2 ] -1.7 -2,9732 | -3.0062 12.9 | 28.4 | -3.0066
6.0 | 30.1 | 36.3 | -3.0071|| - 2.2 7.3 -2.9736 | -3.0062 - 6.5 | 37.6 | -3.0044
7.0 ) 41.9 { 29.3 | -3.0071 10.0 0.0 ~2.,9759 | -3.0062 13,1 | 30.4 | -3,0061
8.0 | 30.6 | 36.8 | -3.0071|| - 1.8 7.6 -2.9741 | -3.0062 - 6.5 | 38,0 | -3.0042
9.0 | 41.0 § 28.4 | -3.0071 8.8 ] -1.1 -2.9740 | -3.0062 13.0 | 29.1 | -3.0064
10.0 | 28.4 | 34.7 | -3.0071]| - 4.3 5.3 -2.9718 | -3.0062 - 6.6 | 35.4 | -3.0051

To this end, one incorporates in the computer program used to
carry out the numerical integration of equations (1.1)-(1.4)
the evaluation of G as given by equation (1.6), and determines
whether or not the value thus found stays constant to an extent
compatible with the accuracy of the numerical integration
scheme being employed. In column 4 of Table 1, the value of
G generated in this way is seen to remain constant to five
significant figures. The same result is reported in Fig. 2 as the
straight line labeled G.

Particular solutions of equations (1.1)-(1.4) can be found
by setting #, = u, = 0 and letting ¢, and g, be constants such
that .

Q26 (S, +$,) — [k/(ML)G, — )~ (8/L)$, =0 (.7
D26y, +28)) + [k/ (MLHNG, — G.) —2g/L)$, =0 (1.8)

where §; and ¢; denote sin g; and cos g; (i = 1, 2), respective-
ly. For example, with g/L, ML?, k/(ML?), and Q? as before,
these equations are satisfied with ¢, =33 deg, ¢, = 30 deg.
Suppose now that, to study motions differing only slightly
from that corresponding to such a particular solution, one in-
troduces perturbations i,, &, §;, and §, as ; 2 u;, §; 2 q; —
g; (i = 1, 2), substitutes into equations (1.1)-(1.4), and then
linearizes in the perturbations and their time-derivatives. This
yields the equations

(1.9)

(1.10)
thy + 1,c08(g, ~ ) =92 [(C-% — 8§t =554, + 5152‘?2]

— [k/(MLA))(G, ~ 4,) - (g/L)¢,g, (1.11)
1,€oS(qy — Gy) + 2, = 02 [5152‘?1 — (5,5, -23 +2§%)éz]

+ [k/ (ML))(G1 — G2) ~ 2e/L) 6,4, (1.12)

which, being linear, can be solved either in closed form or by
numerical integration. Using the same parameter values and
initial conditions as before, one obtains the curves labeled g,
and g, in Fig. 3, as well as the entries in columns 5 and 6 of
Table 1; and, evaluating G after replacing u, with 4; and g;
with g; + ¢; (i = 1, 2) in equation (1.6), one is led to the curve
labeled G in Fig. 3, and to the numerical values recorded in
column 7 of Table 1. Both show that G fails to remain cons-
tant. However, this does not mean that #; and ¢; (i = 1, 2)
have been evaluated incorrectly. It simply indicates that equa-
tion (1.6) is not an integral of equations (1.9)-(1.12). To find
such an integral, one may proceed as follows. In equation
(1.6), after replacing u; with &; and g, with ¢; + §; (i = 1, 2),
expand each trigonometric function of ¢; in a Maclaurin
series, and then drop all terms of third or higher degree in #;
and/or §; (i = 1, 2). Denote the resulting function of #,, §;,
and g; (I = 1, 2) by G. Then the equation

Journal of Applied Mechanics
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Fig. 3 A solution of the linearized differential equations

G=C (1.13)
where € is a constant, is an integral of equations (1.9)-(1.12).
The validity of this contention is confirmed by the plot of G
versus £, shown in Fig. 3, and by the numerical value of G at
various instants of time, recorded in column 8 of Table 1.

The foregoing observations lead rather naturally to the
following question: can one a/ways construct an integral of a
set of linearized equations of motion by proceeding as in the
above example? It is one of the objectives of this paper to
answer this question. Before doing so, however, let us briefly
examine the following situation. Suppose that the spring con-
necting R, and R, is so stiff that one may expect g, to be near-
ly equal to ¢, throughout all motions of S. Under these cir-
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cumstances, one may wish to replace u; with u, + 4, and g,
with ¢, + §,, in equations (1.1)-(1.4), and then linearize in
iy, gy, and their time-derivatives, which leads to a set of four
partially linearized, but nevertheless nonlinear, differential
equations; and, to test the validity of a numerical integration
of these equations, one can attempt to make corresponding
substitutions in equation (1.6), drop terms of degree three or
higher in #, and §,, and then see whether or not-the function
G thus formed remains constant as time varies. Results of
such a numerical integration are recorded in columns 9 and 10
of Table 1, and the associated values of G appear in column
11, which reveals that & = &, a constant, is not an integral of
the set of differential equations under consideration. Thus,
one is led to wonder whether or not it is possible to derive an
integral of a set of partially linearized equations of motion
from an integral of the associated set of nonlinear equations
of motion and, if so, how one might proceed in order to attain
this goal. In Part I we answer both this question and the one
raised earlier for a class of differential equations arising in
dynamical analyses. We state and prove three theorems in the
sections that follow, and illustrate the use of each theorem by
means of an example. In Part II we apply the theorems to dif-
ferential equations of motion of mechanical systems.

2 Total Linearization

Let x(¢) denote an n X 1 matrix whose elements,
X1, . .. X, are functions of a scalar, independent variable ¢,
and let F(x, t) stand for an n X 1 matrix whose elements
F,, ... ,F, are functions of x, . . . ,x, and ¢ such that F(0,
t), denoted by F, vanishes for all #, that is,

FAF0,t)=0 Q.10
Furthermore, require x to satisfy the differential equation
x=F 2.2)
where the dot denotes differentiation with respect to ¢; and let
G(x, t) denote a scalar function of x, . . . ,x, and ¢ such
that, whenever x satisfies equation (2.2), then
G=C, 2.3)
Under these circumstances, equation (2.3) is called an integral
of equation (2.2), and G is referred to as an integral generating
Sfunction or, for short, an IGF, for equation (2.2).
To produce what we call the totally linearized form of equa-

tion (2. 2), we introduce X(¢), an #n X 1 matrix whose elements
%, are functions of ¢; define an n X »n matrix dF/0x

a constant

X1y e
as
| oF, oF,
ax, ax,
LRy 2.4)
ax . .
dF, dF,
L ax, 0x, |

and use an overbar to denote evaluation of 0F/dx at x = 0 [as
in equation (2.1)]. The fotally linearized form of equation
(2.2) is, by definition, the equation

. oF
F=—— % 2.5)

ox
Finally, we let G(%, ¢) denote the scalar function defined as

G(%,

x (2.6)

where 3G/dx is the value at x = 0 of the n X 1 matrix dG/dx
defined as
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2.7

3G A[

oG oG ]
ax

ax, 7 ax,
G is called the rotally linearized form of G.

The total linearization theorem asserts that G is an IGF for
equation (2.5) if G is an IFG for equation (2.2). In other

words, G = C, a constant, is an integral of equation (2.5) if

equation (2.3) is an integral of equation (2.2).
To prove this theorem, we begin by differentiating G with
respect to ¢, which yields!

(2.8)

Next, differentiating equation (2.6) with respect to #, we
obtain

2 G G 3G
G = + X+
2.6 at atax ax
__ G ., ¥G . G IF
dax 28 atdx dx Ox 2.5
3G 9G OF \
= 0 +< + )x (2.9)
an dtax dx Ox
and, after defining 42G/3x? as
e »?G |
0x,0x, ax,0x,
3G
—.~ A 2.10
ax? ) ) (2.10)
3G ?aG
dx,0x, 0x,,0x,, |

note that differentiation of equation (2.8) with respect to x
and then setting x equal to zero produces

?G

=0
ax0t
(2.8)

G . oG oF
F

2.11
ax? * ax Ox * @.11)

The first term of this equation vanishes by virtue of equation
(2.1), and the remaining two terms are the coefficient of X in
equation (2.9). Consequently,

G= 0
(2.9) @.11)

(2.12)

which means that & is an IGF for equation (2.5).

3 Reduction
The reduced form of G is a function G (%, ¢) defined as
3G

pal 3.1)

_ .1
G(%,1) éG+—2—)eT

where G and 82G/3x? are given by equations (2.6) and (2.10),
respectively. The n X n symmetric matrix whose ith row is
(8G/dx) (8*°F/dx;0x) is denoted by (G/dx) (3*F/dx2); that
is,

INumbers beneath signs of equality or terms of an equation refer to cor-
responding equations.
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[ 3G #°F
ax 0x,0x
0G  PF
A
ax  axr T (3-2)
G °F
ax 0x,0x

The reduction theorem asserts that, when G is an IGF for
equation (2.2), then G is an IGF for equation (2.5) if and only
if

3G PF
ax  oxr

The proof of this theorem involves the first time-derivative

of G and the second derivative of equation (2.8) with respect
to x. Now,
)

3.3)

3G
X
atdx?

2 1 /... 8*G . .
G+——(xT X+ xT
ax?

3G
+x7
dx?

oF #G
x?
@5

., 0°G OF )
x
ax?  ox

(2.5)

=0 +—(£T

3.4

or, equivalently,
CL;=L)ET(8_FT 76 + 7G + 76 FF))?
2 ax  9ax? tdxr  axr ox
Differentiating equation (2.8) with respect to x gives
r 0*G aG oF 93*G
F +

+ =
ax? dx dx  Oxdt .-

(3.5)

0 3.6)

and, setting x = 0 after differentiating this equation with

respect to x, one obtains with the aid of equation (2.1)

F PG PF5G _
Ix  ax? ox?  oxot

OF
ax

*G
+

8G
ax? *

I 0 3.7

Comparing the left-hand member of equation (3.7) with the
expression within the parentheses in equation (3.5), one sees
that G = 0, which means that G is an IGF for equation (2.5),
if and only if equation (3.3) is satisfied.

4 Partial Linearization

Let i be an integer smaller than #n; define j as
j4 @.1)

2 n—i
and let yand zbeani X 1 and aj X 1 matrix, respectively,
such that

4.2)

Also, let I(y, z, t) and J(», z, t) bean i X 1andaj x 1
matrix, respectively, such that

I
(4.3)

Journal of Applied Mechanics

and define H(y, z, t) as
y
H(y,2,0)AG( |- | ,b) (4.4)
z

Finally, use an overbar to denote evaluation at y = 0, so that,
for example, H = H(0, z, t); and let y(#) be an / X 1 matrix.
Then we refer to the equation

y i+ o
y 3y y
R [ S 4.5)
. aJ
b4 J+—— 7y
ay
and to the function H(, z, t) defined as
WA OH
H(y’Z,t) = H+—a;—y (46)

as a partially linearized form of equation (2.2) and a partially
linearized form of H, respectively.

The partial linearization theorem asserts that, when G is an
IGF for equation (2.2), then H is an IGF for equation (4.5) if
and only if

o O°H
I —— =0 4.7
2 @7
and
aJ ’H PH\T
__a_~+ Ll > =0 4.8)
dy dzdy dy 0zdy
To prove this, we note first that
. oH oH #?H  3H oH .

H = ? + +('T + >‘+ y (4.9
oTw e T\ Ty ey )y T )
B aH(_Jr?f A)+ oH +[(]—+AT aJT> 0’ H . WI]
0z ay Y art Y oy / 0zdy atdy

.5 @5
oH (. oI |
) (4.10)
ay ay
“.5)
so that & = 0 for all y if and only if
o J+ el 4.11)
oz ot ay ’
and
0H o&J . #H H OH aI
S + + =0 (4.12)
dz  ady azdy otdy ay oy
. ®H | , ,
and —— is skew-symmetric, that is,
dy 0zdy
aJ 8*H aJ 9*H \T
- 4 (——) =0 (4.13)
dy 0zdy dy 0zdy
We shall now show that equation (4.11) is satisifed

whenever G satisfies equation (2.8), and that equation (4.12)
may be replaced with equation (4.7). To these ends, we
observe that

oH [
ay

aG

4.14
o (4.14)

aG ]
ax,

4.4 4.2) i

and
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oH aG aG
= [ e ] (4.15)
0z “d ax;, @2 ax,
whence
G 0H . 8H ]
v ' 4.16
ax [ i 0z ( )
2.7 (4.14) 4.15)
Hence, equation (2.8) can be rewritten
oH oH I oH
[—— : ———] [ — ]+ =0 .17
ay az 7 ot
4.16) 4.3) 4.4)

Now, when y = 0, this becomes equation (4.11), which means
that the latter is satisfied whenever G satisfies equation (2.8).
Additionally, differentiation of equation (4.17) with respect to
y yields

| al .
d a v 0*H
[__— | ] 2 -0 (4.18)
dy | 0z T ayot
ay
or, equivalently,
o 0°H o 8#H 0H o oH aJ 9*H
i —+J + + — =0
dy dzdy dy dy az Iy ayot
(4.19)

which makes it possible to replace equation (4.12) with equa-
tion (4.7).

5 Examples
The function G (x,, . . . ,x4) defined as
GA (x; + 12+ 33+ X2+ 200, +4)? + 3xE + 4x2 (5.1)
is an IGF for the set of differential equations
X| = XX — XaXs, Xp=(X3+Dx;—(x; +1x, (5.2)
X3 =(x; + Dxs — (x4 +4)x, y Xy= —XsXg/2 (5.3)
X5 =2(x4 + D)xs/3 , Xe=— (x4 +4)xs/4 5.4

and the totally linearized form of these equations is the set of
equations

F=0 , X=dk R, Xy=Xs—4%, (5.5)
X=0 , Xs=8%/3 , Ke= Xy (5.6)
while the totally linearized form of G is

G =2%, + 16%, + 33 (5.7

660/ Vol. 54, SEPTEMBER 1987

In conformity with the total linearization theorem, G is an
IGF for equations (5.5) and (5.6), a fact that is easily esta-
blished by noting that
G = 2%, +16%,= 0 +0
.7 (5.5) (5.6)

(5.8

Since G as given in equation (5.1) contains no terms of
degree higher than the second, the reduced form of G is given
by

G= (%, + 12+ 5%+ 53 4+ 2(F, +4)? + 352 + 452 (5.9)
Referring to equation (3.2), one obtains
ro 0 00 0 0 1
00 00 0 2
0G 9'F 0 0 0 0 -2 0
—_— = (5.10)
ax  dx 00 00 0 0
00 -2 0 0 -8
|0 2 0 0 -8 0 ]

Hence, the requirement imposed by equation (3.3) is violated,
and the reduction theorem leads one to conclude that G is not
an IGF for equations (5.5) and (5.6).

Finally, consider the set of four equations

(5.11)
(5.12)

and suppose that these are to be linearized in x; and x,, but
not in x, and x,. Referring to equations (4.2) and (4.3), and
noting that / = j = 2, one finds that y; = x;, ¥, = X, 2, =
X3, 25 = X4, and

X =X, , Xy = —sin x,(x]cos x; +2)/(2~cos’x,)

X3=X3X; , Xg=sin x, (¥ +cos x;)/(2~cos?x,)

Y2
= (5.13)
{ —sin y,(y3cos y, +2)/(2—-cos?y,) }
2%y
= l: (5.14)
sin y; (¥3 +cos y;)/(2—cos?y,)

Furthermore, G, defined as G é X, + 2x4is an IGF for equa-
tions (5.11) and (5.12); H, formed in accordance with equa-
tion (4.4), is given by H = y, cos y; + 2z,; and H, I, and J
satisfy equations (4.7) and (4.8). In accordance with the par-
tial linearization theorem, H, here given by H = j, + 2z,,
must thus be an IGF for the partially linearized form of equa-
tions (5.11) and (5.12), that is, for the equations

P1=Fa $a= =201, & =212 L =5 (5.15)
And, indeed,
H=3,+2z, = —2§,+25,=0 (5.16)

(3.15)

Transactions of the ASME

Downloaded 03 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Integrals of Linearized Differential

T. B. Kane

Protessor of Applied Mechanics,
Fellow ASME

S. Djerassi

Stanford University
Stanford, CA 94305

Equations of Motion of Mechanical
Systems; Part II: Linearized
Equations of Motion

Theorems derived in Part I are here applied to differential equations of motion of

mechanical systems. The theorems are reformulated in terms of variables appearing
in dynamical equations of motion, and their use is illustrated by means of an

example.

1 Introduction

Systems of linear differential equations deduced by a pro-
cess of linearization from the nonlinear differential equations
governing the behavior of a mechanical system play an impor-
tant role in many engineering analyses (see, e.g., Kailath,
1980). This paper shows how one can construct integrals for
such systems of linear differential equations of motion by
making use of available integrals of the associated nonlinear
equations of motion.

The present work draws heavily upon Part I. Indeed, it con-
sists of the application of material from Part I to the field of
dynamics. This leads to theorems which furnish analytical
tools especially well suited for dealing with motions of
mechanical systems.

In Part I it is shown how one can construct integrals for
linearized forms of the differential equation (I2.2)! when this
equation possesses an integral. In what follows, we show that
the differential equations of motion of any simple,
nonholonomic system can be cast in the form of equation
(I2.2), and we correlate the variables and functions appearing
in the equations of motion to x and F in equation (I2.2). Next,
we appeal to the three theorems of Part I to formulate
theorems involving the variables that appear in the differential
equations of motion. Finally, we illustrate the use of this
material with an example.

2 Equations of Motion

Consider a simple, nonholonomic system S (Kane, 1985)
possessing P degrees of freedom, N (N= P) generalized coor-
dinates ¢, . . . ,gy, and P independent generalized speeds

1Equations numbers preceded by ““I’’ refer to equations numbered cor-
respondingly in Part I.
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U, ...,up. A setof equations of motion of § consists of N
kinematical equations and P dynamical equations. To show
that these can be cast in the form of equation (12.2), we refer
to Kane (1985), Sec. 2.12, where N (not necessarily indepen-
dent) generalized speeds u, ... ,uy are defined as linear
combinations of the time derivatives of N generalized coor-
dinates. Solving for the latter, we have [Kane, 1985, equation
(2.14.5)]

N
Go= Y, Wou, + X, (s=1,...,N) @.1)

r=1

where W, and X, are functions of g;, . . . ,qy and ¢. Simple,
nonholonomic constraints are introduced as m linear relations
of the form [Kane, 1985, Eq. (2.13.1)]

P
up= Y, A, + B, (k=P+1,...,N)

r=1

2.2)

where PAN—m. Here Ay, and B, are functions of
gy, ....qyand t; and u,, . . . ,up are independent general-
ized speeds. Substitution from equations (2.2) into equations
(2.1) leads to expressions relating gy, . . . ,gyto Uy, . . . JUp.
Specifically, after defining D,, and E; as

N
Dsr é Wsr + E WskAkr

k=P+1

N
E;é)&-% 2: uckBk

k=pP+1 (2.3)
we obtain from equations (2.1)-(2.3)
P
dy= Y, Dy, +E, (s=1,...,N) 2.4)

r=1

These are the kinematical equations, and, since D, and E are
functions of ¢g,, . . . ,qy and t, they have the form of equa-
tion (12.2).
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The dynamical equations can be deduced from the relation-
ship

K,+K:=0 (r=1, ... ,P) (2.5)

where K, is the rth nonholonomic generalized active force,

and K} is the rth nonholonomic generalized inertia force. By
definition (Kane, 1985, Sec. 4.11), the latter is given by

Ki=— Y maPfiesfi (=1, ... ,P) (2.6)
i=1

where aPi is the acceleration of the ith particie P; of S, m; is
the mass of P;, ¥ is the rth partial velocity of P; (Kane, 1985,
Sec. 2.14), and » is the number of particles in S. Now, af’ is
given by [Kane, 1985, equation (5.6.10})]

P
afi= Y, (Voiu +¥Piu) + 0 (i=1, ... )
s=1

2.7

where vFi and v{i are functions of ¢, . . . ,gy and ¢, and dots
over ¥0i and v¥i denote time differentiation. Hence, from
equations (2.6) and (2.7),

P
K:: - EMrsas+Lr(qlr e sGNy Uy ol suP’l)
s=1
r=1,...,P) ©.8)
where L, and M, are defined as
v P v
LA- E Em,-@fi-\"lfius— Emﬁ‘,”i-ifl’ r=1,...,P
i=1 s=1 i=1
2.9)
and
M A Y mFrieii (ns=1, ... .,P) (2.10)
i=1
so that
M, =M,; DetM,)>0 (ris=1,...,P) (2.11)

The generalized active force K, is defined as [Kane, 1985,
equation (4.4.1)]

KAY ¥R, (=1, ... ,P) @2.12)
i=1

where R; is the resultant of all contact and body forces acting

on P;. Treating R; as a function of g, . . . ,qn, #y, . . . ,Up

and {, we thus find that K, can be expressed as a function of

the same variables; and substitution from equations (2.12) and

(2.8) into equations (2.5) yields

R
Y M =L -K, (r=1, ... P)

(2.13)
s=1
which can be solved for u, (r=1, . . . ,P)to obtain
U, =Y (q1, .« Gty - o SUD (r=1, ..., P) (2.14)

These are the dynamical equations cast into the form of equa-
tion (12.2).

Before we can apply the theorems stated in Part I, we must
identify the quantities x, F, and G that appear in equations
(12.2) and (12.3). To this end, we first consider the require-
ment imposed by equation (I12.1) and define a nominal motion
as one such that

q,=q, , aconstant s=1,...,N)
u, =0 (r=1, ... ,P)

(2.15)
(2.16)
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Such a motion is possible if and only if?

EfGr, .. dnD) = 0 (s=1,...,N) .17
(2.4)(2.15)(2.16)
and
Yr(q-la v 9q_N’Oy .. )Oyt) = 0 (r:l’ e ,P) (2.18)
v P (2.4)2.15)(2.16)
Accordingly, we let
x,8q, — g, (s=1,...,N) (2.19)
Xy, Bu, (r=1,...,P) (2.20)
and define D, &;, and Y, as
D1y - o X DADL O+ Gy, - Xt Gl (2.21)
(2.19)
8000« v o XDAE O+ Gy . o Xt D) (2.22)
@.19)
Y 0oy - o 7xN+P’t)éYr(x1 TG XN T ANXN 1 - o o XNy pal)
(2.19) (2.20) (2.23)

whereupon the kinematical and dynamical equations lead to

P
g5 = E Dyxpe, HELs=1, ..., N}y (2.24)

X, =
(2.19) 2.4) r=1 (2.21)(2.20) 2.22)
xN+r - ur = ‘yr (r=1,... ’P) (225)
(2.20)  (2.14) (2.23)
Hence, letting
»
Fyxi, o oo Xyep)2 ) Doy, +8 (5=1,...,N) (2.26)
r=1
Fuor X1y oo Xy 0)RY, (P=1, ... ,P) (.27
we have
X = F, (s=1,...,N) (2.28)
2.24) (2.26)
Sni, = Fyir r=1,....,P) (2.29)
2.25) (.27
with
FAFQ, ... ,08) = 0+E(Gys - - - »dwst) = O
(2.26) 2.22) @.17)
s=1,...,N) (2.30)
and
FN+réFN+r(0> LR ,O,t) =
2.27)
=Y G- 5Gn0...,0,) = 0(=1,...,P) (231
(2.23) P 2.18)

2Numbers beneath signs of equality or terms of an equation refer to cor-
responding equations.
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Finally, we note that, when 1(q,, . . . ,gnsty, - . .

IGF for equations (2.4) and (2.14), then G(x,, . . . , Xy, ps),
defined as
GXyy .« v Xy DA +d1s e s
(2.19)
XNt AnXnits - - - XNipsl) (2.32)

(2.20)

is an IGF for equations (2.28) and (2.29). Now we are in a
position to reformulate the three theorems of Part I in terms
of the variables and functions appearing in the equations of
motion.

3 Total Linearization and Reduction
Considering motions such that
4,=4,+4;, (s=1,...,N) 3.1)
i, (r=1,....,P) (3.2)

where §, and #, are time-dependent perturbations, we
substitute gy, . . . ,qy, u;, - - - ,4, from equation (3.1) and
(3.2) into equations (2.4) and (2.14), expand all functions of
the perturbations in power series, and drop all terms of second
and higher degree to arrive at the totally linearized equations
of motion

U,

P N =&
3 . a R
9= EDsrur+ E 3qs q; (s=1,...,N) 3.3)
r=1 i=1 i
N Ty P ey
4 Y, . Y,
u,= q,+ u r=1,...,P) (3.4
SZ;‘ dq, : kz=:1 u, k

where, as before,

E,=E(d), ... ,dnD) = 0 (s=1,....,N) (3.5)

2.17)

and
Y, =Y.(q, ... L0500 = 0 (r=1,....,P)

(2.18)

,(jN)Oy (3 ‘6)

In view of equations (12.6), (I3.1), (2.19), and (2.20), the
linearized form of I and the reduced form of I are, respective-
ly,

3.7)
s=1 aQs r=1 aur
I - ATy G R T
1=1+_—( GG, +2 G,
2 ,221 s:EI 4q,9q, f ,:El S:EI agdu,
P P 73
4l
+ u,u .8
,g‘, s; oudu, " S) 3.8)
Moreover, if %, . . . ,Xy, p are defined as
84,  (5=1,...N) 3.9)
fv Ad, (r=1,...,P) (3.10)

then it follows from the definitions given in equations
(2.21)-(2.13) and (2.26)-(2.27) that equations (3.3) and (3.4)
can be represented by equation (12.5) with n =N+ P. Similar-
ly, equations (3.7) and (3.8) correspond to equations (I12.6)
and (I3.1), respectively. Consequently, the total linearization
theorem of Part I, applied in conjunction with equations (2.4),
(2.14), (3.3), and (3.4), leads to the following conclusion:
when
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»U,,0) is an

(3.11)

is an integral of equations (2.4) and (2.14), and when equa-
tions (3.5) and (3.6) are satisfied, then

i= é, a constant

I=C, a constant

(3.12)

is an integral of equations (3.3) and (3.4).

The reduction theorem of Part I comes into play when H, 4
the Hamiltonian of S, is an IGF for equations (2.4) and (2.14).
To show this, we first recall that T(q,, ... N/IND
Uy, . .. ,up,t), the kinetic energy of S, is given by [Kane,
1985, equation (5.5.6)]

T:M(ql’ v

P
sGnt) + EM,(ql, NN R

r=1

1
+TE EMrs(QI’ e ’QN’t)u’uS

r=1 s=1

(3.13)

where M, is defined in equation (2.10), and that, if
Wa,, . .. ,qu,0) stands for the potential energy of S, then
H(q,, ....,qy, Uy, ... Uyt can be written [Kane, 1985,
equation (7.22)]

H(g,, . .. .gnUy,s - - -
r=1 s=1
(3.14)

Hence, when H is an IGF for equations (2.4) and (2.14), then
it follows from equations (2.19) and (2.20) that
G(xy, . . . Xy, p»l), defined as
G(Xys .« . Xy g DAHG +4, . . .,

XNFANXNE1s -+ o 2 XNspsl) (3.13)

is an IGF for equations (2.28) and (2.29). Next, we define V,
IM,,, and M as

'V(Xl, e ,xN,f)éV(xl-i-dl, e ’xNJ’_q_N,t) (3.16)
(2.19)
m”(xl’ e ’XN’t)éMrs(xl +q_1’ LR ,XN““jNat) (317)
(2.19),(3.13)
My, . . . X DBME Gy, . Xyt ansl) (3.18)
(2.19),(3.13)
so that
1 P
G = v +TE E M Xny g Xy s — I (3.19)
(319),3.14) (-16) =1 anean (3.18)
and
9G 3G 3G G 3G
ox 12.7) oxy T Oxy dxny T Xy p
R[ﬁ e v, 0}(320)
gl 0x ax, Xy i C.. .
P

Moreover, 32F/3x,0x can be found as follows:
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[ oF,
0x,

oF
Tox;
aF
ox

aFN+1
ax,

OFy, p
ax,

oF

ox (3.21),(2.26),(2.27)

1~

-
[l

1~

*F ’
0x,0x

(3.22)
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aF, aF, aF,
axy 0xp 41 xn .y p
aFy aFy 3Fy
0x N 0Xp 41 Xy p
Fy OFy, OF .y
axy Xy Xy p
aFN+P aFN+P aFN+P
Oxy OXp 0Xn .y p
i i D, 38,
o1 o e 0x;
i 0Dy, a8y
m1 X e ax,
Y,
0x,
dYp
L ax,
D, 328, &
- e +
ax,8x, N+r ax,0%, ,=El
32Dy, . . &y ZP:
0,0, Nt dx,0x, fourt
Y,
Ax,0x,
Yo
3x,0x,

(3.21)

i 0Dy L8
— Taxy N Fo u
P
0Dy, A&y
2 axN XN+r + axN “;DNI
Y, Y,
0xpy OXns i
3Ye aYp
0xy 0Xpy 1
2D, 9%g, 0D
X Siding S it 1
oxoxy T ax,dxy  ox,
2Dy, _— &y Dy
ax,0xy T axdxy  Ox,
Y, Y,
dx,0xp 0x,0% N,
*Yp #Yp
3x,0x X 0Xn ., |
(s=1,...,N)

Dip

Y,

axN+P

3Yp

Xy 4 p J

0Dp

0x,

3D np
ax,

Y,

0x;0xn 4 p

#*Yp

0x,0Xn , p

(3.22)

(3.23)
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r -

ag)lr a:Dlr
—_ —_— 0. 0
dx, Oxy
agDNr a:DNr :
3 e . 0
PF %1 N
8xN+,3x (.22 aZtyl azcyl
0Xp 4 10%) 0XN 1 0XN y p
82y, Y,
| %N 0 0%Xy 1 0XN  p J

Hence, substitution from equations (3.20), (3.23), and (3.24)
into equation (I3.3) yields:

LA I LY.
ax, ox, / dxox, dxy  Oxy/ dx,0x,
(s,r=1,...,N) (3.25)
(@_ a—sﬁ)@l,Jr N +(a_’<7 _Wn)@mzo
0x, ax, ax, oxy Oxy/ 3%
(r=1,...,P;s=1,...,N) (3.26)

or, in view of equations (2.21), (2.22), (3.16), (3.18), and
(2.19),

N EY7 EYY Y-
(ﬂ—ﬂ) YEe o sr=1....N) (.27
k=1 aqk BQk aqraQS
N,V aM\ 3D,
Y <__——)-——_0 r=1,...,P;s=1,....N)
& \dq,  9q/ 9g
(3.28)

and now we can apply the reduction theorem to assert that,
when

H=C, aconstant (3.29)

is an integral of equations (2.4) and (2.14), and when equa-
tions (3.5) and (3.6) are satisfied, then

H=_¢, aconstant (3.30)

where H is defined similarly to I in equation (3.8) (with H
analogous to / in equation (3.7)), is an integral of equations
(3.3) and (3.4) if and only if equations (3.27) and (3.28) are
satisfied.

A special case of frequent interest arises when S is a
holonomic system, that is, P= N, and when

u,=g, (r=1,...,N) (3.31)
Then, in accordance with equations (2.4),
D, =6b4,E;=0 ¢s,r=1,...,N) (3.32)

and equations (3.27) and (3.28) are satisfied automatically.
Under these circumstances, H is guaranteed to be an IGF of
the totally linearized equations of motion.

4 Partial Linearization
Defining Q; as

P
AY D u, +E,

r=1

(s=1,....,N) 4.1

Journal of Applied Mechanics

r=1,....,P)

(3.24)

and, accordingly, replacing equations (2.4) with

4s=Qs (s=1,...,N) 4.2)

we consider motions such that
gs=qs+ 4, (s=1,...,iy 4.3)
u,=u, (r=1,...,ip) 4.4)

where iy and ip are integers smaller than N and P, respective-
ly. Next, we rewrite equations (2.4) and (2.14) as

Ge=0Qs(5=1, ... ,iy) 4.5)
=Y, (r=1,...,ip) (4.6)
Gs=Q, (s=iy+1,...,N) 4.7
u,=Y,(r=ip+1,...,P) 4.8)

and substitute gy, . . . ,q;, uy, . . . ,u;, from equations (4.3)
and (4.4) into equations (4.5)-(4.8). Finally, we expand func-
tions appearing in these equations in power series in all pertur-
bations, and drop terms of second or higher degree to obtain
the following partially linearized equations of motion:

iN ip =
A A aQs - aQs -
=0, + i+ F=1, ... L0y (@
d;=0; Z; 5y G X; B B 6= L) (49)
i f’+lN a_"+Pﬁ,’A( 1 ip) (4.10)
=Y, q; u, r=1, Y .
o1 9q; = ou F
IN 7= P =
= Qs . Qs .
A + =iy +1, ...,
q Qs ’:21 aq, i ,Z:l aui ul (S IN N)
4.11)
iN =— ip —
- ay, dY,
u =Y+ g+ —d4, (r=ip+1,. ..
r IZ:I aq, ql ; aui ul (r IP 7P)
(4.12)
where overbars denote evaluation at g, =¢, (s=1, ... ,iy)

andu,=0(r=1, ... ,i,). The partially linearized form of I is

in — ip —
I=T+ E—?—I—c}i+ Ei i

o1 9q; i1 o @13

Moreover, if X;, . . . ,X;, ,,, are defined as
£AG, (s=1, ... ,iy) (4.14)
Bpgr=i, =1, . . . ip) (4.15)

then it follows from the definitions given in equations (4.1),
(2.21)-(2.23), and (2.26)-(2.27) that equations (4.9)-(4.12) can
be represented by equation (14.5) with
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be easier to check directly whether or not equation (4.19) is an
integral of the partially linearized equations than to use equa-
tions (4.21) and (4.22).

5 Example

Figure 1 shows a system S consisting of two bars, ,B, and
B,, each of mass M and length L. At point P, B, is connected
by means of a revolute joint and a linear torsion spring ¢, of
modulus k, to a vertical shaft that is made to rotate at a cons-
tant angular speed Q; and B, and B, are connected to each
other at point P, by a revolute joint and a linear torsion spring
g, of modulus k,.

If u; and u, are defined as ¢, and ¢,, respectively, where g,
and q, are angles between the horizontal and B, and B,, and if
g, and ¢, are undeformed when g, = g, = 7/2 rad, then all mo-

Fig. 1 System § tions of S are governed by the four first-order differential
equations (see Fig. 1 for R)
nAN+P iy +ip (4.16) :
A | I gy =u, (5.1
YElgy, - - -A,q,»Nlun ceally . Gy =11, (5.2
Z:[qiN+1a LI ’qN:uiP+l9 AN ’uP] (417) 4 1 1
4.1 R _ N
Ao, . .. NoND SR Y17 3 Uit cos(q, — g2)ur = ) sin(g; — q;)u3
VEN (o)A o N HURTINNIES ¢4 1 (4.18) ] . |
Similarly, equation (4.13) corresponds to equation (I4.6). -5 <—2— R/L+—3— c +—2—~ cz) Q% — (k,/ML?)q,
Consequently, the partial linearization theorem applied in
conjunction with equations (4.2), (2.14), and (4.9)-(4.12), 3
leads to the following conclusion: when + (ko /ML), — qy) — _Z_(g/ L)c, (5.3)
I=C, a constant (4.19) : .
. . . 1
is an integral of equations (4.2) and (2.14), then — cos(g, —q,)u; + =5 = == sin(g, — ¢;)u}
7=C, aconstant 4.20)
is an integral of equations (4.9)-(4.12), if and only if
. _. I g ki E
(/N2 (RS O N P e
. aqi 9q,9q;,,  9q,0u, 0q,0u;,
(4.21)
71 ¥ P 71 Y
| du;,0q, " 0u,dq;,  Ou;,0u oy, |
4.21)
30, ., 9T a1 7
g, aq, 0qip+199: 0qiy +19%,
80,41 aYp oI 1
aq; aq; dqndq, dqNOu;
W N » -5 (4.22)
30, +1 Y, 327 37
ou, 0u, oy, .94, Ouy, O,
ETo 3%, 71 71
ouy, au,-p 11 Oupdgq, Oupdu, ]
1 2 .
| 5 SR/Lt €+ ) 9~ (by/ ML) g, ~4,)
where S is a skew symmetric matrix and where overbars denote
evaluationatg, =4, (s=1, . . . ,iy)andu,=0(@r=1, ... ,i). 1
Since equations (4.21) and (4.22) cannot be simplified, it mpay _T(g /L)e, (5.4
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where g is the local gravitational acceleration and s; and c;
denote sin g; and cos g; (i=1,2), respectively.
The Hamiltonian of S, given by
4

1 - 1
H = KN u%+T uj -+ cos(q, — qyu 1y — [E(c%+c%)

1 1 . _\. “ .
4 cos2y +— 616,) q2]92 — Uey /(ML) — G1)

| ) .
+—2—(8/L)quz (5.12)

. To construct an integral of this set of equations, we

+ (R/L +——1—— )+ (R/L +c +L c') 2 ]92 ‘substitute from equations (5.8) into equations (5.5) and then
2 ! ! 2 expand H in a power series in @, iy, G;, §,, thus obtaining

H=H,+H, +H, (5.13)

where H, contains solely terms of degree i in @, 4, 41, ¢,
(5.5) with

is an IGF for equations (5.1)-(5.4); that is, the equation H=C
where C is a constant, is an integral of equations (5.1)-(5.4).
Particular solutions of equations (5.1)-(5.4) can be found

by setting #, =u, =0 and letting ¢, and ¢, be constants such . . 3 . ) A
that T & and q o/ (M@~ @)+ —-(&/1)6,

+ (ky/MLYGE + (ky/ ML), — q,)? + (g/L)(3s, +55)

3 4 1
H = 2{51 (7 R/L+—§— é = 62)92 +[ky/(ML?)1g,

3 4 1 ]
5 (T RIL+— & +— c2> @ + [k, / (ML),

+

1 2
z{_z_ s (R/L+e, b &) 98+ o/ MLV — )

3
- [kz/(MLZ)](dz—é1)+7(g/L)C'1 =0 (5.6

+

1 .
/D&, .19

: 5 and
A (R/L+51 + 52>92 + [k / (MLH(G, — G))
2 3 4 o 1 3. — )il i € 7,43
Hy = —= i —= i +c08(g, — )iy~ { 17 (~c0s2414

+%(g/L)c'z=0 (5.7) . |
- iy (e - comn )i -
where §; and ¢ stand for sin §; and cos §; (i=1,2), cos20:2) 2 R/LG, + 2 c0s24y ) 41— (R/L4,
respectively. 1 |
To study motions differing only slightly from those cor- + —— 6,6, +c082d,)d3 — [———(R /L +é,)é,
responding to such particular solutions, we introduce pertur- 2 2
bations u; and g; by setting

- cos2q2] 5 +81s2q1q2} 02+ [k, /(ML) G}

+

u;=i;,q;=q;+4; (=12 (5-8)

in equations (5.1)~(5.4) and then linearize in the perturba-
tions. This yields, with the aid of equations (5.6) and (5.7), the

JUN 3. r
oo/ (ML2)@s — 612 + /L (——- 1@ ~—— $:3)
linear differential equations

2

+

4 =14, (.9) - (5.15)
A= 5.10 Noting that H| vanishes by virtue of equations (5.6) and (5.7),
2=t (5.10) that the system under consideration is holonomic, and that

3 4 equations (3.27) and (3.28) are satisfied (see equations (5.1)
4 i, +L cos(§, — G,)ity = — [(__ R/Lé, +— cos2q, and (5.2)), we now take advantage of the fact that His an IGF
3 2 2 3 for equations (5.1)-(5.4) to express an integral for equations
| | (5.9-(5.12) as
t= 51‘3)@1 3 5152@2]92—[/(1/(ML2)]@1 H, = C, a constant (5.16)
where H, is given by equation (5.15).

3
MLYG, — 6 —(e/L)s,q 5.11
+ [y / (MLDWG, — ¢1) + 2 (g/L)s\a, G.10 References

1 . 1 1 ... 1 R Kailath, T., 1980, Linear Systems, Prentice-Hall, New Jersey, p. 59.
—cos(q, — Gz)Uy +—— Uy = — [——— $185,9; + (——— R/L¢, Kane, T. R., and Levinson, D. A., 1985, Dynamics: Theory and Application,
2 3 2 2 McGraw-Hill, New York.
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developed whereby these properties can be obtained, in terms of the eigenproperties
of the structure and equipment, without a conventional eigenvalue analysis of the
combined system. The eigenvalues are obtained as the solutions of a nonlinear
characteristic equation, easily solvable by a simple Newton-Raphson scheme. Once
the eigenvalues are known, the corresponding eigenvectors can be obtained from

closed-form expressions. The approach can also be used effectively to obtain exact
eigenproperties for very light as well as very heavy equipment supported on

Structures.

Introduction

The problem of the dynamic response of equipment or in-
ternal structures attached to massive structures, also referred
to as primary structures, is of practical importance in struc-
tural dynamics. The proper functioning of certain equipment
when the structure is subjected to dynamic forces is essential in
facilities like power plants, hospitals, chemical factories, etc.
Other physical systems where the response of mounted equip-
ment or secondary systems is of interest are vehicular struc-
tures, where guidance and control devices must always remain
operational and thus require a careful design.

If the system response is to be obtained through modal
analysis, the modal properties of the combined structure and
equipment system must be obtained. Some problems,
however, may arise when the combined system is analyzed to
obtain its eigenvalues and eigenvectors. For very light equip-
ment, the combined system matrices may be ill-conditioned
due to the large differences in the numerical values of the
equipment and structure mass and stiffness properties. Fur-
thermore, the combined analysis, though maybe possible with
increased computational precision, becomes impractical in the
design situation where several alternative locations and pro-
perties for the equipment need to be considered, each requir-
ing the solution of a large eigenvalue problem. For example,
for the generation of seismic floor response spectra incor-
porating equipment-structure interaction effects, such
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repeated analysis will be required with different characteristics
of the oscillator placed at different locations. Thus the ap-
proach in which such repeated large eigenvalue analyses can be
avoided and the individual modal characteristics of the struc-
ture and equipment can be used to obtain combined properties
are preferred.

For light equipment, perturbation methods have been pro-
posed by Sackman and Kelly (1979), Sackman et al. (1983),
and Suarez and Singh (1986) to obtain the eigenproperties of
the combined system. Alternative approaches based on the
synthesis of modes, which can be used with light as well as
heavy equipment, have also been proposed by the authors
(Suarez and Singh, 1987a and 1987b). In all of these works,
however, the supporting structure was assumed to be classical-
ly or proportionally damped (Caughey, 1960). There are cer-
tain important cases where the primary system must be re-
garded as nonproportionally damped. This is usually the case
when the primary system is composed of two or more com-
ponents with widely different energy dissipation char-
acteristics.

In this paper a method is presented to obtain the exact com-
plex eigenproperties of a nonclassically damped structure sup-
porting a single degree of freedom oscillator. The eigenvalues
are obtained as the solution of a simple nonlinear equation
with real coefficients. The corresponding eigenvectors are
calculated from the closed-form expressions once the eigen-
values are known. To implement this method it is only
necessary to know the complex eigenvalues and eigenvectors

“of the primary structure and, of course, the natural frequency,

mass, and damping ratio of the equipment.

Eigenproperties of the Combined Structure-Equipment
System

It is assumed that the damped eigenproperties of the
primary structure are available. For a primary system, mo-
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delled as an n degree of freedom system with stiffness matrix
{K,], damping matrix [C,], and mass matrix [M,], the
damped eigenvalues \; and eigenvectors ¢; are obtained as a
solution of the following eigenvalue problem (Meirovitch,
1980}: '

M, 0 0 M, |
{ 8=\, $ij=1,...2n (1)
0 -k, M, C

I3 I4

These eigenvalues and eigenvectors occur in complex con-
jugate pairs. Also, the upper half of the eigenvector can be
written as a product of the eigenvalue and the lower half.
Thus, we can partition the (2nXx2n) eigenvector matrix as

follows
UA, UA
[<1>,,1={ ! } @)
U

U

where the matrix [U] is a submatrix composed of the last n
rows and first n columns of [®,]; [A,] is a diagonal matrix
whose elements are the eigenvalues A;; and a bar over a quanti-
ty denotes its complex conjugate value. If the modal shape
vectors are normalized with respect to the matrix on the right-
hand side of equation (1), the orthonormality condition of the
eigenvectors give:

A, UTM,UA, — UTK,U=A,

UTM, UM, + A,UTM, U+ UTC,U=1
A, U™M,UA,~ UK, U=0
U™M,UA,+ A, UM, U+ UTCU=0

©)]

Analogous damped eigenvalues and eigenvectors can be de-
fined for the oscillator. For an oscillator of mass m,, stiffness,
k,, and damping constant c,, we define the following (2 x 2)
eigenvalue problem

m, 0 0 m,
by, =N, 6:5i=12 (@
0 —k, T 1lm, c, /

from which we obtain the equipment eigenvalues and
eigenvectors, in terms of the equipment (undamped) natural
frequency w, = vk,/m,, and critical damping ratio 8, =
¢,/ (2m,w,), as follows

Ag, =5\52 =X, = —f,w, +iw,N1— (2 o’
Tsl = &TSZ - [¢e)\ea ¢e] (6)

For the equipment also we normalize the eigenvectors with
respect to the matrix on the right-hand side of equation (4),
and thus get

1-i
WNwm, (1—p2)172 @

The properties described in equations (3) also hold for this
case if we substitute [A,] by A, and [U] by ¢,.

We now examine the combined structure and equipment
system. The equations of motion for the combined system
subjected to the dynamic excitation F (¢) can be written in the
state vector form as follows:

P =

-M 0 0 M )
zZ+ z=F(1) ®)
0 X M C .
where z is the state vector
2= [T x7) ©)

and x is the displacement vector of the combined system of
dimension m = n+ 1. The matrices [M] and [K] are

Journal of Applied Mechanics

M, 0
[M]={0 } s [K]=

m

K, 0
+k,vvT (10
0 0

Matrix [C] is of similar form as [K] and is obtained by replac-
ing [K,] by [C,] and %k, by c, in equation (10). Assuming that
the oscillator is attached to the Kth degree of freedom of the
primary system, vector v is

V=10, ... 1, ... ,—1] an

where the nonzero entries are at the Kth and mth locations.
The eigenvalue problem associated with the combined
system (8) is as follows:

M 07 . 0 M7 |
[ } U;=p, [ } gpj=1,...2m (12
0 —-K M C

_ It is desired to obtain the combined system eigenproperties
¥, and p;. However, we would like to avoid a direct solution
of equation (12) and would prefer to obtain these eigenproper-
ties in terms of the known eigenproperties of the systems
defined in equations (1) and (4). To achieve this objective we
introduce the following transformation in equation (12)

b=mg,= | T
=[TIY,; = : 13
Lo {Tf T, } b o
where the submatrices [T,] and [T] are
Uua, 0 U o
7,1= } ; [Tl = { } (14)
0 ¢, 0 ¢,

We then premultiply the resulting equation by [7]7 and obtain
the following transformed eigenvalue problem

[AW; =p;[BlY;; j=1, ... ,2m (15)
where
Ay Agp By By,
[Al= - ; [Bl= r o3 (16)
A Ay By, By
with
Ay =TIMT,—T{KTy; Ay, =TiMT, - TTKT, amn
B, =TIMT, + TIMT,+ T] CTy;
B, =TfMT,+ TIMT,+ TTCT, (18)

Using the definitions of [M], [C], and [K] from equations (10),
and the orthogonality properties listed in equations (3), it can
be shown that the above submatrices become

[An]1=1A0 =k N5 [A ] = — k. IN,] (19
[Bi]=U+c IV [Bppl=c.IN] (20)
where
A, 0 { acl -9« }
A= 3 [Ny]= ;
" [0 J -
aal —-tﬁea
[N,] = [ } 21
—-¢,a” 0
) aT=[¢n+K,L: Drrkar o 3Pt Kl (22)

and ¢, g, is the (n+K)th element of the ith eigenvector of
the primary system ¢;. With the substitution of equations (19)
and (20), the eigenvalue problem (15) can now be expressed as
follows )
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lial cs2mo (23)

where

— ko [DNWY; =p;lN1 +c [DI}Y;; j=1,

@4

The eigenvalue problem (23) is in such a form now that with
some simple algebraic manipulations it can be expanded to
define its characteristic equation by a simple closed-form
equation. For this, we rearrange the terms of equation (23)
and obtain

o= AlY; = — (k. +c.p;) DY, @5

The matrix on the left-hand side of equation (25) is a diagonal
matrix, and thus can be easily inverted to give the following

V== (k,+cp)l 6 17Dy, (26)

where the diagonal elements §; are defined as
8;i=Dj— N Sy m=D;— N i=1, N 27)
. =pj—_>\e; Som :pj"‘i\e (28)

Furthermore, from the definition of [D}] in terms of [N,] and
[N,], we note that it is possible to express this in terms of the
products of two vectors as follows:

[Dl=1[r v"—p puT] (29)
where
:(aTa _(be’ &T’ _J)e)
wT=(07, ¢,,07, ¢,) (30

The nonzero elements of u7 are at the mth and 2mth locations.
We now substitute equation (29) into (26), and premultiply
by »7 and obtain

IV = — (k,+ep))v > 8; 17 o T —p pY;) (3D

We also denote the last vector product in the parenthesis of
equation (31) by 8. This vector can be expanded as

BT=[n nTY17=(0, . ...0.4,...0,...6,4) (32)

in which the only nonzero elements ¢,A and ¢,A are in the
mth and (2m)th rows. The term A is defined as:

A= qse\[/m, Jj + ¢e\[/2m,j (33)
Realizing that we are free to normalize an eigenvector any way
we choose, here we adopt a rather uncommon but simplifying
normalization of the eigenvector ¥; such that vT¢j = 1. With
this normalization and some rearrangements we now obtain
the following for equation (31):

=pT[~ 8;~J " v —2T[~§;~]" '8 (34)

k,+ C.D;

The right-hand side of equation (34), involving the product of
vectors with a diagonal matrix, can be easily expanded to give
the following:

2m

E—._(a ¢”+;

m 2m

i 1
am ¢e)A+ =0

(35)
k,+p;c,

Substituting for §,, and » from equations (28) and (30), we
obtain

2m 2

2 2 b2 1
E—V' +( e, % )A+ =0
o1 9 Pi—N,  Di—A, k.+pjic,

i

With A, and ¢, defined as in equations (5) and (7), it is
straightforward to show that
¢ . # _ 1 1
Pi=N  pi— >\e m, pr+2B,w,p;+ w?
We note that all the terms in equation (36) except A and the

37
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(36)

combined system eigenvalues p; are known. However, A can
also be expressed in terms of the unknowns p; as follows. We
note that equation (31), with the normalization VTIl/J = 1 and
B defined by equation (32), can also be written as:

1
——— S; A, =
ko L& Jy+B=v

From the mth and (2m)th rows of the above set of equations
we obtain

(38)

Di—Ne

k +ep ‘//m,/ +¢eA_ _d) (39)
pf_L -

k + CoD ‘//Zm J + d’eA - ¢ (40)

We solve equations (39) and (40) for v, ; and gbz,,,,' ; in terms
of A and substitute in equation (33) to obtain the following:

P d’"’ )(1+A) 1)

+

Utilizing equation (37) in equatlon (41) and solving for A, we
obtain

A= kot ean) (

2 A
=2t ee 42)
Pj
With equations (37) and (42), equation (36) now becomes
2m 2 2 L+ w? 1
m, oy . BeweD, k Ye . >=0 (43)
i=1 6,‘ pj +262w€pj +0)epj 2[3ewepj+we

The summation over 2m terms in the above equation can be
written as a summation over n complex and conjugate terms as
follows

2m
+b; 1
Yy an +— _ 44
i1 6; ] pJ +epi+d; pr 28,00+
where
a;=2m,Real(v}); b; = —2m,Real(¥?\;) 5)

c;=—2Real(\;); d; = |\ 12
Substituting equation (44) into equation (43) and with some
simplifications, we finally obtain the following characteristic
equation:
i aipj + b,‘ + 1 L

+—=0
= piropitd 2Bwp+wl b

fp) = (46)

This equation is defined in terms of the known eigenproper-
ties of the primary system and equipment. The only unknown
is p;. The solution of this characteristic equation will provide
the combined system eigenvalues p;. This equation can be
solved by any standard iterative technique. We find the simple
Newton-Raphson technique quite adequate for solving equa-
tion (46). Initial values for the roots of this equation, required
in the Newton-Raphson iteration process are provided in Ap-
pendix I.

Combined Eigenvectors

Once the first m roots of f(p;) are found, the eigenvectors
can be obtained directly from equation (38). For each p;,
equation (42) defines A, which in turn defines 8 through equa-
tion (32). Thus knowmg B and », the eigenvector ¥, can be ob-
tained from equation (38) as

lll/j = (ke +pjce)r 5[ \] B l(ﬂ - 1}) (47)

Recalling equation (32), we can simplify equation (47) to ob-
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file:///Pj-K

tain the closed-form expression for the elements of this
eigenvector as:

Vi
Vi, =— (ke+cepj)ﬁ

- Dy i

3 i=1,...,n

(48)

Vi
pj— 5\,~
The values of the remaining elements of this eigenvector v, ;
" and V,, ; are also obtained from equation (47), by
substituting from A from equation (42) and »,, and »,,, from
equation (30), as follows:

1//i+m,j=_(ke‘*'cepj) Jj=1, e ,m

2 2
Di+2B,w.p +w ¢
VYm, ;= (ko tCop)) / = 29 S ¢ e)\
i Pi=Ae sj=1,...m
2 2 n
Di+2B,w.0;+ w ¢
‘/’2m,j= (ke+cepj) J e ze J e e_ 9)
pj pj—)\e
The remaining m eigenvectors can be obtained with:
¢i,j+m=¢i+:n,j : li=1, .. ,m 50
\[’i+m,j+m=\bi,j Jj=1,...,m

The solution of the characteristic equation (46) and equa-
tions (48)-(50) provide a complete solution of the eigenvalue
problem (23) without going through a conventional, computa-
tionally expensive, eigenvalue analysis. This efficiency is of
special significance where repeated analyses with different
oscillator characteristics are required to be performed, such as
in the process of generation of seismic floor response spectra
which are used as inputs for design of equipment supported on
primary structures.

The eigenvectors can be rendered orthonormal with respect
to the matrix in the right-hand side of equation (23). It can be
shown that this normalization is achieved by multiplying them
by the complex constant

232
6;= {25eweme [1 ———(26"“’9"; + ) ] +

2m
2

-172
2

For light equipment with the mass ratio less than 1/10, the
eigenvalues calculated from the equations provided in Appen-
dix I are very accurate. In such a case one may not want to
refine these estimates any further by solving equation (46). For
heavier equipment, however, such refinements are necessary
but can be easily carried out by simply solving equation (46) by
a Newton-Raphson scheme with the help of the initial
estimates of the roots of the equations given in the appendix.
As for the calculation of the eigenvectors, equations (48) and
(49) can still be used with no numerical difficulties for light as
well as heavy equipment.

If one is interested in evaluating the limiting value of the
eigenvector elements for the case of m, = 0, equations (/1)
and (/2) can be used. It is straightforward to show that in such
a case of m, = 0,

(51)

i=1

0 ; i#) i=1,

Vii= ) @B.woh;+w?) (N+2B8,0, N +w?)
wf,vj)\j()\j+268w2) ’

which when normalized according to equation (51) will give
kbi, j=5ij (53)
Equation (53) implies that the original eigenvectors of the
structure and equipment will remain unchanged, an obvious
conclusion. R
To obtain the eigenvectors y; of the original system from
the eigenvectors of the transformed system y;, we use the
transformation of equation (13). It is straightforward to show

Journal of Applied Mechanics

i=j,j=1,...

Table 1 Damping matrix of the nonclassically damped
primary structure

[20.0 —4.0 —0.4 —0.1 —0.08 —0.06
9.0 —4.0 -0.3 -0.2 -0.15
8.0 —4.0 —0.3 -0.2
[Cpl= x 108[Kg/sec)
7.0 —=2.0 -0.6
SYMM
5.0 -3.0
L 4.0 |
m
6
ke
k s
e me
ks ':&j%
m
4
Ce .
k
4
M3
k3
Mo
k2 .
m
1
k
1
:<<\:<'\ \-\:\\::\
Fig. 1 A six degrees of freedom primary structure with oscitlator

that the lower and upper halfs of the original system eignvec-
tors are:

Po=[TIg¥ + [T]¥!

;o j=1,....,m (54)

‘;j =pj¢5
where the superscripts # and £ refer to the upper and lower

halves, respectively. Substituting for ¢¥ and \//5- from equations
(48) and (49), and with [T}] defined by equation (14), we ob-

Lo2my j=1, ... ,m

(52)
N7

tain the following closed-form expressions for the elements of
the lower part of the original system eigenvectors:

n .
en; + i
= (k +c p)e _...._.J_—’ =1, N/
X e ’,;1 prop;+dy
\!/i+m,j = (55)
k,+c.p;
HeFCehy 0;; i=m
mepj
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Table 2 Complex eigenvalues of the primary structure

Eigenvalues of primary system
Na. Rea} Imaginary
1 -0.2923 23.8724
2 -3.7472 61.5101
3 -7.2993 97.1178
4 -11.7546 132.5499 |
5 -11.7583 153.0566
6 -12.1126 170.3976

Table 3 Eigenvalues of the combined damped structure-oscillator
system. Undamped oscillator frequency = 23.87 rad/s—Mass ratio =
1/2.

Initial Eigenvalues Final Eigenvalues
Eﬁgﬁgfa\ue Real Imaginary Real Imaginary ?ggﬁizigﬁs
1 ~0.2184 20.3492 -0.1830 20.0146 4
2 -0.3242 28.6534 -0.3831 28.2502 4
3 - -3.7434 61.7358 -3.7565 61.7378 3
4 -7.3007 97.1200 -7.3009 97.1199 3
5 -11.7768 132.6637 -11.7888 132.6584 4
6 -11.7791 153.3001 -11.8112 153.2927 4
7 -12.0584 170.6659 -12.0989 170.6761 4

Table 4 Eigenvalues of the combined damped structure-oscillator
system. Undamped osciliator frequency = 40.0 rad/s—Mass ratio = 1.

Initial Eigenvalues Final Eigenvalues
Eigenvalue Number of
No. Real Imaginary Real Imaginary Iterations
1 -0.3590 18.7342 -0.1996 20.2035 4
2 ~0.8381 43.6057 -0.8169 42.1339 4
3 -3.4283 67.2862 -3.7923 66.6982 4
4 -7.1231 99.2579 ~7.2265 99.4323 4
5 -11.7759 133.2061 -11.8177 133.2468 4
6 -11.7834 153.5581 -11.8305 153.5939 4
7 -12.0566 170.6857 -12.0810 170.7184 4
where the constants e, and f are:
e, =2 Real(Uyry); fi = — 2 Real(Uy v Ay) (56)

in which Uy, is the (i, k)th element of matrix [U]. If necessary,
the elements of the upper half of the eigenvector can be ob-
tained from the second part of equation (54).

It can be shown that when the eigenvectors ¢; are rendered
orthonormal with respect to the matrix on the right-hand side
of equation (23) with the help of the constant in equation (51)
the eigenvectors 1/31- of the original system will be orthonormal
in the following sense

R 0 M . .
vz { }\Lj:&-j; ihj=1,....2m (57)
M C

Once the eigenproperties of the combined system are
known, the response of the system described by equation (8)
can be obtained for any arbitrary forcing function.

An Example Problem

A six degree of freedom primary structure modelled as a
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Fig. 2 Comparison of CPU time taken by the proposed approach and
direct eigenvalue analysis on I1BM 3090, class VI, super-computer

shear building shown in Fig. 1 is considered to present some
numerical results. Its mass and stiffness properties are: k; =
ky = 510" N/m; ky =k, = 4/5ks ks = kg = 1/10k,; m,
=m, =Tx10"kg; my; = my = 5/Tm;;ms = mg = 4/7m,.
The nonclassicality of damping in the structure was intro-
duced by arbitrarily selecting a damping matrix. The damping
matrix used in the calculations is shown in Table 1. The com-
plex eigenvalues of the primary structure obtained with these
structural parameters are shown in Table 2.

Table 3 shows the case when an oscillator is attached to the
fifth floor with mass equal to 1/2 of the supporting floor
mass. The equipment natural frequency is tuned to the first
frequency (modulus of the damped eigenvalue) of the primary
system. The equipment damping ratio is 0.01. Columns 2 and
3 show the initial approximations to the eigenvalues obtained
according to Appendix I, and columns 4 and 5 show the final
values obtained by solving equation (46). The number of itera-
tions required to achieve a desired accuracy in a straightfor-
ward Newton-Raphson root finding scheme are given under
column 6. The final values are identical up to 12 significant
figures to the values obtained by a direct application of a con-
ventional eigenvalue-solver subroutine applied to the com-
bined system represented by equation (12). Similar results are
shown in Table 4 for an oscillator of mass equal to the floor
mass, supported on the top floor, but not tuned to any struc-
tural frequency. Again when compared up to 12 significant
figures, the final values are identical to the values obtained by
a direct eigenvalue analysis of equation (12). ’

To demonstraté the computational efficiency of the pro-
posed approach, several cases of primary structure and equip-
ment systems with increasing number of degrees of freedom
were analyzed. The complex eigenproperties of these systems

‘were obtained by the proposed characteristic equation ap-

proach as well as by a direct solution of the algebraic eigen-
value problem by a standard IMSL subroutine. The CPU time
taken by the two approaches, on an IBM 3090 Class VI Super-
computer, is plotted against the number of degrees of freedom
of the system, m, in Fig. 2. It is seen that the CPU time taken

- by the proposed approach increases linearly with the degrees-

of-freedom with a rather flat slope. The CPU time taken by
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the direct eigenvalue analysis, on the other hand, is seen to in-
crease approximate as m?. Thus the difference in the CPU
time taken by the two methods increases as m increases. It is
also noted that the CPU time difference shown in Fig. 2 is for
only one oscillator with a given set of parameters. If it is
necessary to consider several oscillators with different fre-
quency and damping characteristics (for example in genera-
tion of seismic floor response spectrum), this difference in
computation cost can be very large indeed. Furthermore, the
differences shown in Fig. 2 are for a Class VI computer; for an
earlier generation computer or microcomputers the difference
in CPU time will be even larger.

Conclusions

An efficient approach is developed for calculating the com-
plex eigenproperties of a combined system, composed of a
nonclassically damped primary structure and an oscillator, in
terms of the eigenproperties of the individual systems. The
eigenvalues can be obtained as a solution of a nonlinear
characteristic equation by a simple Newton-Raphson scheme.
The initial estimates of the eigenvalue required in the Newton-
Raphson scheme are provided. Once the eigenvalues are
known, the calculation fo the eigenvectors is straightforward;
the closed form expressions are given for calculating the
eigenvectors elements. These eigenproperties can be used in
any linear response analysis for an arbitrarily varying forcing
function.
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APPENDIX 1

The roots of the function f(p), equation (46), can be ob-
tained with any complex roots-finding technique
(Householder, 1970). In particular the common Newton-
Raphson method was found to be very convenient because of
its simplicity and quadratic convergence rate. It is well known
that the main drawback of the Newton-Raphson method is
that it requires good initial approximations of the roots.
However, for our case, these approximations can be obtained
by solving the ecigenvalue problem (23) by a perturbation
technique (Suarez and Singh, 1987¢).

As shown by Suarez and Singh (1987¢), two different cases
must be considered: (1) when the complex equipment eigen-
value A, is not close to any primary structure eigenvalue, and,
(2) when both eigenvalues have equal or nearly equal
numerical values. It is shown that for case (1), the eigenvalues
of the combined system can be approximately obtained by the
following expressions

N +28,0, .
=N (1 mydsd TR ) (I
s € )\12-+268we)\j+w§
" A, +b;
pm=>\e+mewg¢32 Gihe ¥ D1 (12)

=N+ +d

For case (2) when the equipment eigenvalue A, and one of the
structure eigenvalues, say the fth, are such that the following
condition is satisfied

IN—A, 1
———=—m,ly,l 1¢,!

wg ya e vl 1o,
the fth and mth eigenvalues are given by the following
equations

(13)

1
Pe=Ap+ —5—[67\8 — M,w2r(2, + v)) — 2B,00,M, b, v M+ M widia]
4

1 .
P =N +T[6)\e + M, w20, + vy) + 2B,w, 1M ,D v Ay + M 05,0

(I5)
where
Ay
d=1— 16
N (16)
- an+b;
—_ vt I7
7 ; N+ e+ d; (N

izl

With these initial estimates, the convergence of the Newton-
Raphson method has been quite fast.
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ing on a prior autoregressive (AR) approximation of the target matrix. Several AR
to ARMA procedures are formulated by minimizing a frequency domain error.
Equations which can lead to a convenient computation of the ARMA matrix coeffi-

cients for a particular problem are given. Finally, the features of the various pro-
cedures are critically assessed.

Introduction

Over a period of several years significant interest has
developed in the techniques of signal processing and spectral
analysis in particular (Kay and Marple, 1981). The fields of
application are numerous. These techniques are applicable
both to system identification and system response simulation.
Historically, the system identification applications preceded
the system response simulation. However, with the advent of
numerical quadrature techniques and the inevitability of
noulinear behavior of many engineering systems, the simula-
tion problem has received rapidly increasing attention.

Within the scope of structural dynamics applications,
significant efforts have been devoted to the problem of
simulating realizations of a random process which are com-
patible with a specified (target) spectrum. (Mignolet and
Spanos, 1987). The generation of these time histories for
multivariate random processes has traditionally been achieved
by relying on the superposition of several harmonic com-
ponents with random phases (Shinozuka, 1970, 1972). Recent-
ly, new and computationally more efficient algorithms based
on the development of multiple input-multiple output
autoregressive (AR) and autoregressive moving average
(ARMA) discrete systems have been suggested by Spanos and
Hansen (1981), Samii and Vandiver (1984), Samaras et al.
(1985), and Spanos and Schultz (1985 and 1986). These efforts
reflect the feasibility of adapting system identification techni-
ques (Mullis and Roberts, 1976; Gersch and Liu, 1976; Wang
and Fang, 1986) to system simulation techniques. Further-
more, they illuminate some of the intrinsic features of their
applicability to vibration problems.
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In the present series of articles a unified approach is
presented for developing ARMA simulation algorithms which
are based on a prior approximation of a target spectral matrix
by the response of an AR discrete dynamic system to white
noise excitation. Existing procedures are briefly reviewed and
new ones are presented. Further, the properties of these pro-
cedures are thoroughly analyzed. Finally, their applicability is
exemplified by considering spectra of a variety of natural
processes.

The first part of this series focuses on the formulation of
various procedures. The system of equations leading to the
determination of the ARMA coefficients are derived through
the minimization of frequency domain errors. The interrela-
tionships and advantages of these procedures are investigated
as well.

In the second part, the procedures are further analyzed by
assessing the matching of the auto and cross-correlations of
the target and the simulated processes. Further, properties
such as stability and invertibility are investigated. Finally, im-
plementation aspects of these procedures are reviewed and ex-
amples of applications are given.

Autoregressive Approximation

The ARMA synthesis procedures described in the ensuing
section require that the target process be first approximated in
terms of an autoregressive process. For this reason and for the
sake of completeness, the determination and the properties of
an AR system are reviewed. .

An n-variate autoregressive (AR) process Y of order m is a
discrete stochastic vector process whose rth sample can be
computed from the m previous ones in the following manner

m
V== Y AN, +BW, )
k=1

where A, and B, are real n X n matrices. The symbol W

-denotes an n-variate band limited in the interval [—w;, w,]

white noise vector process. The autocorrelation matrix of W is
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ETW Wi =20,1,8;, )
where E[.] and [.]T are the operators of mathematical expecta-
tion and transposition. The symbols 7, and 8, denote the n X
n identity matrix and the Kronecker delta, respectively. The
sampling period T and the cutoff frequency w, are related
through the Nyquist relation

T=—-. 3)
Wp
Clearly, the process defined by equation (1) can be considered
as the response vector to white noise excitation of a multi-
degree-of-freedom discrete dynamic system. Its transfer func-
tion matrix in terms of z-transform notation is

H(z)=D"'(z)B,, @

where
m
D(zy=1,+ Y, Az*. %)
k=1

The spectral matrix of Y is given by the equation
Syy (w) =H*(e“T)H' (elT) (6)

where [.]* designates complex conjugation.

Given an arbitrary spectral matrix Syy () (target), the AR
simulation problem involves the determination of the coeffi-
cients A, and B, so that S¢y(w) is close in some sense to
Syy (w). It has been shown (Hannan, 1970), that a meaningful
measure of the error is

! wa |B;'D(eT)Q(w) 12dw (7
20)b —wp

€AR =
where Q(w) is a causal transfer function such that
Syy (@) = Q* () Q" (w). ®

The symbol | Ul signifies the Euclidean norm of an arbitrary
matrix U of elements u;;. That is,

lU12=tr(U*UY) = E E U ®

i=1 j=1

Introducing the autocorrelation function of the target process

@p .
Rey () =BT, Y] (1= | Sy (@)eTdo (10)
—op
it is readily shown that equation (7) can be rewritten as
1 . m m " " N
AR =—— tr{B;‘ ( Yo Y ARy (k—z))AZ/B;T} (11)
2a, k=0 =0

where A o = I,, and the symbol (» ~1) denotes the transpose of
the inverse of a matrix. The minimum error is obtained when
the coefficients A, satisfy the following equations (Yule-
Walker equations)
m
N .
Riy@+ Y, ARy (k=9=0 =1, ... ,m.
k=1
The matrix BO is obtained by equating the total ‘‘energies’’ of
the target and AR processes. That is, '

(12)

“b N—*(ajeTY P P A—t jwT — @b
D= *e*")B,B, D~ (¢T)dw= Syy (w)dw 13)

or
R33(0)=Ryy(0). (14)
From equation (1) it is readily shown that the autocorrelation
function of the AR process satisfies the following recurrence
relation
T m
Rbg@+ Y, ARyy (k=0 =B,Rhw(® t=0, £1, 22, ...

k=1
1s)
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where Rgyw is the input-output crosscorrelation function
defined by

Ryw(®=0 >0 (16a)
Row(®) =20, B, 1=0  (16b)
min(m, — .
Ryw®=— Y,  ARgw(k+9 ¢<0  (16¢)
k=1

It is readily seen that equations (12), (14), and (15) admit the
solution

Ryg (k) =Ryy (k) k=0,1,...,m. a7
It will bﬁ shown in Part II that this solution is unique. The
matrix B, is then obtained from equations (15) and (165)

m

A 1 “
BoBJ(rJ:—iRYY(O)'i' E AkRYY(k)}-
2wy k=1

(18)

Note that the right-hand side of this equation must be positive
definite. This relation does not yield a unique solution for B,.
Indeed, it can be seen as a set of n(n + 1)/2 independent
nonlinear equations in the #? elements of Bo, It can be shown
(Mignolet, 1987) that the quality of matching of the target
spectral matrix by the AR and the subsequent ARMA approx-
imations is independent of the form chosen for B,, as long as
equation (18) is satisfied. To ease the computations, B, is
assumed to be lower triangular so that it is obtained through
the Cholesky decomposition of equation (18).

It should be noted that the corresponding minimum value of
€4r» always equal to n, does not provide a readily discernible
measure of the quality of the AR approximation over the en-
tire interval [ —w,, w,]. Such a measure can, however, be in-
troduced. It is proposed to monitor the closeness of the
matrix B, to its asymptotic, m = oo, form. Specifically,
since

(19

PN 1
€Em = det(Bij;) —CXp [ 2w
b

wp
S tr[log Syy (w)]dw}
—up
decreases monotonically to zero as m — oo (Hannan 1970) it
reflects in a natural manner the quality of approximation by
becoming equal to zero when the spectral matching is exact. It
should be noted that if

Sw" tr{log Syy ()]de= — oo, (20)

—up
then
(21)

det(Bo)—~0 as m— oo,

If, in addition to satisfying equation (20), Syy (w) is such that
det(Syy (@) #00n Q S[—wy, wyl 22)
then

det[D (e/#T)] = 0 almost everywhere on Q (23)

This can be seen from the following equivalent form of equa-
tion (18)
A AT (A)b A~ * . T AT . T
2w, B,B, = D*(eT)Syy (@)D" (") dw. 24
—ap
That is, the AR spectrum possesses densely spaced poles on
the circumference of the unit circle of the complex domain, so
that the spectrum of any finite AR approximation involves a
series of peaks modulated by a small value of det B,. This
phenomenon and related problems have already been noted in
the context of univariate simulation (Spanos and Mignolet,
1986). .
The AR system is a special case of the ARMA class of
systems whose transfer function is a rational function of z7!.
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Clearly, the transfer function of an ARMA system has both
zeros and poles and offers the most versatility in generating
recursively realizations of random processes with specified
spectral matrices. Several procedures of determining low-
order ARMA approximations by relying on an initial high
order AR approximation of a given spectral matrix will be
discussed in the ensuing sections.

Autoregressive Moving Average (ARMA) Approxnma-
tion—Original Spectral Matrix

Prehmmary Remarks. An n-variate ARMA (p, g) process Y
is a discrete random vector process whose rth sample can be
obtained from the previous ones in the following manner

AN, =~ ZAkY, o+ EBgW, . (25)

k=1 =0
where W is defined by equation (2). The process Y can also be
considered as the output of a multi-degree-of-freedom discrete
dynamic system whose transfer function matrix is

H(z)=D"'(2)N(z) (26)
with
.
D(z)= Y, Az* @7
k=0
and
q
N(z)= Y Bgz~* (28)
=0

The following relations involving the input-output crosscor-
relations Ryw (4) and the output autocorrelations Ryy (k) are
readily established

P aq
Y] AyRyg (k—i) = ) BRYyw (i=0) i=0, =1, £2, . .. (29)
k=0 =0
and
Row(—i)=0 i<0 (30a)
min({/,p)
ARyw (k—1) =2w,B; i=0,...,q (30b)
k=0
min(i,p)
AyRyw (k—=i)=0 i>q. (30c)
k=0
For simulation, the corresponding spectral matrix
Syy (@) = H*(e“T)H' (&/T) (3D

must represent a good approximation of a target expression
Syy (w). The quality of the matching of Syy (w) by Sy (w) is
quantified by the error

gb ID(e*T)Q(w) —N(e*T)1%dw,
—ap,
where Q(w) has been defined by equation (8). Two procedures
to determine the coefficients A, and B, by minimizing ¢ under
various conditions are presented. These procedures will be
subsequently recognized as special cases of a general class of
solutions.
First, Q(w) is approximated as

Q(w):HAR(ein)9 (33)

where H,, (¢/T) is the transfer function of the AR system

determined previously.
Equation (32) can then be rewritten as

e=tr(E),

(32)

6:
Wp

(34

where
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(Ryy (k—D)A]

o Mh
+M‘n

q
Y ARy (k—0) B}

Mm

k=0 ¢=0
Sy T oV f
- Y Y BRbw (k-pal+20, ) BB, G9)
k=0 =0 =0
and
O)b N 3
Row ()= [ Hap(emye it 36)
s

is the input-output crosscorrelation of the AR system; it is
readily computed by using equations (16a)-(16¢).

Auto Cross-Correlations Matching Procedure (ACM). This
procedure involves a constrained minimization of ¢ with
respect to the coefficients 4, and B,. Clearly, the minimiza-
tion of e with respect to A, and B, for all values of k and ¢
would yield the trivial solution with

A, =B;=0 k=0, ... 37)

Thus, a nonhomogeneous constraint must be added to the
problem. An obvious choice is

Lpand =0, ... ,q.

A,=1I,. (38)
The minimization of the error requires setting the derivatives
of e withrespectto A, (k =1, ... pand B{(f =0, ... ,q)
-equal to zero. This condition yields the following set of linear
equations
EAkR o (k—i)— EBgRYw(z—L’) 0 i=1,...,p (39
=0
and
min{i,p)
2w,B; = ARyw (k—i) i=0,1,... 4. (40)
k=0

Combining equations (35) and (38)-(40), the corresponding
minimum value of ¢ becomes

Emin = 1 (i), @1
where

A

Byia =5 {EAkRYYu«) EBeRYw( o}.
Wp

(42)

The choice expressed by equation (38) is convenient but ar-
bitrary and might not give an absolute minimum for e.
Another possibility is

Bo =Bo = Bu =

Ryw(0). 43)

Zwb

Then, the optimal coefficients 4, and B, can be computed
by setting the derivatives of e with respect to A, (k =

0,...,p)and B,(f = 1, . »,q) to zero. The following equa-
tions are obtained
y4 _ q _ t
Y AkRyy (k—i) = ), BRhw(i—0=0 i=0,...p (44)
k=0 ¢=0
and
_ min(i,p) _
2w, B; = A Reow (k—1) i=1,....,q. 45)
k=0

Note that the matrix B, appears only when / = 0 in equation

*(44). Thus, the systems (39)-(40) and (44)-(45) are identical ex-

cept in the i/ = 0 case. A solution of the form
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Ak:/ioAglAsz—oAk k:O, R 2 (46)
B=A,A;'Bi=A,B,  (=1,....q @7

to equations (44)-(45) is then possible. The unknown A, is
readily obtained by satisfying equation (44) for i = 0. Namely

{}? Ryy (k

Taking into account equations (42) and (43), equation (48) can
be rewritten as
g B t
Ay (Epin+ B,By) =B,B,. (49)
The corresponding minimum value of € is &y, = (£,
where E,_;, is readily obtained from equation (35)

min

aq E
= Y Bkl (-0} =B,Rbw(0).  (48)
=1

_ 1 &
Emm 0_2— E RYW(k)BT (50)

Combining this expression and the causality condition, equa-
tion (16a), yields

Epin=(,—A,)B,B). &)

It will be shown in Part II that the preceding procedure
yields an ARMA process which exhibits certain auto-cross cor-
relation matching properties with regard to the target process.
This observation accounts for the proposed abbreviation,
ACM,

Power Order Matching (POM) Procedure. Note the
similarity between ¢ as defined by equation (32) and the error

I

b ¥ —9p
which is involved in the Fourier representation of an arbitrary
matrix function F(w) in terms of its coefficients C,. In fact,
from equation (40), the parameters B, appear as the Fourier
coefficients of D(e/*T) H, 5 (¢/*T). Note also that coefficients
corresponding to positive powers of /T vanish due to the
causality of D(e“T) H  (¢/T). On the basis of this remark,
an alternative ARMA synthesis procedure can be conceived. It
treats N(eT) as a Fourier approximation of D(e™T)
H ,z (¢T) of highest order possible p + g, whose coefficients

Bq+1= Bq+p (53)

In other words, A are selected so that D(ef‘”T) H  p(e®T) has
Fourier coefficients of order g + 1to g + pequal to zero, and
B, are selected so that D(e*T) H g (7} and N(eT) have
identical Fourier coefficients of order 0 to g. For the previous
interpretation to hold, the coefficients B, must vary in-
dependently so that the traditional nonhomogeneous con-
straint, equation (38), is enforced.

It is readily shown that the coefficients 4, and B, must
satisfy the following equations

IF(w)~ Y, Che=TI2dy

n=-—o

(52

r= 2w

min(p,f
E AyRyw (k—0)=2w,B,
k=0
and
min(p,f

£=0,...,9 54

ARyw (k—H=0 b=q+1,...,q+p (55)

k=0

The error associated with this procedure can be computed
from equation (52) as

* 1 -
€min ™ TT E

Wh {=q+p+1

P
1Y A Rgw (k=012 (56)

k=0

This procedure can equivalently be considered as a. minimiza-
tion of ¢, defined by equation (32), subject to the constraints

Journal of Applied Mechanics

specified by equations (38) and (55). Thus, using equations
(35) and (54), the corresponding minimum value of e can be
rewritten as

mm—-zl—i (A [ 3 Rog (k-

(57

- gR?Q(k—E)BI]}.

Note that the equivalence of the two forms (56) and (57) is
readily shown by relying on the identity

ERYW( ORYw (—k—9 for all k.

Ryy (k) = (58)

2a,

It will be shown in Part IT that the preceding procedure
yields an ARMA system whose transfer function can be ob-
tained from the corresponding description of the AR system

by equating the coefficients of powers of z7!. This observa-
tion accounts for the proposed abbreviation, POM.

Generalization. In this section a general class of procedures
including as special cases ACM and POM is introduced.

A class of ARMA systems synthesis procedures can be ob-
tained by minimizing e as defined by equation (32) under the
constraints

A,=1, 59
and
min{p,8
Y, ARyw(k—=9=0 f=g+1,...,q+r (60)
k=0

Clearly, if » = 0 no constraint of the kind specified by equa-
tion (60) is to be satisfied, and the traditional ACM procedure
is represented. Further, the POM procedure is derived for r =
D.

The problem can be restated as the minimization of

1 g+r min(p,H
€=e+—tr{ Y [ ) AkRYW(k—K)]A‘,} (61)
I=q+1 k=0

with respect to the coefficients A, and B, with the exception of
A,. In minimizing € it is readily found that the associated n
X n Lagrange multiplier matrices A, and the matrices 4, and
B, are solutions of the system of equations

P q
N ARy (k=)= Y BiRYw (i—0)
k=0 =0

q+tr

+ Y AlRby(i-9=0 62)
(=g+1
i=1,...,p
min(p,f
AkRQw(k—f):Zbig {=0,....,q (63)
k=0

with equations (59) and (60) appended. The corresponding
minimum value of the error is

é'min = tr(E~min) (64)
where Emin is the symmetric matrix
Ern =] Y ARes (- EBeRYW( D
wp Lo
qg+r
+ L AR}, (69)
f=q+1
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Autoregressive Moving Average (ARMA) Approxima-
tion—Inverse Spectral Matrix

Preliminary Remarks. Clearly, the transfer function matrix
of an ARMA (p, g) system exhibits the interesting property
that its inverse is also the transfer function of an ARMA (g, p)
system. Thus, alternative ARMA approximation procedures
based on the inverse transfer function can be obtained as duals
of the previous ones.

In this section, the quality of the ARMA approx1mat10n will
be measured by the error .

1 wa
- Zwb —wp
Auto/Cross-Correlation Matching Method. This procedure
is based on the minimization of § with respect to the

parameters A, and B, subject to the nonhomogeneous
constraint

IN(eTYQ~ ! (w) —D(e*T) | 2dw. (66)

B,=8B,. (67)
Equation (66) can be rewritten in the form
d=1tr(4), (68)
where
q q . m+ min{f,i} . ‘
=), Y BB;! ( Y AL ,)B "B]
(=0 i=0 w=max({,i)
p mingg,k) . .
- E E BB;'A, -rA/t
k=0 =0
D min{g,k} R . P ¢
-y AAL_BF1BI+ Y, AAL (69)
k=0 =0 k=0

It is readily shown that the minimum of § is attained when the
matrices A, and B, are solutions of the following system of
equations

min(g,k) R R .
BB;'A,_,=A; k=0,....,p (70)
=0
and
q R m+ min(f,i}
EBYBU—I ( Au»l’Au~i)
=0 U= max(t’i)
E A AL i=1,... 4. (71)
The corresponding minimum value of § is
gmin = tr(Amin) (72)
where
q . m . AT D AT
=Y (LA A - YN Aadl o)
=0 u==0 k=0

As previously, a modified approach based on imposing a con-
straint on A, can be developed. In fact, the value of 4, will
equal the value A, of the previous approach. Using equation
(70) for k = 0, this requirement is equivalent to

A,=A,=1,. (74)
The equations for the coefficients A, and B, are then de-

rived by setting equal to zero the derivatives of 6 with respect
toA, (k=1, .,p)and B, ({ = 0, . . . ,g); one obtains

min{g,k}

B‘;Bo_llzik_y:Ak' k=1, Y 4 (75)

=0

and
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(76)

The resulting minimum value of the error § is readily com-
puted as

6mm rr(Amm) (77)

where

Amin =AOAZ ~Boéc71/’l\o‘4j) =1, —Baéc;-l' (78)
The two sets of coefficients can be computed from one
another, as in the approach based on the original spectral
matrix, by noting that equations (75) and (76) admit the

solution

Ay=B,B;'A, k=1,....p (79)
B,=B,B;'B, =0,....,q (80)
provided that
g m P
0 | L8bs (LA, AL - ¥ adl]=1,. 6D
=0 =t k=1

This condition can be rewritten in terms of A, and A,;, a
follows

BaB; ! Apin = Amin . (82)

Power Order Matching (POM) Method. This ARMA
system synthesis procedure involves the minimization of & as
defined by equation (66) with respect to the coefficients of
D(eT). The coefficients of N(&*T) are such that equation
(67) is satisfied and

A, i=0

p+i

i=1,...,q. 83)

It is readily shown that the coefficients A, and B, must satisfy
the following equations

min{g,k)
BB, A _=A, k=0,...,p (84)
=max(0,k —m)
and
min{q,k)
BB 'A,_,=0 k=p+1,...,p+q. (85)

{=max(0,k—m)

Note that taking into account equation (67), equation (84) for
k = 0renders equation (38). Next equations (85) are solved to
yield the values of the parameters B,. Finally, the coefficients
A, are computed by relying on equations (84). The corre-
sponding value of the error can be computed as in the pro- -
cedure involving the original target matrix,

Buin =17 (Ain), (86)
where
. m+q q R R
'Aminz E [( E BPBglAk—F)
k=p+g+1 {=max(0,k —m)

> X i ;

( ) B[Bg‘Ak_y) ] 87
=max(0,k—m)

. Postmultipyling equations (84) and (85) by R¢w (kK — i) and

summing over k from 0 to / yield
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i min(g,k)
BB 1A, _(Ryw (k—1)
k=0 ¢=max(0,k—m)

-min{i,p)
= ), ARgw(k—i)

(88)
k=0
or
min(i,q) . min(m,i—f) R
BB, { ARyl (=01}
=0 u=0
min(i,p)
= ) ARy (k—i). (89)
k=0

Relying on equations (16), these equations can be rewritten

as
min(i,p)
A Rgw (k—i)y=2w,B; i=0,...,q (90)
k=0
and
min(i,p)
ARyw(k—0)=0 i=g+1, .b+q ©n
k=0

which are identical to equations (54) and (55). Thus, the POM
original spectral matrix and inverse spectral matrix ap-
proaches yield the identical systems.

Generalization, The two ACM and POM procedures for the
inverse spectral matrix can be seen as particular cases of the
general class of algorithms obtained by minimizing

- wp e A )
0 S IN(eTYB, 1D (e/T) —D(e*T)12dw
Zwb ~wp
ptr min(g,k) . .
+2tr{ Y [ B?B;‘Ak_[]Ak} 92)
k=p+1 — f=max(0,k—m)

with respect to the ARMA coefficients A,, B, and the
Lagrange multipliers A;. Imposing the nonhomogeneous con-
dition specified by equation (67), it is readily shown that the
unknown coefficients are solutions of

" At
ZBFB ( u ?Au~i) -

u=max(f,i) k=i

min(p,m + i)

at
AkAkfi

m+ mm(ﬂ i)

min(p+r,m+i)

+ Z AZALI':O
k=max(p+1,i)
i=1,...,q %3)
min(g,k) . R
BB;1A, =0 k=p+1,...,p+r ©94)

¢=max(0,k—m)

with equations (67) and (84) appended. The corresponding
minimum value of § is

gmin = tr(ﬁmin) (95)
where
q m ¢ min(p,m) t
mm E (EA1¢~C’AM) - AkAk
=0 u={ k=0
min(p +r,m) R
+ ), AL (96)
k=p+1
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Critical Assessment

Comparison of Original and Inverse Spectral Matrix Pro-
cedures. The described procedures which are based on the in-
verse spectral matrix, have some computational advantages
over the corresponding procedures which rely on the original
spectral matrix. Specifically, the original ACM and POM pro-
cedures require the solution of a set of p X n equations, while
their inverse counterparts involve systems of size ¢ X n. Note
that since the first approximation of the target process is pro-
vided by a pure autoregression, ¢ is expected to be lower or
equal to p. In addition to the reduction of the linear system
size, it can be seen that the recursive computation of the
crosscorrelations by means of equations (16) is not required.
When selecting the appropriate procedure, original or inverse
spectral matrix, for a particular problem, the POM procedure
requires the solution of only min(p, g) X n simultaneous
equations.

Comparison of the 4, or B, Constrained ACM Procedure.
It can be shown from equations (49) and (51) that the errors
Emin and &, satisfy the inequality (Mignolet, 1987)

émin - émin - tr[Emin(Emin +B0Bj;) - lE'min] =0. (97)
That is, the improvement of the B, constrained procedure
over the one retaining A, = I, namely é.;, — &y, 1S @ se-
cond order term in E ;. Thus when a good matching, é,;, —
0, is obtained, the two procedures give almost identical results.
If, however, the A4, based procedure is not satisfactory, the
alternative procedure represents an improvement quantified
by triE B + B, Bly-! Ein]. Note that a similar relation
between the errors Amm and A, corresponding to the inverse
spectral matrix procedure can be derived.

In the context of simulation, the quality of the matching
between the target and the approximate spectral matrices can
be better described by the ‘visual” error e, defined as
(Mignolet, 1987)

1 {wa
e, = ————
b 2(.0b —ap

{max ID‘I(ei“T)AUIZ}. (98)

lol<wy,

[ASD(e*T)Q(w) —N(T)] Izdw}

It can be shown (Mignolet, 1987) that the values &, and é,
corresponding to the A, and B, constrained procedures satisfy
the inequality

€ —€,=p t"[EminE_ﬁih(EAmm -
where

B= max | D~ 1(&*T)|2= max DY (e*T)A,|2.

lwl swp lol<wy
That is, the B, constrained procedure yields a larger visual er-
ror than the one which is based on constraining A4,. Thus, in
the context of the present procedures, there exists a trade-off
between an absolute minimum of € and a small value of e, as
defined by equations (32) and (98), respectively.

Epo)]20. (99)

(100)

Concluding Remarks

The simulation of a multivariate random process with a
specified (target) spectral matrix as the output to white noise
input of autoregressive (AR) and autoregressive moving
average (ARMA) discrete systems has been studied. The con-
tributions of this investigation may be summarized as follows.

1. A meaningful measure of the quality of the matching
between the target and the AR spectra was introduced by
equation (19). Furthermore, the analysis of this relation called
attention to the existence of some pathological target spectra,
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namely those satisfying equations (20) and (22). Therefore,
given an arbitrary spectral matrix, it should not unreservedly
be assumed that a reliable AR approximation can always be
constructed. This point has been demonstrated in the context
of ocean waves spectra by Spanos and Mignolet (1986).

2. Two procedures, ACM and POM, for determining the
coefficients of an ARMA approximation from an initial AR
approximation were presented. They are applicable either in
connection with the target matrix or with its inverse. The set of
equations for the unknown ARMA coefficients was derived
through the minimization of a frequency domain error subject
to a certain set of constraints. Further, it was shown that the
two procedures are special cases of a general minimization
procedure.

3. It was shown that the spectral matrices of the various
ARMA and AR systems depend on B, only through the
product BOB:r,. Thus for computational convenience, B, can
be taken as the lower triangular matrix satisfying equation
(18).

4, The arbitrariness of the standard choice of the
nonhomogeneous condition, 4, = I,, was pointed out. An
alternative procedure based on a constrained B, was
developed. The set of equations for the remaining coefficients
was obtained through the minimization of the same frequency
error. It was proved that the minimum of this quantity in the
case of the new procedure is lower or equal to the corre-
sponding value for the standard procedure. A quite efficient
algorithm to compute the corresponding sets of ARMA coeffi-
cients from one another was given.

5. Attention was called to the computational advantages
of the POM procedure over the ACM procedure in terms of
the size of the system of linear equations which must be solved
to determine the requisite ARMA coefficients.
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ir?g the matching of the correlations at various time lags of the target and the
simulated processes are shown. Finally, the reliability and efficiency of the discussed
procedures are demonstrated by application to spectra encountered in earthquake

engineering, offshore engineering, and wind engineering.

Introduction

In the first part of this series the usefulness of efficient
algorithms for simulation of realizations of multivariate
stochastic processes with specified (target) spectral matrices is
discussed in context with random vibration analyses of multi-
degree-of-freedom systems. Various procedures for determin-
ing appropriate autoregressive moving average (ARMA)
algorithms are presented. All of the presented ARMA pro-
cedures are based on a prior AR approximation of the target
spectral matrix. Equations for the unknown matrix coeffi-
cients of the various algorithms are obtained through the
minimization of frequency domain errors. These equations
can be readily used for a particular practical problem. In this
regard a critical assessment of the features of these procedures
is provided as well.

In this part of the series, the various procedures are ex-

amined from the perspective of stability and invertibility of .

the generated ARMA system, and the auto and cross-
correlations matching properties of the target and the
simulated processes. Further, some implementation aspects
are discussed. Finally, the reliability and the efficiency of these
procedures are demonstrated by producing ARMA approx-
imations of physical processes encountered in various struc-
tural dynamics applications.

In order to avoid needless duplication, all equations marked
by an asterisk in this part will refer to the equations with the
same number given in Part I.

Stability and Invertibility
Preliminary Remarks. Ensuring stability of the discrete
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system which is associated with a particular simulation
algorithm is of fundamental importance. Indeed, it is a
necessary condition for the stationarity of the system
response, that is, of the time series generated. In the case of an
ARMA system, stability is ensured if and only if the poles of
the transfer function, defined as the roots z; of

det| ¥ 4,4 =0 )
k=0

have a modulus smaller than one. Clearly, the computation of
z; from equation (1) can represent a burden, especially for
large values of the product p X s. A more practical criterion
is, therefore, desirable. In the following a sufficient condition
for the stability of the ARMA system obtained by the
generalized original matrix method will be established. It is
based on an extension of a theorem on the Lyapunov equation
(Mullis and Roberts, 1976). The condition is applicable to the
ARMA systems developed by the ACM and POM procedures,
as well as to the AR systems.

Note that the ARMA algorithms obtained by using the
original spectral matrix can be interpreted as duals of the
algorithms obtained from the inverse spectral matrix. Thus,
the ensuing mathematical developments can be applied, as
well, to examine the invertibility of the latter algorithms.

Two Auxiliary Block Matrices. The matrices K and K’ with
(u, i) n X n block elements defined by the equations

1 4 ,
K,=Rey(4—i)—=— Y, Ryw(u—DRgw (i—0)

Wy =9

wi=0, ... p—1 @)

, . 1 ¢ o,

Ki;i=Ryg (u—i) —=— ) Ryw (U—ORguy (i—0)

b =0

u,i=0,....,p 3)

are crucial in the forthcoming proof. Thus, their properties
are first presented.
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It is readily seen from their definition that the matrices K
and K’ are symmetric. That is,

K=Kt “)
K'=K'". (5)

Next, note that K is the covariance matrix of p random vectors
Z,;, each of n components. That is

K.i=EIZ,2]] u,i=0, ... p—1, ©)
where ’
R 1 g—u—1
Zu = Yr—u — RQW(_g)Wr—le )]
20, 120
foru = 0, ...,p—1 and any given value of r.

Thus, K is at least positive semidefinite. The pathological
case, det X = 0, will not be considered here. With this restric-
tion, the matrix K is positive definite.

The previous reasoning can be repeated to show that K’ is
also positive semidefinite. From the definition of the matrices
K and K’, equations (2) and (3), it is clear that

1 . .
+—— Ryw (u—q)Ryw (i—q) u,i=0, . ..

K;d:zlzéi Zwb L1
(3)
and
Kyi=Kyingsey i=0, ... ,p—1. ®
Equations (5) and (9) imply that
K, K]
K = 10)
K, K

where K, and K, are n X n and np X n matrices, respectively.

The Companion Matrix. The companion matrix A of an
ARMA (p, q) system with leading coefficient A, = I, is the
square block matrix defined as follows

—A] —Ay ... —A, —A,
A= | I, 0 0" 0 (1)
0 I, o
0,
0o . .. .
0 0 ... I 0

Using the Frobenius-Schur formula for determinants, it is

readily shown that the eigenvalues \; (/ = 1, ... ,n X p) of
the matrix A are solutions of the equation
p
det[ EAkx—k] =0. (12)
k=0

Upon comparing equations (1) and (12), it becomes obvious
that the poles of the ARMA transfer function are the eigen-
values of A4.

Next the matrices 4, K, K’ are combined to yield additional
results. First, eliminating the coefficients B, from equations
(62*) and (63*) yields

1 ¢ o
T 1 Riw (=0 R (=]

D
Y Au[Reg (=i -
u=0

q+r

+ Y, ARgL(i-9=0
f=q+1
fori=1,....,p (13)

where according to equation (26d*), the crosscorrelations Ry

are zero for positive lags. Further, combining equations (3), -

(13), and (65*) gives
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p g+r iy
YV AKL+ ), ARgw (-9
u=0

t=g+1
= 2w, E inbi0 i=0, . . . ,p. (14)
Then, it is readily shown that
KA, =K,y i=1, ... .p—L;u=0,...,p-1 15)
and
q+r
KA o= K{us 10+ EIR,*{W(quI—f)Ap u=0, ... ,p—1.
t=g+
' C(16)
Furthermore, it can be proved that
[AKAM =K} + L= 20, Ein8,000 wi=0, . .. ,p—1 (17)
where
q+r q+‘r
Li=[ Y AlRgh =060+ [ 1 Rewlu=0]ss.
t=q+1 r=g+1
(18)
Finally, equation (17) can be rewritten as
[AKA™ =Ky + Ly — 20, E 106,060
~—— Ryw (4—=q)Ryw (i—q) (19)

2(.017
by relying on equation (8).

Stability Criterion. The derivation of a sufficient stability
criterion will be based on the following theorem.
If the block matrix

G=[F,AF, . .. ,AP"'F] (20)

is nonsingular and there exist symmetric matrices K and C,
with K positive definite and C positive semidefinite (possibly
zero) such that

K=AK At +yFF' +C 1)

for some y > 0, then the eigenvalues of A all lie within the
unit disk of the complex plane.

The proof of this theorem for A and Fbeing p X pand p X
1 matrices, respectively, appears in Mullis and Roberts (1976).
Its extension to A and F being np X np and np X n matrices,
respectively, is straightforward and will not be presented here.
It should, however, be noted that the matrix A,,; appearing in
that article is related to the one defined by equation (11)
through the equation

Ayr=0 A4 Q

0 ...1,
0 ...0 |.
I, ...0

Clearly, such a transformation does not alter the values of the
eigenvalues of the matrix A. _

Introduce first the square root E,,, of the error matrix such
that

(22)

where

Q= (23)

E\pEl = E . 24)

~ Define the following block matrices
Fi=[Ryw(—q), . . Rew(p—g—1DI' 25)
Fy=[El,.0,...,0" (26)
G, =IF,,A F|,A’F,, . . . ,A"~'F] @7
G,=|F,,A F,,A%F,, . . . ,AP~'F,]. (28)

Also introduce the matrices
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C, =2w,F,Fy + o F\F} —
1

20, Wy

where L is the matrix with blocks defined by equation (18),

and the scalars «, v, 7, satisfy the equations

29)

C,=a FyF) +—— F,F - (30)

1
N g (3D
7= 20, - (32)

Clearly, equation (19) can be written in either of the forms
K=AK A" +v,F,F +C, (33)
K=A K At +y,F,Fs + C,. (34)

Upon applying the aforementioned theorem to equations (33)
and (34), and noting the equality of the poles of the transfer
function to the eigenvalues of A, one obtains the following
sufficient criterion for the stability of the ARMA system.

If, for either triplet (G|, Cy, v,) or (G5, C, 7,), det G # 0
and there exists a value of o such that C and + are a positive
semidefinite np X np matrix and a positive scalar, respec-
tively, then the ARMA system whose coefficients are com-
puted from equations (59*), (60*), (62*), and(63*) is stable.

Tt should be noted that the nonsingularity of G, is
equivalent to

or

det(E ;) #0 (335
which is computationally easier to check than det(G,) # 0.

Indeed, only the first 2n rows of o F,Fy — L may be linearly
independent. The following ones are linear combmatlons of
the rows n + 1 through 2n. The inclusion of 1/2w, FIFl can
increase the rank of C by at most #.
Clearly, the matrices C; and C, can be written in the form
C=a,F\F +a,E,\E\M—UE| —E, U (39)
where M, E,, and U are the following block matrices and
block vectors

Emin ~ 0
M= E .. (40)
0 .
E'min
E =[,0,...,0I" (41)
and
g+r
-[( X alrew(-n),
f=qg+1
qg+r
(X lreho-t-1)]' 2)
{=qg+1

and o, o, are appropriate scalars assuming different values for
C, and C,. The eigenvectors of C can be written as linear com-
binations of the column vectors of Fy, E;, and U, the coeffi-
cients of which are the blocks of eigenvectors of the 37 X 3n
matrix €

o, FiF, o F E, o, FlU
C= | ,EIMF, - U'F, o,E'ME, - U'E, o,E.MU-U'U. 43)
—EF, ~EE, -Elu

AR System. The previous mathematical development can be
repeated to treat the stability of the AR system as a special
case. The criterion still holds provided that

Row (k)=0 forallk (36)

and
Epin=B,B;. 37

The corresponding K matrix is positive semidefinite.
Assuming again that det K # 0 and taking (G, C, v) to be (G,,
C,, 72), the criterion simply reduces to the nonsingularity of

o

ACM Procedure. In the special case of the ACM procedure,
the previous criterion can be further simplified. Indeed, if no
additional constraint is enforced, r = 0 and L = 0. The
positive semidefiniteness of E;, implies that the choice 0 < «
< min uy, 1/2w,) yields C;, C, positive semidefinite and
Y15 v2 > 0. Thus, the criterion reduces to det (G;) # 0 or det
(Ei) # 0. Note from equation (46*), that the denominators
of the ARMA transfer functions obtained by the procedures
based on constraining A, or B, are proportional. Thus, the
corresponding ARMA systems have identical stability
characteristics.

POM Procedure. Clearly, the stability of the ARMA system
derived by the POM procedure can be analyzed by relying on
the general criterion and selecting r = p.

Practical Verification of the Stability Condition. The
computational complexity of the verification of the positive
semidefiniteness of C can be reduced by noting that the rank
p. of Cis at most 3»n. Specifically,

pc < [max(3,p)] x n. (3%

Journal of Applied Mechanics

Moreover, the eigenvalues of € are the 3n nonzero eigenvalues
of C. Thus, a condition sufficient to ensure stability is the
positive semidefiniteness of C.

A Consequence of Stability. Note that if the developed
ARMA system is stable, the equation

K=AKA'+Q (44)

has a unique solution K for every np X np matrix Q. This can
be proved by relying on a general stability theorem (Kailath,
1980). In particular, there is one and only one matrix K solu-
tion of equations (33) or (34) for every matrix L and vectors F,
and F,.

Next, the matrices KT and K, are computed by combining
equations (5), (9), and (14) in the form

- p-l q+r
Kgi=— E Ay Ky — E ARgw(i=9i=1,...,p
u=0 t=g+1
(45)
qg+r
K(;OzzwbEmin_ "EIATRYW( g) EAuKOu . (46)
q+ u=1

Finally, K’ is obtained from equation (10). Thus, for any
given matrices E,;,, A, and Reyw (i — £ there exists a unique
solution K’ to equation (14).

This conclusion applies also in the case of the AR system
and implies that equations (12*) and (14*)-(16*) admit only
the trivial solution given by equation (17%).

Invertibility. As it was alluded to at the beginning of this
section, the invertibility of the ARMA systems . derived
through the inverse spectral matrix can be deduced from the
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previous developments by permuting the roles of A4,,p and
B,,q, respectively.

Time Domain Analysis

Crosscorrelation Matching—Original Spectral Matrix. The
two generalized procedures can also be investigated in the time
domain by analyzing the connection between the auto and
cross-correlations of the AR and ARMA processes.

Combining equations (60*), (63*), and (30*) yields

min(i,p)
Y, AlRgw (k—i) =Ry (k=D)1=0 i=0, ... ,q+r
£ : 47

which represent a set of (¢ + r) matrix equations in the (g +
r) unknowns

ARyw (k) =Ryw (k) —Ryw (k) k=—q—r, ... 0. (48)

This system has only the trivial solution ARyyw (k) = 0 pro-
vided that the matrix A4, is nonsingular. This condition is
always satisfied. Thus,

Ryw (k) =Ryw (k) (49)

It is seen that the AR to ARMA procedures developed by
relying on the original target spectral matrix yield processes
which have the same excitation-response crosscorrelation as
the AR process which approximates the target process. The
proof of this property further elucidates the features of these
procedures and offers a formulation which is an alternative to
the minimization of the frequency domain error defined by
equation (32*).

k=—q—r,...,0.

Autocorrelation Matching—Original Spectral Matrix.

Combining equations (29*), (62*), (65*), and (49) yields the .

following relations between the autocorrelations of the two
processes

P
Y7 ARy (k—i) — Ryg (k=)= 260, Eindio
k=0

q+r
— ) AlRgw(i-9 (50)
f=g+1
i=0,...,p.

It was shown previously that if the ARMA system is stable,
this set of equations yields a unique value to the difference of
the autocorrelations

ARyy (k) =Ryy (k) —=Rygy (k) k=0, . . . ,p. (1)

In the special case of the ACM procedure, r = 0, and equation
(50) reducesr to

P
AyARyy (k—i) =2w,E, ,Ef 8

172 (52)
k=0

i=0,...,p.

Then, ARyy can be considered as the autocorrelation function
of the output of the AR system whose transfer function matrix
is

L —1
H(z)= < E Akz_k> Ey). (53)
k=0
Thus, a possible solution of equation (52) is
wp 14 . -1
ARy =Rgg(® ~Rgy@= " (L Ao
9 k=0
- Z -t 7
B ( Y Ake—fkwT) e iy, (54)
k=0
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And, as before, the requirement of stability of the ARMA
system renders this solution unique.

Thus, it is seen that if E;, approaches zero as p increases,
the AR and the ARMA representations of the target process
have identical autocorrelation values at time lags ¢ =
0, . .. ,p. This property illuminates further the features of the
AR to ARMA procedure and can be used as an alternative for-
mulation to the one introduced by the frequency domain
minimization.

Crosscorrelation Matching—Inverse Spectral Matrix.
Clearly, the previous analysis applies also to the generalized
inverse procedure provided that the symbols 4,,p and B,,q are
interchanged. The quantities involved will be the auto and
cross-correlations of the output X and X of the inverse AR
and ARMA systems, respectively. Some additional conclu-
sions concerning the original systems can be drawn.

The output of a stable causal ARMA system Y can be com-
puted from equation (25*) or equivalently from equation

Y, = i)h(i)w,_,, (55)
im
where the impulse response 4 (/) is such that
H(z)=D"'(z)N(z) = ioh(i)z‘i for Izl =1. (56)
i=
Thus,
Ryw (—s)=E[Y,W]_]= i h(DEIW,_ W) _]=2w,h(s)
- (57)

is the relation between the impulse response and crosscorrela-
tion sequences.

" The product of the transfer functions of the ARMA system
and its inverse is equal to /. Thus, the impulse responses, or
equivalently the crosscorrelations Rgw and Rgyw of the AR-
MA system and its inverse, respectively, are related through
the following convolution

i
Y Ryw (5= i)Rgw (—5) =43 l,b, i=0,1,. .. -~ (58)
s=0
This equation shows that the first / values of Rgyw are uniquely
determined by the first i values of Ryy and vice versa.
Thus, the matching of p + r + 1 crosscorrelations of the in-
verse systems imply the same property for the original
systems. That is,

Ryw (k) =Ryw (k) (59

This matching property which can be seen as the dual of equa-
tion (49) elucidates, as before, the features of the AR to
ARMA procedures developed by relying on the AR to ARMA
inverse spectral matrix method.

k=—-p-—r,...,0.

The POM Procedure as Padé-Type Approximation. With
the help of equation (59) the POM procedure can be seen as a
Padé-type approximation of the AR transfer function. In-

deed, it is readily shown that the lowest power of 7! in the ex-

pansion of the function

N(z)Hz}(z) —D(z) = (i Brz"’)éo—l ( ) Aszhs>

=0 s=0

(60)
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Fig. 1 Kanai-Tajimi seismic spectrum

is z=w+9+1) when the coefficients 4, and B, satisfy equations
(54*) and (55*) or equivalently, equations (84*) and (85*).
Further, the function

AH(z) = Hrma (2) —Hpg ()

P 1 . R
= ( E Akz"‘> [N(z)B;'D(z)
k=0

—D(z)](é/isz‘s) B 6

is analytic in the domain Q: |zl > |z, | where z; is the root of

equation
m

det [(;;:()Akz‘k) (gﬁsz”)] =0

which has the greatest modulus. Thus, the Laurent expansion
of AH(z) in the domain Q has the following form

(62)

oo

E o(s)z7".

s=ptg+1

AH(z) = (63)
That is, the first p + g + 1 coefficients of the Laurent expan-
sions of Huy (2) and Hugya (2) are equal. Thus the Padé-type
approximation is established.

Implementation Aspects

In this section the choice of the initial conditions for the
recursions of the AR and ARMA systems will be investigated.

Once the coefficients B,, 4,, B,, and A, have been com-
puted from appropriate equations, the AR and ARMA models
of the target process are available. These approximations can
be used to simulate a time history of Y. That is, values of Y,
=Y, orY, r=0,...,Ncan be generated by using equa-
tions (1*) or (25*), respectively. Clearly, to compute Y,, the
values Y_;, ... ,Y_;, wheresis m or p for the AR or ARMA
model, respectively, are needed. These initial values form a n
X s random vector Y, with covariance matrix K. Itsn X n
block element ui is

Kie)ui=EY _, Y _[1=Ryy (u=i) uji=1, ... 5. (64)
The vector Y, can be conveniently generated from # X s in-

dependent normal N(0, 1) deviates stacked in the vector P,
through the equation

Y, =VP. (65)
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Fig. 2 Pierson-Moskowitz wave spectrum
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Fig. 4 Wind turbulence spectrum imaginary part of 1,3 component

The symbol V denotes the ns X ns lower triangular matrix ob-
tained from the Cholesky decomposition of K-

K=V V. (66)
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Clearly, p < m so that the ARMA scheme exhibits a reduction
of the computational complexity as compared to the AR
algorithm.

Numerical Resnlts

The ARMA system development procedures presented in
the first part of this series have been successfully applied to
various spectral shapes encountered in engineering.

For the first application, the Kanai-Tajimi spectrum from
earthquake engineering defined as (Madsen et al., 1986)

ol +482020?

(w2 —w?)?+ 4§§w§w2 °

was selected as a target expression. The parameters w,, {,, S,
of the spectrum were selected to be 8%, 0.8, and 1, respec-
tively. The spectra of the different approximations are plotted
on Fig. 1. Clearly, either of the AR(40), ARMAQG,3)-
(ACM org.), ARMA(3,3)-(ACM inv.), and AR-
MA(4,3)-(POM) systems can be used for an accurate simula-
tion of earthquake records. Note that the qualifiers (org) or
(inv) denote ARMA systems produced by relying on the
original or the inverse spectral matrices, respectively.

The simulation of a time record of wave elevation is an im-
portant problem of ocean engineering. The most commonly
used statistical description of the elevation process involves
the Pierson-Moskowitz (P-M) spectrum. Its dimensionless
form (Spanos, 1983)

574 5
¢z (w) =5 &Xp (— 4w4)
was selected as a target expression. Figure 2 shows that a
reasonable AR approximation of the P-M spectrum can lead
to quite efficient ARMA models of the wave elevation. The
comparatively large filter orders needed for the ACMinv.
method can be attributed to the mathematical peculiarity of
the target spectrum as studied by Spanos and Mignolet (1986).
Finally, a trivariate example was chosen from wind
engineering. Specifically, the fluctuating velocities in the
direction of the mean wind at 3 equidistant points can be
modeled as normal random processes with mean 0 and the
following dimensionless spectral matrix (see Madsen et al.,
1986)

by (w) = (67)

(68)

1 exp(————ﬁjlwl>

1 eXp(—Bdlw]) 1

(1+ [wl)3/3 7
—Bdlwl
exp( n )

exp(»Zidlwl)

The symbols d and 7 represent the distance between 2 points
and their common height above the ground. The constant 3
equals 0.163. Equation (69) with ¢ = 5 was chosen as a target
spectrum. Figures 3-4 show the matching of the 1,1, 1,2, and
1,3 components of the AR, ARMA, and target spectral
matrices. Clearly, the AR(100), ARMA(4,4)-(ACMorg.), AR-
MA(7,6)-(ACMinv.), and ARMA(8,8)-(POM) processes
represent good approximations of the turbulent velocities.

Note that all the systems presented have been found to be
stable.

It is noted that this series of articles aims primarily to unify
and set on a concrete basis, from a perspective of frequency
and time domain optimization, stability, and matching
criteria, various AR to ARMA simulation procedures of
multivariate stationary random processes. The presented

S(w) =
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numerical results reinforce their usefulness for random vibra-
tion problems. In this regard they should be viewed in context
with other applications such as in Gersch and Yonemoto
(1976).

Concluding Remarks

Properties and computational aspects of the ARMA system
(algorithm) procedures developed in Part I have been studied
in detail. The results of the present analysis may be summar-
ized as follows.

1. The stability of the systems obtained by the generalized
original spectral matrix procedure can be ensured if at least
one of the triplets (G,, C, v,) or (G,, C;, v,) as defined by
equations (27)-(32) satisfies the conditions of nonsingular G,
positive semi-definite C, and positive y. When p > 3, this
criterion can be simplified by noting that the 3# nonzero eigen-
values of C are also eigenvalues of the 3#n X 3n matrix C
defined by equation (43). These conditions are applicable to
the special cases of the POM and ACM procedures. In the lat-
ter case, it was proved that the stability of the system is en-
sured by the condition det (G,) # 0 or det (E;,) # 0.

2. Relying on the duality of the procedures which involve
the original or the inverse spectral matrix, it was shown that
the stability criterion could be used to test the invertibility of
the systems developed by the generalized inverse spectral
matrix procedure.

3. It was proved that the AR and ARMA processes de-
rived through the generalized original or inverse spectral
matrix procedure have in common the same p + ¢ + 1 first
input-output crosscorrelations.

4, It was shown that the differences between the first p +
1 autocorrelations of the AR and ACM (original spectral
matrix) processes are the autocorrelations of an AR process
with known parameters.

5. It was discussed that the simulated ARMA processes
would not display nonstationary characteristics if pertinent in-
itial values were generated as jointly normal random variables
with mean 0 and covariance matrix K. as defined by equation
(64).

6. Finally, the discussed ARMA procedures were ex-
emplified by application to a variety of spectral shapes en-
countered in different technical areas such as earthquake

( —28dlw l)
expl——
1
—Bdiwl
exp (————) (69)
n
1
engineering (Kanai-Tajimi spectrum), ocean engineering

(Pierson-Moskowitz spectrum), and wind engineering (spec-
tral matrix of the turbulent velocities). Excellent matching of
the target spectra and the ARMA approximations was ob-
served in all cases.

It should be noted that the preceding developments could
also serve as a basis for investigating properties of ARMA
schemes used in connection with nonstationary random pro-
cesses such as in Polhemus and Cakmak (1981) and Gersch
and Kitagawa (1985), and multidimensional random processes
(Naganuma et al., 1985).
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Introduction

The design of secondary systems to withstand seismic and
other loads has recently received increased attention. A secon-
dary system may be a piece of equipment in a primary struc-
ture or a substructure which is separate from its supporting
primary structure. Secondary systems are usually character-
ized by having a mass which is small in comparison with the
mass of the structure on which they are supported. The excita’
tion to such systems is frequently stochastic in nature as in the
case of earthquake, wave, and wind excitation. Secondary
systems are often essential to the safety and wellbeing of the
primary structure and their failure may have very serious con-
sequences. This is particulary true in critical facilities such as
nuclear power plants.

Several researchers have investigated the response of secon-
dary systems to stochastic excitation. Primarily, attention has
been focused on determining the stationary response to sta-
tionary excitation. It may be argued that this information will
adequately represent the response to a long duration excitation
with nearly stationary statistics. Using the assumption of sta-
tionarity, Singh (1975) undertook to simplify the computation
of the mean square response of a single-degree-of-freedom
secondary system attached to a multiple-degree-of-freedom
primary system. More recently, [gusa and Der Kiureghian
(1983, 1985) used perturbation methods to simplify expres-
sions for the stationary response statistics of a multiple-
degree-of-freedom secondary system attached arbitrarily to a
multiple-degree-of-freedom primary system.

Relatively little work has been done on the response of
secondary systems to transient excitation. Perhaps most
notable among the work reported is that of Chakravorty and
Vanmarcke (1973) who obtained the mean square relative
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On the Nonstationary Response of
Stochastically Excited Secondary
Systems

The envelope response of a secondary system is derived for the case where the
primary system is subjected to nonstationary stochastic excitation. An approximate
closed form expression for the mean square envelope response is obtained for the
case of transient response to stationary excitation when the primary and secondary
systems are noninteracting. When the combined system is classically damped, the ef-
Ject of the interaction is described by the introduction of an equivalent noninterac-
ting system. The analytical results are compared with results of numerical

,
=

AL

Cz

Y
X
1
L
Cy
— K,
:
Ground

Fig. 1 Single-degree-of-freedom secondary system attached to single-
degree-of-freedom primary system

displacement of a single-degree-of-freedom secondary system
attached to a single-degree-of-freedom primary system, in
response to suddenly applied white noise. The mean square
response is a useful measure of response, but for many ap-
plications it is more important to have an estimaté of the peak
or envelope response.

This paper presents an approach to the secondary system
problem which leads to a general expression for the time-
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varying statistics of the envelope of the response of a secon-
dary system to excitation represented as a general stochastic
process. The primary system and secondary system are each
represented as single-degree-of-freedom systems. However,
the results derived here may be combined to approximate the
behavior of a more complicated primary system (Penzien and
Chopra, 1965). .

Primary System Response

There are many approaches to analyzing the response of a
single-degree-of-freedom linear oscillator to stochastic excita-
tion. The approach chosen herein is analogous to that used
subsequently for the secondary system. Only a few results
which will be useful later will be presented by way of review.

Let the system be defined as in Fig. 1. Then, neglecting in-
teraction, the relative displacement x(¢) of the primary system
is described by the equation

X420 X +olx=—Z(1) 1

The response x(¢) to any excitation z(¢) may, for ze_ro’ in-
itial conditions, be expressed as

| ..
x(f):S —— e 511 U= gin wy, (t~T7)[—Z(7)]dr 2)
. 0 Wy
where w,, = Q, /1 —{?. This integral may be decomposed as
x(1)=x, (1) cos wg t+x, (£} sinwy ! 3)
where
| . .
x (H)y=- S —— e~ 519107 sin wy 7[ - Z(7)ldT
0 Way

' . 1C))
Xy (1) = SO — e~ 5191U=1 cos wy T[—Z(7)ldT
ar -
For class of problems of interest, it will be assumed that .
x(t) =a, (1) cos [wa t+ ¢, (1)) &)

where a, (¢) and ¢, (¢) are nearly constant over any one period
21 /w4 . Bquation (5) may be decomposed in the form of equa-
tion (3) to give
X, (8) =ay (1) cos (1)
(6)
X, (1) = —a, (¢) sin ¢, (#)

The envelope of the response a, (¢) may be expressed as

af (ty=x{ (1) +x3 (1)

t t 1
= S S — e 1w Q=T —73)
0 Jo wy
cos wyy (1 — 1) Z (T (1)ldr d7y @)
If z(¢) is a stochastic process, a; (#) will also be a stochastic
process. Taking the ensemble average of af (1) gives
t !
Elal ()] L S S e~ f1e1@-11-1)
0 Jo

2
Wyl

cos wyy (1) — )E[Z(7)Z(1y)ldT,d1, &

For a broad-band stochastic excitation, it may be shown
(Smith, 1985) that

ElZ(1))Z(1))]= Si» S(w,r)e“ 2" dw 9)

where S(w, f) is the evolutionary power spectral density
(Priestley, 1965) of the process Z(¢). Substituting equation (9)
into equation (8) and using symmetry in 7, and 7, gives

o«
e—2§1w1(t—rl)

—

E[a%(n]z;ﬁd—l ]

S{w, )¢ (w,71)dedr (10)
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where

(11)

It may be shown that the function £ (w, ¢) is sharply peaked at
w = wy, and that

t
§(w,t) =2S0 e 81e17 cos wyy T eTdr

Sf E(w,)dw=27

Taking S (w,?) as nearly constant over the region of maximum
£, thus yields
2 2r (',
Elaf ()]~ —— | e B191U-7108 (wy,7))d7, (12)
W 0 )

This result is identical to that obtained by Spanos and Lutes

(1980), except that w, is replaced here by w; .

Secondary System Response

The relative displacement y(¢) of a noninteracting secon-
dary system is governed by the equation

(13)

Using equation (1) for the primary system, the right-hand side
of equation (13) may be expressed more simply as

J+20wy+wiy=—7(t) - x(t)

—Z—X¥=2fw X +wix

=~wla (1) cos [w; 1 +¢; (1)] (14)
where equation (5) has been used together with the assumption
that {; << 1. y(¢) may now be expressed in terms of the
Duhammel integral representation

t ]
y(t)= S — e~ 292U=ngin w,(t~1)wla, (1)
0wy
cos [w; T+ ¢, (7)]dr (15)
Note that w,, = w, V1—{% has been replaced by w, in equa-
tion (15), since it is assumed that ¢, < < 1.
It will be assumed that y(¢) has the appearance of a har-
monic oscillation with slowly varying amplitude and phase,
and possibly a slowly varying frequency. That is,

Y(t) =ay (1) cos [w’ (1)t + b, ()] (16)

where a,(t), o’ (t), and ¢,(¢) are slowly varying random
functions of time.

Equation (15) exhibits two characteristic frequencies, w,
and w,. However, one of these frequencies may dominate the
other. When the natural frequencies of the primary and secon-
dary systems are well separated, the response of the secondary
system is generally dominated by the lowest natural frequency,
although a small amount of the higher frequency is still pre-
sent. Equation (15) will first be decomposed in harmonics of
w;. This procedure may be expected to yield good results for
w; =< w,, since the frequency w, will certainly be present in
y(t) in this case.

Let
(1) =y, (f) coswt+y,(¢t) sinwt a7
where
]
()= S — e~ %292U=7 gin w, (t—T)wia, (1)
0 Wy
cos [w; (t—7) — ¢, (7)]IdT (18)

L |
Yy (t) = S — e~ %2927 gin w, (t—T)wia, (1)
) Wy

sin [w (f~7) — ¢ (7)]dT
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If equation (16) is decomposed in a similar manner, it may be
seen that

Yi(t) =a, (1) cos[w’ (£)t—wt+d, (1)]

a9
Y2 (1) = —ay (1) sinfw’ () —w;t+ ¢, (1)]
Thus,
a3 () =y (1) +y3(1)
t ! ‘
- So So e~ $292@0-T1 = m)sin w, (£—1y) sin w,(f—7,)
wix (7,7)dr dry (20)

where
x(71,m) =a;(7))a (1) cos [, (7; — 1) + @1 (7)) — (1)) (21)

The function x(7;, 7,) is a random function which depends
only on the primary response x(#). x (7, 7,) can, in turn, be
written in terms of the excitation z(¢) using the random func-
tions x; (¢} and x, (#) so that (Smith, 1985)

XM= 0y o w?

cos wy (¢ =ty — 71 + T ZEPDIZ (7)]dT dTy (22)
Equations (20) and (22) express aZ (¢) as a four-fold integral
involving the random function Z(7,)Z (7).

A similar calculation may be made in the case that w, < w;.
In this case, it will be appropriate to decompose equations (15)
and (16) in harmonics of w,. This leads to the expression

topt w12
af(t):jo So w?
2

g {202t -71 ~72)

COs wy(1; — T )X (7YX (1)dr dT) (23)
where
!
X(t) = SO e~f1eti=n [sin w (t—71)
+2—§1— cos wl(t——r)][—i(r)]df (24)
W

Closed Form Solution

The equations derived above provide a description of the
stochastic process @, () in terms of the excitation process
Z(t). Let

@y =min(wl ,(.02)
25)
w, =max(w,uw,)

Then, taking ensemble averages in equations (20) and (22),
making use of the sharply peaked nature of the kernel func-
tion as above and assuming that S(w, 75) is a slowly varying
function of w, it may be shown that (Smith, 1985)

t
ElG0]= | p(t=5)S(w,5)ds 26)
where
2 topT
w() =210 e~2rmrg S 2 eloan =ty +12)
w? 0 Jo
cos wy (1) — 7,) sin w, 7, sin w, 7, dr,d7, 27)
Let
V=§‘uwu _.g-)\w)\
(28)

Aw=V (w, —w,)? + 2
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Then, when Aws0, a closed form expression for p(#) may be
obtained as

Twf

_ w3
(Aw)2[(wy +w,)2 + 2]

(1) {2w?,e‘2“‘”*’
+ e~ Ruoul [202 + (0} —w? +2)2)(1 — cos 2w,t)
+2pw,, sin 2w, ]

+ 2w, e~ N+ [(wy — w, ) €08 (wy +w, )t —v sin {(wy +w, ) !

—(wy +w,) cos (o.o)\ —w, )+ wsin (wy ——wu')t]} (29)
For Aw=0, the corresponding result is
;L(t):’lre’z‘“l“’l’[l/zt2~ ¢ sin 2w, ¢
W)
1
+—— (1 —cos 2w1t)] 30)
4w

It may be shown that u(¢) = 0.

In summary, the second moment E[a? (¢)] is seen to be ex-
pressible as a convolution of the evolutionary power spectral
density S(w, f) of the excitation process Z(#) with the non-
negative function u(¢). In order to obtain the probability den-
sity function of a, (¢), moments of all orders must be com-
puted. However, it is reasonable to suppose that the secondary
envelope a, (¢) is nearly Rayleigh distributed if the excitation
is Gaussian and the response is narrow-banded. Since the
Rayleigh distribution has only a single parameter, the pro-
bability density is determined by the second moment.

Response to Finite Duration Stationary Excitation

One application of the above results is to the case where the
excitation is derived from a stationary process which is
modulated by a rectangular function in time. The evolutionary
power spectral density of the power acceleration will be taken

as
{So(w) 0<t=<T
S(w,t) =

0 otherwise

(€3]

where Sy (w) is the power spectral density of the underlying
stationary process, and 7' is the duration of shaking. Neglec-
ting terms of higher than first order in ¢, and ¢,, it may be
shown that

Ela3 (1)]=Sp(wy)p(?) (32)
where
p* (1) O=st=T
o(?) ={ (33)
p* () —p*(t=T)t>T

p* () describes the buildup of the secondary response from
rest to stationarity, when 7 is made arbitrarily large.

2 2
TW{ w5
p*(t) = { 1 —e2henD
(Aw)zwzz(wx"“*’u)z [EXN ¢
2 2
ontey (1—e~2uout)

zfuwu .

© 2w,

(w)\_'wu)z"i'w)\wu(g‘)\_}'g‘u)z

(50} + §,0%) (1— e~ Eor+tuen) cos (w) —w,)1)
+ (W} —w? e~ nen+Euwn)! sin (w, -—wu)t]} (34)
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Fig. 3 Comparison of stationary mean square secondary envelope
(solid) with narrow-band prediction (dashed): £y = 0.05; {, = 0.01, 0.05,
0.10

If Aw=0, equation (34) is interminate. The corresponding
result for this case is
o (1) =i (1= (L+ 2y 4 26Ff e 1o11] (35)
8§ wi
If T is large, the system will evéntually achieve stationarity.
At stationarity

E[a22]stat =p* () SO(“)A) (36)
If the secondary response is narrow-banded, then
<Y > =V <aE> gy (37)

The stationary variance of the displacement of a secondary
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Fig. 5 Comparison of mean secondary envelope (dashed) with simula-
tion (solid): {1 = {p = 0.05; 04T = 20 =

system driven by white noise may be shown to be (Crandall
and Mark, 1963)

wf +w,03(5H/5)+ A
(wf-w})+4

TSo

28, w23 9

E[yZ]stat =
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simulation (circles): {4 = [ = 0.05; 0T = 20«

where
A=40,0,[§1 5 (0f +0F) + w0 (FF + ()] (39

A comparison of equations (37) and (38) shows asymptotic
agreement as w,/w, — 0, as w,/w; — 1, and as w,/w,-~ oo, In

these cases, the assumption of narrow-bandedness is valid.-

For intermediate values of w,/w;, however, y(f) has a
bimodal behavior.

Figures 2 and 3 show a comparison of the actual stationary
response and that predicted by the narrow-bandedness
assumption. It may be seen that the narrow--bandedness
assumption generally leads to an underestimation of the mean
square envelope response.
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Fig. 9 Comparison of maximum mean secondary envelope with
simulation (circles): ¢y = {5 = 0.05; wqT = 20

Comparison With Simulation Results

In order to verify the analytical results a series of numerical
simulations were performed. The average value of g, (¢) for
250 samples is shown in Figs. 4 and 5 for various values of
system parameters. The theoretical mean envelope value is
shown for comparison. In general, the theory gives conser-
vative results.The difference is most pronounced at higher
levels of damping and away from resonance, when the
bimodality of y(¢) is greatest.

The intensity of response may be characterized by the max-
imum achieved by the mean value of the envelope. Figures 6
and 7 show a comparison of simulated and theoretical values
fororggf[az(t)], as a function of w,/w; for fixed duration.

Figures 8 and 9 show the same comparison as a function of
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duration for fixed w,/w,. In all cases, the theoretical values
correspond closely to those obtained by simulation.

Interaction Effects

So far, it has been assumed that the mass of the secondary
system is negligible in comparison with the mass of the
primary system, so that the response of the primary system is
unaffected by the presence of the secondary system. This
assumption simplifies the analysis considerably by reducing
the combined system to two chained single-degree-of-freedom
systems.

As the mass ratio increases, the noninteraction approxima-
tion becomes progressively worse, particularly if v, = w,, Ig-
noring interaction effects generally leads to conservative
estimates of system response, since the secondary system will
actually absorb energy from the primary system. However, in
some cases (especially near resonance), the assumption of
noninteraction leads to gross overestimates of system
response.

The equations of motion for the two-degree-of-freedom
primary/secondary system, including interaction effects, are:

X428 0 X+ wlx—eRbwp+ wiy) = —
' 40)
where e =m,/m, is the mass ratio. If {10, = {wy, it is possi-
ble to uncouple these equations as

X, 420 w0 Xt (0, Yx, = —Z

(41)
et 28 0y Yot (w3 VYo = —Z— X,
where
:\/ﬁe?,
V1 + 6w,
( 42)
5'2— g‘z
. f 1
@2 =NTLg 2
and
x(8)=x, (t)+ ye(t)
1 43)
y(t)= a+o) Y, (1)
with
2
=‘/2[(1+'6)< :’2 ) —1]+sgn (@2 —wd)
1
2 2 2 1/2
ilava () 1] ()} (@4
1 1

The actual (interacting) secondary envelope is therefore
1/(1+0) times the secondary envelope of the equivalent
noninteracting system with system parameters modified as in
equations (42). Thus, the results already obtained for the
noninteracting system can be carried over to the interacting
system simply by modifying the system parameters and scaling
the response.

Figure 10 shows 0 as a function of the mass ratio ¢, for
several values of w,/w,. It may be seen that 6 is positive when
w, < w;, and negative when w, > w . It may be shown that
the natural frequencies of the equivalent noninteracting
system in equation (42) are more widely spaced than those of
the original system. This effect is most prominent near
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resonance, where a slight ‘‘detuning” may have a large in-
fluence on the response. By comparison, the changes in damp-
ing and the scaling of y(¢) are much less significant.

Near resonance, for small #, interaction effects may be
neglected if 18] < < {,. At perfect resonance interaction may
be neglected if ¢ < < {?. Note that the restriction to classical
damping requires {; = {, when w;, = w,.

Away from resonance, the detuning is less significant, so e
< < {? remains a conservative criterion. If {; = {, = 0.05,
this requires that the secondary system’s mass be substantially
less than 1/400 of the primary system’s mass for interaction
effects to be ignored. If the two-degree-of-freedom system is
not classically damped, the above analysis does not apply. In
this case, there seems to be no simplification of the interacting
system, and the complete system must be considered. The sta-
tionary analysis (Igusa and Der Kiureghian, 1985) indicates
that the effect of interaction may be neglected if

e< <§'1§2 (45)

In any event, the assumption of noninteraction gives conser-
vative results when ¢ is small.

Summary and Conclusions

An approximate closed form solution has been presented
for the mean square envelope response of a secondary system
which is attached to a noninteracting primary system sub-
jected to nonstationary random excitation. The predictions of
the closed form solution agree well with results of numerical
simulation. The analytical solution is useful in the analysis of
composite systems subjected to transient random excitation,
such as earthquake loading.

Under certain restrictions, the effects of primary-secondary
system interaction have been shown to be expressible primarily
in terms of a frequency detuning of the two system
subelements. This simple result provides useful qualitative in-
sight into the nature of interaction effects.
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Simulations of Chaotic Systems'

A generalized form of Duffing’s Equation is examined in order to gain insight into
the characteristics and properties of chaotic motion. It is shown that variations in
the forcing function parameters as well as variations in the system’s initial condi-
tions can lead to a chaotic response. The incidence of chaos is presented in the form

of chaos maps and the structure of these maps is discussed. The influence of linear
spring force on these maps is also examined. Finally, it is shown that an improper
choice of time step can cause spurious results with regard to the existence of chaotic

motion.

Introduction

It has been realized for over two hundred years that
although most meaningful problems are nonlinear in nature,
the difficulty associated with solving such problems makes an
analytical study of them impractical. This lack of tractability
has serious implications due to the fact that nonlinear equa-
tions often do not behave as intuition might indicate. The
variety of behaviors that nonlinear systems can generate is
very rich and is only hinted at by a linear analysis.

One partial solution to this problem has been the develop-
ment of various approximate techniques (Bogoliubov and
Mitropolsky, 1961; Hagedorn, 1981; Minorsky, 1983; Nayfeh
and Mook, 1979). Such techniques usually assume that the
system nonlinearities are small and often are based upon an
assumed form of the actual solution. These techniques (har-
monic balance, multiple scales, etc.) have allowed in-
vestigators to uncover some essential details regarding the
response of nonlinear systems. However, these methods are
limited and only apply to a restricted range of parameter
values. None of the techniques even suggest the existence of
chaotic motions (Holmes, 1979; Ueda and Akamatsu, 1981;
. Moon and Shaw, 1983; Tongue, 1986), the subject of this
paper.

One of the primary reasons for examining chaotic systems is
that they are capable of producing regular, well behaved,
periodic outputs which are easily handled by approximate
techniques as well as outputs that appear random and which
are not well approximated by any analytical techniques. As
more and more researchers start investigations of chaos, it

'This work was supported by the National Science Foundation, Grant No.
MSM-8451186. .

Contributed by the Applied Mechanics Division for presentation at the
Winter Annual Meeting, Boston, MA, December 13-18, 1987, of the American
Society of Mechanical Engineers.
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10017, and will be accepted until two months after final publication of the paper
itself in the JOURNAL OF APPLIED MECHANICS, Manuscript received by ASME
Applied Mechanics Division, July 31, 1985; final revision, January 16, 1987.

Paper No. 87-WA/APM-4,
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becomes important to make certain that the problems
associated with numerical analyses of chaotic systems are
clearly understood. Unfortunately, most papers presume a
prior knowledge both of chaos from a theoretical framework
as well as from a computational one, making it difficult for
the beginning researcher to be aware of the different problems
that can occur. The following section addresses these
problems.

Computational Difficulties

There exists an essential difference between exact analytical
solutions of differential equations and numerical integrations
of the equations, namely that analytical solutions are con-
tinuous in time whereas numerical integrations involve finite
time steps. Because of this, numerical integrations are best
regarded as the solutions of difference equations rather than
differential equations. For small time steps the difference be-
tween the differential and difference equation is presumed to
vanish. With regular, well behaved, linear equations, the ques-
tion of an appropriate time step for the integration is easily
handled. One simply determines what is the fastest time con-
stant of interest (highest natural frequency for a modal
analysis) and chooses a time step small enough to accurately
track this. Thus the time step might be chosen so that thirty
time increments equals the period of the highest frequency.

When dealing with chaotic systems this question is not so
easily handled. Since the overall response contains a con-
tinuous spectra of frequencies, it is not clear how small a time
increment is needed. By choosing incorrectly, qualitative er-
rors can result, Figure 1 illustrates this problem. This figure
shows two Poincaré maps for the equation:

X+0.2x—x+x%=0.3co0s(1.2¢) )

The small and large dots were generated with time steps
equal to 0.2618 and 0.0654, respectively. The time discretiza-
tion equal to 0.2618 has clearly given rise to a strange attractor
and thus one might conclude that the system is behaving
chaotically. However, that is not what occurs when the time
scale is refined to 0.0654 (large dots). Now the Poincaré map
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Fig. 1 Poincare map, At=0.2618 and 0.0654

shows that the response is actually a period five motion. Addi-
tional reductions of the integration time step cause no further
changes in the output.

Two qualitatively different solutions have been generated
from a single differential equation. The only parameter that
distinguishes between the two cases is the length of the integra-
tion time step. The conclusion to be drawn is that chaotic
responses must be viewed with care. The strange attractor of
Fig. 1 is actually from spurious chaos. The true response of
the governing differential equation is periodic while the
response of the numerical approximation to the actual dif-
ferential equation, for a time step of 0.2618, is chaotic. But it
must be stressed that this means that the difference equation
that has replaced the differential equation supports chaos, not
the differential equation itself and presumably not the
physical system that gave rise to the differential equation.

It is well known that for a chaotic system, two solutions
starting arbitrarily close together will quickly diverge from
each other. This observation has been used as the basis for an
analytical measure of chaotic systems (Ueda, 1979; Wolf,
1985). The rate of divergence of two closely spaced points is
found to be exponential in time (separation =~ e’#). The
values L; are called Lyapunov exponents and they govern the
rate of separation with respect to specific directions in phase
space. Chaos is associated with a positive exponent, which im-
plies that two trajectories starting infinitesimally close to each
other will diverge exponentially. This is illustrated in Fig. 2 for
the equation

X+0.2x—x+x?=0.33cos(1.2) )

An exactly analogous situation will occur for any change in
the time discretization. If two trajectories, starting from iden-
tical initial conditions, are generated using slightly different
time discretizations (Af=0.0524 and 0.0518), the same kind of
time histories as seen in Fig. 2 will be generated. Note that on-
ly a one percent change in the time step is used.

At first this seems odd, since very small changes in time -

discretization usually lead to very small changes in the in-
tegrated output of well-behaved systems. However, the system
being considered is chaotic. Although the two initial condi-
tions were identical, the next calculated state for each trajec-
tory will be different due to the different duration of their

associated time step. Thus one should expect divergence to oc- .

cur, as it did for identical discretizations and differing initial
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conditions. It should be noted that this same behavior can be
observed even for solutions that are ultimately periodic. In
this case the time history can go through a transiently chaotic
stage before settling into periodicity (Yorke and Yorke, 1979).

Another interesting point to consider is how a system pro-
gresses into chaos. Work has been done that predicts a regular
route to chaos (Feigenbaum, 1978, 1980). As a critical
parameter in the generating equation changes, the response
changes from period one motion to period two, period four,
and so on. Theoretically, a limiting value of the critical
parameter exists for which the period of the motion goes to in-
finity, at which point the response becomes aperiodic. For
parameter values above this critical point, chaos can occur.
This kind of response is easily generated by simple recursive
systems such as the logistic equation.

A question can now be raised as to whether this simple route
to chaos can occur for a nonconservative dynamical system
such as the one examined in the previous part of this paper.
Simulations were therefore run to obtain the response of

¥+0.1%—x+x% = 3,2cos(w?) 3)

for values of frequency near the chaotic regime. The results
are shown in Figs. 3-5.

The figures illustrate the kind of steady state motion that is
obtained for the given time discretization at the given driving
frequencies. They record the periodicity of the output (period
one, period two, etc.) as a function of the driving frequency.
The results shown in Fig. 3 demonstrate that simple period
doubling can be observed in a dynamical system and that the
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time discretization again affects the response. As the driving
frequency is decreased from w=0.482, with a time step equal
to 0.0393/w, the steady state response progresses from a
period one motion, to period two, four, eight, sixteen, and
finally into chaos (represented by period 20 motion). Clearly,
frequency doubling is occurring. If the size of the time step is
increased to 0.0785/w the responses alter slightly (Fig. 4). The
period sixteen motion of Fig. 3 disappears and a period four-
teen motion appears in what was previously a chaotic regime.
Coarsening the time step yet further (Fig. 5), to 0.1571/w,
causes a large change in the response and greatly obscures the
period doubling that was previously so evident. Thus the
observation of period doubling can depend on a proper choice
of time increment. It is important to note that these results do
not imply that period doubling is the only route to chaos,
merely that it is one possible route.

Results

It is of interest to determine when chaos can occur for dif-
ferent parameter combinations. One reason to do this is to
decide if chaos is a rare occurrence or a common one. The
shape of the chaotic regions in parameter space may also be of
help in yielding an overall understanding of the system.

Figure 6 shows the regions of chaos and the regions of
periodic responses associated with different values of forcing
amplitude, G, and forcing frequency, w, for the equation

X¥+0.1%+ ex+ x* = Geos(wf) 03

for e= — 1. This kind of plot will be called a chaos map. The
region of parameter space was divided by a mesh of spacing
AG =0.04 and Aw=0.005. One hundred different values for G
and w were used, yielding ten thousand different combinations
of amplitude and frequency. For each of these combinations,
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equation (4) was integrated and the resultant output analyzed.
If the output was chaotic, then a dot was placed on the cor-
responding grid point. If the response was periodic, then the
grid intersection was left blank. Only the indicated ten thou-
sand points of parameter space were investigated; one cannot
say anything with absolute certainty about the infinitude of
combinations that occur at untested values.

Overall qualitative trends are quite apparent. First, it seems
that chaos is not a rare occurrence but occurs at a roughly
equal frequency to that of periodic responses. Second, even at
the present scale of mesh spacing it can be seen that periodic
responses occur within the mainly chaotic regions. Also, the
mainly chaotic regions are structured and all fall along curving
paths from the origin. Figures 7 and 8 show how this chaos
map varies for the linear spring coefficient, ¢, equal to 0 and
0.3, respectively.

It should be recognized that these plots are closely related to
the concept of basins of attraction (McDonald, 1985).
Numerous researchers have tried to determine what the steady
state position of a nonlinear system is as a function of some
system parameters. For example, the unforced case of equa-
tion (4) will come to rest in one of two equilibrium conditions,
either x=1. or x= — 1. One can then ask which regions of in-
itial condition space will send the system to x=1. and which
will send it to x = — 1. These regions are called basins of attrac-
tion. The boundary that separates the regions is the basin
boundary. Grebogi et al. (1984) defines an attractor as a com-
pact set for which almost all points in a neighborhood of the
set tend toward the set as time goes to infinity. Thus in the
present example we have the very simple situation in which
x= =1, acts as the attractor set. One can further generalize the
problem by introducing a forcing team. If the forcing is small,
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the system trajectories will oscillate about x=1. or x= —1.
Therefore, basins of attraction can again be constructed on
the basis of whether the final oscillations are about x=1. or
—1.

Figures 6-8 do not show in which region of the phase space
the trajectory ends but rather indicate the existence of
equalitatively different global responses, namely periodic and
chaotic. They give an immediate sense of how likely it is that
chaos will occur, as a function of the driving parameters.
Clearly chaos is more common for e= — 1. than for e=0.3.

There is a qualitative difference between the system’s static
equilibria for e greater than zero and e less than zero. In the
former case only one equilibrium exists while the latter case
supports three distinct equilibria. - The existence of three
distinct equilibria (two stable separated by one unstable) has
led some investigators (Moon, 1980) to postulate that chaos
can occur when the energy flow of the system is such that the
oscillation amplitude of the particle approaches the separation
distance between a stable and unstable equilibrium.

The author (Tongue, 1986) has shown that this is not a
necessary condition for chaos and Figs. 6-8 illustrate this quite
clearly. As e is increased to zero and then to positive values,
the regions of chaos alter in shape and draw away from the
G=0. boundary. This supports the notion that, although
multiple static equilibria encourage the existence of chaos,
they are not necessary. For large values of G, the mass particle
is forced to be far from the origin for a great deal of the time.
Thus, as far as the mass is concerned, the conditions of e
greater than or less than zero are essentially the same. The fine
details of equilibria at x= +Ve, 0 or three roots at x=0. are
lost. However for small G (i.e., oscillation amplitudes on the
order of the equilibrium spacing), the existence of separate
equilibria becomes important and the interaction of the poten-
tial walls associated with them dominates the response. In this
case multiple equilibria are quite important.

It should be noted that a system of the given type can sus-
tain multiple dynamic equilibria (Hagedorn, 1981). Thus, even
though the system does not have multiple static equilibria, it
does have the possibility of multiple dynamic equilibria whose
interaction may lead to the observed chaotic response. Finally,
in addition to requiring higher levels of forcing, the overall
frequency of occurrence of chaos is seen to be reduced as ¢ is
increased. This implies that it is less probable that chaos will
occur when multiple equilibria are absent for arbitrary choices
of forcing amplitude and frequency.

As can be seen from Fig. 6, the chaotic boundaries appear -

to be reasonably smooth. McDonald et al. (1985) have in-
vestigated several examples of systems having basin bound-
aries and have observed that these boundaries are often fractal
(Mandelbrot, 1977) in nature. The question then arises as to
whether these chaos maps exhibit fractal behavior. Figure 9 is

a chaos map for the restricted region of Fig. 6 in which.

0.52=<w=0.56 and 0.8<G=1.2. The scale of resolution has
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Fig. 9 Regions of chaos in parameter space: ¢= —1.0; AG =0.004;

Aw=0.0004

been increased by a factor of 125. While the two upper bound-
aries appear relatively smooth, the others seem quite ragged.
An increase in surface detail with increasing resolution is one
characteristic of fractal structures. Thus the lower boundaries
seem fractal-like whereas the upper ones are relatively smooth;
if they are fractal their dimension would appear to be close to
unity. A comprehensive answer to the question of the dimen-
sion of the boundaries will require the use of fractal interpola-
tion (Barnsley) or of covering sets (Mandelbrot, 1977) and will
be accomplished in a later paper.

As a final observation it should be noted that, although the
system under examination in this paper appears to be
reasonably simple, there are a total of eight parameters that
must be taken into account. The general equation is seen to be:

X+ 0% + ex+ ax? = Geos(wt + 0) )
I.C.: x(0) and x(0)

The eight parameters are o, ¢, o, G, w, 8, x(0), and ¥(0).

Of course, it is possible to nondimensionalize in order to
reduce the total parameter set. If one defines r=ve ¢ and
x=(e/a)”* y then equation (5) becomes

Y +ay’ +y+y?=Geos(ar+6)
where

() () _ ¢ Gul’? d & wT

=, 0=—F, G=—7—— and &= .

dr Ve 72 Ve

The difficulty with such a reduction is that it restricts the
analysis to € and « values of the same sign and won’t permit
e¢=0. Since both of these cases are of interest, the anlysis will
treat the form of equation (5).

It is possible to express this problem as a coupled second
order and first order equation:

X+ o0X+ex+ax® —Geos(n) =0 L.C.=x(0),%(0)
1=w LC.=7(0)
However, instead of expressing the system as two coupled
equations, an equivalent fourth order equation can be found?

in which the system’s dependent variable’s initial conditions
are clearly related to x(0), ¥(0), G and w. Since these are the -

2This alternate formulation, used in a different context, was pointed out to
the author by Dr. Gary Anderson of the Army Research Office during a con-
ference on nonlinear systems, held at the Georgia Institute of Technology.
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Fig. 10 Regions of chaos in initial condition space: Ax =0.08, Ax = 0.08

parameters of main interest in this paper, this final formula-
tion shall be presented. To start, express equation (5) as:

Xt+tox+ex+axt=q; 1.C.:x(0),%(0) 6)
1.C.:q(0),4(0) @)

Clearly, a proper choice of g(0) and ¢(0) will yield a solution
for #(t) that will match Gcos(wt+0) for any G, 0
combination.

Differentiating equation (6) twice yields an expression for §
which when substituted into equation (7) along with the ex-
pression for ¢ will yield the following fourth order
homogeneous equation:

§+w*q=0;

XY + 0¥+ ¥ (e+ w?) + 60X x 4 3aXx? + 0wl X + ew?x + wlax® =0
()
1.C.: x(0),x(0),X(0),%(0)
The appropriate initial conditions for X and x are seen to be:
#(0) = g(0) — cx® (0) — ex(0) — 0x(0) &)
X(0) = g(0) — 3ax?(0)x(0) — €x(0) — %(0) (10)
The choice of a homogeneous or nonhomogeneous form is
thus seen to be arbitrary and can be based on convenience in
regard to physical interpretation, It is thus interesting to note
that the forcing parameters (G and w) can be considered to be
serving the same purpose as the initial conditions (x(0) and
x(0)).

It has been shown that variations in G and o can give rise to
a chaotic response. Since variations in G and w will cause
variations in %(0) and %(0) for the fourth order formulation of
equation (5) it should not be surprising that variations in x(0)
and X(0) will also produce chaos (McDonald, 1985). This is il-

lustrated in Fig. 10, which examines

X+0.1%4+ x4+ 3.8x3 = 12cos(1.25¢)

for various initial conditions x(0) and x(0).
Figure 10 shows an initial condition chaos map for a fairly
wide range of initial conditions. As can be seen, there are
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again predominantly chaotic regions and predominantly
periodic regions. This map does not have the same ordered
form as that exhibited by the G, chaos maps.

It is clear that only periodic responses result for a wide
range of initial conditions (—1.5=x(0)<1. and
—3.=<x(0)=1.). However, beyond this region chaos begins to
predominate. This supports the supposition that the existence
of chaos depends not only on the governing equation’s
parameters but also on the system’s initial conditions. Thus
one cannot simply look at a G,w chaos map when trying to
determine the probability of chaos but must also take the
system initial conditions into account. Of course this type of
behavior is in keeping with classical nonlinear analysis, for
which initial conditions play a key role in determining a
system’s steady state response.

Conclusions

1 Classical techniques are not adequate to predict or
describe chaotic motion.

2 Chaos does not always occur but depends on an ap-
propriate combination of system parameters.

3 Numerical integration can give spurious results with
regard to the existence of chaos due to insufficiently small
time steps.

4 Chaos maps occur for both positive and negative linear
stiffness coefficients. Chaotic behavior is more probable for
the case of negative linear stiffness.

References

Barnsley, M. F., “Fractal Functions and Interpolation,”’ Journal of Con-
structive Approximation, to appear.

Bogoliubov, N. N., and Mitropolsky, Y. A., 1961, Asymptotic Methods in
the Theory of Nonlinear Oscillations, Hindustan Publishing Co.

Feigenbaum, M. J., 1980, ‘‘Universal Behavior in Nonlinear Systems,”’ Los
Alamos Science, Summer, pp, 2-27.

Feigenbaum, M. J., 1978, ‘‘Quantitative Universality for a Class of Nonlinear
Transformations,”” Journal of Statistical Physics, Vol. 19, pp. 25-52.

Grebogi, C., et al., 1984, “‘Strange Attractors That Are Not Chaotic,”
Physica, Vol. 13D, pp. 261-268.

Hagedorn, P., 1981, Nonlinear Oscillations, Clarendon Press.

Holmes, P. J., 1979, ““A Nonlinear Oscillator with a Strange Attractor,””
Philosophical Transactions of the Royal Society, Vol. 292, No. A 394, pp.
419-448.

Kailath, T., 1980, Linear Systems, Prentice-Hall, Inc.

Mandelbrot, B. B., 1977, Fractals: Form, Change and Dimension, W. H.
Freeman, San Francisco, CA.

McDonald, S., et al., 1985, ‘“Fractal Basin Boundaries,”” Physica, Vol. 17D,
pp. 125-153.

Minorsky, N., 1983, Nonlinear Oscillations, Krieger Publishing Co.

Moon, F. C., and Shaw, S., 1983, ‘‘Chaotic Vibrations of a Beam with Non-
Linear Boundary Conditions,”’ Int. J. of Non-Linear Mechanics, Vol. 18, No.
6, pp. 465-477.

Nayfeh, A. H., and Mook, D. T., Nonlinear Oscillations, Wiley Interscience,
New York.

Tongue, B. H., 1986, ‘‘Existence of Chaos in a One-Degree-of-Freedom
System,”’ Journal of Sound and Vibration, Vol. 110, No. 1., pp. 69-78.

Ueda, Y., 1979, ‘“Randomly Transitional Phenomena in the System Gov-
erned by Duffing’s Equation,’” Journal of Statistical Physics, Vol. 2, No. 2, pp.
181-197.

Ueda, Y., and Akamatsu, N., 1981, ‘‘Chaotically Transitional Phenomena in
the Forced Negative Resistance Oscillator,”” IEEE Transactions on Circuits and
Systems, Vol. CAS-28, No. 23, pp. 217-223.

Wolf, A., “Quantifying Chaos with Lyapunov Exponents,”’ to appear in
Nonlinear Science: Theory and Applications, Manchester University Press.

Wolf, A., et al., 1985, “Determining Lyapunov Exponents from a Time
Series,”” Physica, Vol. 16D, pp. 285-317.

Yorke, J. A, and Yorke, E. D., 1979, “Metastable Chaos: The Transition to
Sustained Chaotic Behavior in the Lorenz Model,” Journal of Statistical
Physics, Vol. 21, No. 3, pp. 263-277.

SEPTEMBER 1987, Vol. 54699

Downloaded 03 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



A New Method for Finding
Symmetric Form of Asymmetric

Mehdi Ahmadian

Assistant Professor,
Assoc. Mem. ASME

Shui-Hang Chou

Graduate Research Assistant.

Finite-Dimensional Dynamic
Systems

" A subclass of general lumped-parameter dynamic systems which can be transformed

into an equivalent symmetric form is considered here. For the purpose of the present

Department of Mechanical Engineering,
Clemson University,
Clemson, South Carolina 29634-0921

study, these systems are divided into two categories: those without velocity depen-
dent forces (pseudo-conservative systems) and those with velocity dependent forces
(pseudo-symmetric systems). For each category, the results on symmetrizability of

matrices are used to develop an effective, systematic technique for computing the
coordinate system in which the system is symmetric. The primary advantages of the
technique presented in this study are twofold. First, it is computationally efficient
and stable. Second, it can effectively handle systems with many degrees-of-freedom,
unlike the trial and error approach suggested in previous studies.

Introduction

Lumped-parameter dynamic systems with symmetric matrix
coefficients have been studied for many decades. The develop-
ment of results which analyze the overall dynamic behavior of
such systems via studying the properties of the coefficient
matrices are abundant and well documented, for example
those by Lord Rayleigh (1945), Foss (1958), Caughey (1960),
Caughey and O’Kelly (1965), Moran (1970), Walker and
Schmitendorf (1973), Meirovitch (1980), and Inman and
Andry (1980). However, systems that are under the influence
of general types of forces, which possess asymmetric matrix
coefficients, are often encountered, such as those described by
the vector differential equation

Mi+ (C+G)x+ (K+E)x=0. 05

Here, M is a nonsingular matrix indicating the inertial forces,
C and K are symmetric matrices representing the dissipative
and conservative forces, and G and E are skew-symmetric
matrices denoting the gyroscopic and follower forces. Usually,
equation (1) is rewritten in a simpler form as

X+Ax+Bx=0, Q)

where A = M~! (C+G)and B = M~! (K + E) are real asym-
metric matrices. Systems of this nature arise in many areas of
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engineering and have received increased attention in recent
years with the advent of modern control techniques for
dynamic systems.

One way to analyze various dynamic aspects of a system
described by equation (2) is to transform it into a state space
form and solve for the eigenvalues of the state matrix.
Although many eigensolution techniques are available to han-
dle this task effectively, it is usually desirable to analyze the
dynamic behavior of asymmetric systems through studying the
properties of the coefficient matrices, just as symmetric
systems. The advantages of such an approach are twofold.
First, it involves computations in n-dimensional space as op-
posed to 2n-dimensional space needed for the state-space ap-
proach. Second, a physical sense for the problem is preserved,
since the results are direct in terms of the coefficient matrices.
Consequently, several studies have focused on finding such
results; to name a few one can cite those by Mingori (1970),
and Ahmadian and Inman (1984, 1986). However, one point is
evident in all of these studies: the asymmetric nature of the
coefficient matrices in equation (2) does not allow for results
that are as sharp and clear as those existing for symmetric
systems.

To eliminate the problem of dealing with asymmetric
matrices, different ideas have been proposed. One idea sug-
gests ignoring the asymmetries and simply approximating the
system as a symmetric system, so that the results developed for
symmetric systems can be applied. Although this approach is
simple in nature, it suffers from a major defect in the sense
that the approximation could lead to intolerable errors, which
would make the analysis useless. Another idea suggests reduc-
ing the system to a symmetric form via a similarity transfor-
mation. Since this approach is exact, it is more attractive and
has been the focus of several studies such as those by Huseyin
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and Leipholz (1973), Huseyin (1978), Inman (1983), and
Ahmadian and Inman (1985).

Huseyin (1978) presents conditions under which a system
without velocity-dependent forces (i.e., A =0 in equation (2))
can be transformed into a symmetric form; he classifies this
class of systems as pseudo-conservative systems. In another
study (Inman, 1983), Inman considers systems with velocity-
dependent forces, and he takes advantage of the results
presented by Taussky (1968) and Zassenhaus (1969) to show
that if the coefficient matrices 4 and B are both sym-
metrizable and they have at least one symmetric factor in com-
mon, then the system can be transferred to a symmetric form
via a similarity transformation.

The advantages of such a transformation are obvious. Now,
the well-known results of symmetric systems can be used to
analyze various dynamic aspects of an asymmetric system
based on the properties of its coefficient matrices. However,
the major difficulty which still remains is the computation of
the coordinate system in which the system is symmetric. The
problem is in determining the symmetric factors of the asym-
metric coefficient matrices. Huseyin (1978) recognizes this
problem and illustrates a method for systems with 2 degrees-
of-freedom. For systems of higher order, he proposes a trial
and error approach based on a special form of the symmetric
factors of the coefficient matrix B in equation (2). Inman
(1983) also realizes this problem, and he also suggests a trial
and error approach for determining the symmetric form of the
system (2).

However, a trial and error strategy is hardly sufficient for
most systems, since it is inefficient and can result in serious
computational difficulties even for low-order systems. In ad-
dition, there is no assurance that a trial and error approach
can yield a solution. Consequently, a more efficient,
systematic technique is needed.

The study presented here discusses a successful computa-
tional technique for determining a transformation which
yields the symmetric form of an asymmetric system. Two ex-
amples are used to illustrate the effectiveness of the results. It
is shown that the developed method is capable of handling
systems with many degrees-of-freedom, unlike the trial and er-
ror approach suggested previously.

Background

It has been shown in the past (Tausskey, 1968) that a real
asymmetric matrix is symmetrizable if and only if it satisfies
any of the following conditions:

1. It has real eigenvalues and a complete set of real

eigenvectors;

2. it is similar to a symmetric matrix;

3. it is similar to its transpose via a symmetric, positive

definite transformation (i.e., P = Q~!PTQ); and

4. it becomes symmetric when multiplied by a suitable

positive definite matrix.

A symmetrizable matrix can always be expressed as the
product of two symmetric matrices, one of which is positive
definite, i.e.,

P=P,P,; P,=P]>0, P,=P],
where P! indicates the transpose of the matrix P, and the
notation > 0 denotes positive definiteness; so P, is symmetric
and positive definite and P, is symmetric.

Using the above concept, it has been demonstrated (Inman,
1983) that for dynamic systems of the form

X+ Ax+Bx=0,
the coefficient matrices A and B are simultaneously sym-

metrizable if and only if they are separately symmetrizable,
i.e.,

Journal of Applied Mechanics

A=58,85,; 8,=87>0, S, =57,
B=T,T,; T,=T7>0, T,=1T7,

and have at least one factorization in common, i.e., S|, = T}.
Using this, Inman shows that the aforementioned dynamic
systems can be transformed into a symmetric form as follows:

Gg+A g+Bqg=0,

where
A=AT=8"S,St
B=BT=8{T,S}
and
qg=Sr"x.
Here, S{* indicates the square root of the positive definite

matrix S,, defined according to
St = wAfg/ll wT,

where w is the modal matrix of S; and A s, is a diagonal matrix
of the eigenvalues of S;.

. Results

Before discussing the derivation of the results let us in-
troduce the following two definitions:

Definition 1. The coordinate system in which the equation
of motion is symmetric is referred to as symmetric
coordinates.

Definition 2. An asymmetric system which possesses sym-
metric coordinates is called a pseudo-symmetric system.

As mentioned earlier, for the purpose of this study, asym-
metric systems are divided into two categories: those without
velocity-dependent forces and those with velocity-dependent
forces. Now, the results for each category are presented.

Pseudo-Conservative Systems

Dynamic systems with nonconservative, follower forces, as
described by the equation

Mi+(K+E)x=0 3)

IMI#0

K=KT

E=—FET
or

X+Bx=0 @)
where

B=M"'(K+E) (5)

are considered first, For instance Pfliiger’s column (Pefliiger,
1964) which consists of a simply-supported elastic rod sub-
jected to a uniformly-distributed tangential force along its
length constituties a typical example of this class of systems. If
the matrix B is symmetrizable, i.e.,

B=T\Ty; T, =TI >0, T,=TJ (6)

then the asymmetric system shown in equation (4) can be
transformed into a symmetric form via a similarity transfor-
mation; such systems are commonly referred to as pseudo-
conservative systems. The significance of pseudo-conservative
systems is that they can be reduced to a form where they
resemble conservative systems, even though they are asym-
metric in their physical coordinates.

To provide a systematic scheme for computing the matrices
T, and T, in equations (6), one can write them as

T,=% &7 (7a)
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=y 'Ag (7b)
and
T2=‘1>"Te o-! (7o)

where « is an arbitrary positive definite diagonal matrix (i.e.,
v; >0,i=1,2,...,n), ®is the modal matrix of B, and Ap
is a diagonal matrix which contains the eigenvalues of B, i.e.,

Ap=%"1Bd. ()

Since T, is positive definite, according to Cholesky decom-
position it can be expressed as

T,=LLT, )
where L is a lower triangular matrix whose entries are

i=1

"
gii:[(Tl)ii_ E 1’,2,] yi=L2,.. ., n (10a)
j=1
i=1
b= [(Tl)ik_ E eijgkj] /s
j=1
k=i+1,i+2,...,n (10b)

Since matrix L is now known it can serve as the similarity
transformation which reduces B to a symmetric form. To il-
lustrate this more clearly, rewrite equation (4) as

¥+ LLT Tyx=0, (11)
let
x=Lg, (12)
and premultiply (11) by L ~1; this yields
G+Bq=0, (13)
where
B=BT=L"T,L (14)

For computational purposes, the above process can be out-
lined as follows:

1. Compute the modal matrix and eigenvalues of the
matrix B (i.e., form ® and Ap);

2. choose the arbitrary positive definite matrix y (the
simplest choice is the identity matrix) and calculate the
matrix e according to equation (7b);

3. compute the matrices T, and 7, according to equations
(7a) and (7c); and

4. determine the matrix L according to equations (10), and
find the symmetric coordinates ¢ and the symmetric
matrix B as presented in equations (12) and (14),
respectively.

Example 1. As an example, consider a system with 7
degrees-of-freedom where
M = diag. [3.00 2.00 3.00 2.00 2.00 3.00 1.001
24,91 -4.54 -y.u7 -4.23 ~1.94 ~2.85 -1,20
~4.54 20,43 -1.53 -1.43 -1.36 -2, 14 -3.34
-BN7 =153 30.55 -5.09 -1,37 -2.91 -2, 14
K= -4.23 -1.43 -5.09 31.51 -3.47 -5.00 -4,23
-1.94 -1.36 -4.37 -3.47 26.33 -2.09 -1.89
-2.85 -2:1u -2.91 -5.00 -2,09 32.67 -1.98
|-t.2u ~3.34 -2.14 -4,23 -1.89 -1.98 21.10)
[ 0.00 -0.51 0.07 -0.89 -0.32 0.52 -0.1F
0.51 0.00 -0.12 -0.20 0.13 0.55 -1.14
-0.07 0.12 0.00 -1.28 -0.35 0.53 -1.24
E= 0.89 0.20 1.28 0.00 0.61 1.87 ~1.34
0.32 =0.13 0.35 ~0.61 0.00 0.72 ~0.57]
-0.52 ~0.55 -0.53 -1.87 ~0.72 0.00 -0.92
| 0.16 1,14 1.24 1.34 0.57 0.92 0.00)
which gives
8.30 -1.68 -1.47 -1.7 -0.75 ~0.77 -~0. 4]
-2.01 10.21 -0.82 -0.82 -0.61 ~0.80 ~2.24
=1.51 -0.47 10.18 ~2,12 =1.57 -0.79 ~1.13
B= ~1.67 -0.61 -1.91 15.75 ~1.43 ~1.57 -2.78
-0.81 -0.74 -2.01 -2.04 13.16 ~0.69 -1.23
-1.12 -0.89 -1 ~2.29 ~0.94 10.89 -0.97
-1.08 -2.23 -0.90 ~2.89 -1.31 -1.06 21.09

702/ Vol. 54, SEPTEMBER 1987

Solving for eigenvalues and eigenvectors of the matrix B and
choosing the arbitrary matrix v as

y=diag. [5.81 .48 .043 12 .47 4.68 1.20}
yields

1.2192  ~0.1676  ~-0.1387  =0.1449 -0.1524  -0.1844 0.0000

~0.1676 1.5240 ~0.1297 0.0000 0.0000 0.0000  =0.152Y

~0.1387  -0.1297 1.3716  -0.1676  -=0.1419 0.0000  -0.1524

7"1 = | -0.1449 0.0000 ~0.1676 1,674 -0.152%  -0.1387  -0.3353
-0,1524 0.0000 -0.1419  -0.1524 1.9812  -0.1524 0.0000

-0.1844 0.0000 0.0000 -0.1387 -0.1524 1.8288 06.0000

| 0.0000 -0.1524 -0.152%  -0.3353 0.0000 0.0000 2,2869

6.5616  =0.7218  -0.6561 -0.6240 0.0000  -0.0000  =0.6562]

-0.7218 6.5616 0.0000 -0.6561 -0.5315 -0.6562 =-0.624q|

~0.6561 0.0000 7.2177  -0.5971  -0.6562  -0.7940  0.0000

]} = |~-0.6240 -0.6561 -0.5971 9.1862  -0.4659  -0.6562 0.0000
0.0000 -0.5315 -0.6562 -0.4659 6.5616 0.0000  -0.7218

0.0000  -0.6562 -0.7940 -0.6562 0.0000 5.9054  -0.6562

1-0.6562  -0.6210 0.0000 0.0000 -0.7218  -0.6562 9.1862

1102 0.00000  0.00000  6.00000  0.00000  6.00000  0.00007

-0.15179  1.2251 0.00000  0.00000  0.00000  0.00000  0,00000

-0.12561 =0.12143  1.1580 0.00000  0.00000  0.00000  0.00000

L= -0.13123  -.016259 -0.16067  1.2779 0.00000  0,00000  ©,00000)
-0.13802  -.017100 -0.13930 -0.15116  1.3855 0.00000  0.0000
L—o.167oo ~.020691 -.02028Y4 -0.12850 =-C.14295 1.3278  0.00000

0.00000 ~-0.12439  O.14k64 -0.28215 -.046B60 -.036497 1.4719

according to the process outlined earlier. Now, the original
system can be transformed into a symmetric form, as shown in
equation (13). For this case the symmetric matrix B is

9.11 -1.60 -1.12 -1.66 ~-.82 -.91 -.62
-1.60 10.36 -7 -.38 -.62 -.91 -2.77
= -1.12 -7 10.65 -1.99 ~1.89 =1,07 -1,79
B= -1.66 -.38 -1.99 15.27 ~1,60 ~1.79 -3.53
-.82 -.62 -1.89 ~1.60 12.82 -1,03 ~1,97]
-.91 =91 -1.07 S-1.79 ~1.03 10.49 ~1.78
-.62 -2.77 -1.79 ~3.53 -1.97 ~1,78 19.90)

Pseudo-Symmetric Systems

In the presence of dissipative and gyroscopic forces the
equation of motion described in equation (3) becomes

Mi+(C+Gyx+ (K+E)x=0, (15)
where
c=CT7,
G=-GT,

and the other matrices are as defined earlier. Equation (15)
can be rewritten as

X+ Ax+Bx=0, (16)
where
A=M"1(C+G) (17a)
and
B=M"'Y(K+E) 176)

are general asymmetric matrices.

For this class of systems the following theorem is used to
demonstrate a systematic method for calculating the sym-
metric coordinates and the symmetric form of the system (16).

Theorem 1!. An asymmetric system possesses symmetric
coordinates if and ony if the coefficient matrices 4 and B are
simultaneously symmetrizable.

The above theorem implies that for a pseudo-symmetric
system matrices A and B in equation (16) can be expressed as

A=5,5,; 8, =5T>0, $,=5] (18a)
B=T\Ty; T,=T7>0, T,=T} (18b)
S,=T, (18¢c)

Rewriting the above symmetric factors, in a manner similar to
that presented earlier for pseudo-conservative systems, yields

Yproof of all theorems are included in Appendix A.
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=3y @7 (19a)
=y A (19b)
Ty=%-Te ! (19¢)
and
S,=0a6" (20a)
B=a"'A, (20b)
S,=6-T8 61, (20c)

where v, ®, and Ay are as defined in equations (7a-c), « is an
arbitrary diagonal matrix with positive entries (.i.e., o; > 0, {
=1,2,...,n), 0 is the modal matrix of A, and A, is a
diagonal matrix which contains the eigenvalues of the matrix
A, ie.,

Ay=0"146
Now, the following theorem is in order.

@n

Theorem 2. An asymmetric system described by equation
(16) is pseudo-symmetric (i.e., possesses symmetric coor-
dinates) if and only if the arbitrary matrices o and v are
related according to

a=0"1®y &76-T 22)
or
a=¥y V7, (23)
where
¥=0"! 24)
Expanding the matrix « defined in equation (23) gives
n
oy = E Yie Vi ¥ jx for i#j (25a)
k=1
and
o= E Vi Ve otherwise (25b)
k=1
i=1,2,...,n
j=12,...,n

Since the matrix o is chosen to be diagonal and positive
definite, the right-hand-side of equations (25a¢) and (25b) must
be zero and positive, respectively . However, the term ex-
pressed on the right-hand-side of equation (25b) is always
positive, since -y, is selected to be positive; therefore, the only
condition which needs to be satisfied is

i=1,2,...,n
E Yebabu=0 Jj=12, (26)
i#j
The above equation can be written in a matrix form as
Pz=0 @27

where the matrix Pis a n2 —n/2 X n matrix and the unknown

vector z is a n X 1 vector given according to
zi=v; i=1,2,...,n (28)

The elements of the matrix ¥ constitutive the entries of the
matrix P; they are found according to

Vb =Py ;3 k=1,2,...,n 29)
i=2,...,nJj=12,...,i-1,
e=1 ifi=2
P=j+ (i-=1)(I—-2)/2 ifi>2

For a nontrivial solution of the simultaneous equations shown

Journal of Applied Mechanics

in equation (27), the number of independent equations must
be less than the number of unknowns, which indicates the
rank of P must be less than ». This means the system shown in
equation (16) is not psendo-symmetric if rank (P) = n. Now,
equations (22) through (29) can be used to develop a
systematic computational technique for calculating the
matrices S;, S,, and T5,. This technique is outlined below:

Step 1. Compute the eigenvalues and eigenvectors of A and
B, and form the matrices 6, A4, ®, and Ag.

Step 2. Given that all eigenvalues of A and B are real (i.e., 4
and B are at least separately symmetrizable), form the n2 —n/2
X 1 matrix P according to equation (29).

Step 3. Transfer the matrix P to its reduced form, as defined
by O’Neil (1983) and explained in Appendix B. Call the re-
duced matrix Py.

Step 4. Using the matrix Py, check for m, the rank of P; if
m = n, then the system is not pseudo-symmetric; otherwise
(i.e., m < n), the system can be pseudo-symmetric and a sym-
metric coordinate system may be found.

Step 5. Using Pg, choose the vector z such that it has all
positive entries and satisfies the equation

Prz=0,

where, now, Py is a m X n matrix and z is a n x 1 vector. This is
often a very simple task, due to the special form of the matrix
Py.

Step 6. Upon determining the vector z the symmetric factors
can be calculated according to equations (19), (20).

Once the matrices S,, S,, and T, are calculated, the system
shown in equation (16) can be expressed as

X+88x+8T,x=0 30)
where
S, =LLT, 3hH
according to Cholesky decomposition (Meirovitch, 1980).
Letting
x=Lg 32)

and premultiplying equation (30) by L~! yields the symmetric
form of the system

G+LTS,Lg+LTT,Lq=0 (33)

where
LTS, L= (LTS, )T (34a)
LTT,L=(LTT,L)7, (34b)

and q is the symmetric coordinates.

Example 2. Consider a system described by equation (15),
where

M= diag. [1.00 1.00 1.00 1.00 1.00]
34.00 -1.50 =11.00 =13.50 -7.07
~1.50 34,00 -6.00 -19.50 -4,50
C= -11.,00 -6.00 48.00 ~13.50 =15.00
~13.50 =19.50 =13.50 89.00 ~17.50
~7.00 -4.50  -15.00 -~17.50  102.00)
0.00 0.56 0.00 -0.50 -1.00)
-0.50 0.00 -2.00 0.50 2.50
G= 0.00 2.00 0.00 0.50 2.00
0.50 -0.50 =0.50 0.00 2.50
1.00 ~2.50 -2.00 -2.50 0.00]
42,00 -1.50 =14.00 -14.50  ~10.00]
~1.50 38.00 -14.00 ~14.00 ~4.00
K= -14.00 -14.00 75.00 -15.50  =27.50
-14.50 -14.00 ~15.50 83.00  -19.50
~10.00 -4,00 -27.50 =19.50  153.00
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0.00 0.50 =1.00 0.50 ~2.00

-0.50 0.00 -3.00 -1.00 3.00;

E= 1.00 3.00 0.00 1.50 4,50
~0.50 1.00 -1.50 0.00 0.50]

2.00 -3.00 ~4.50 -0.50 0.00

After reducing the system to the form shown in equation (16),
steps 1-6, as described earlier, are followed to find the sym-
metric factors of the system. The result is as follows:

0.54 0.00  -0.13  =0.13  -0.13

0.00 0.54  -0.13  =~0.13  -=0.00|
S;=T,=|-0.13 -0.13 0.67 -0.13 -0.13
-0.13  =0.13  -0.13 0.95 ~ -0.13

-0.13  -0.00  -0.13  =0.13 1.3

59.08 -7.39  -7.38  -7.38 o.oq

~7.39 59.08 0.00 -14.77  -7.38

S, = -7.38 0.00  66.47  -7.39  ~7.38
-7.38  -14.77  ~7.39  88.62  -T7.38

0.00 -7.38  -7.38  -7.38 73.85)

and

73.85 -7.39 -7.38 -7.38 o.oBl

~7.39 66.49 -7.38  -7.38  -7.38

T,= ~7.38  -7.38  103.39  -7.38 -14.77

~7:38 -7.38 -7.38 = 88.62 ~7.38
0.00 ~7.38  -14.77 -7.38 110.7§

Next, calculating the transformation matrix L and the
metric form of the system yields

sym-

0.7Y4 0.00 0.00 0.00 0.00)
0.00 0.74 0.00 0.00 0.00]
L= -0.18 -0.18 0.78 0.00 0. 00|
-0.18  -0.18  =0.26 0:90 0.00]
~0.18 0.00 ~0.22  -0.25 1.19
42,25 5.25 ~4.36  -14.42 -11.9§
N 5.25 40.75 -1.18  =22.59 ~2.99
B=LTS,L= |-4.36 -1.18  sk.64 -19.57 =-21.85
14,42 ~22,59 -19.57 79.96  -27.67
11.96 ~2.99  -21.85 -27.67 89.40
52.25 6.25  -7.42  -13.06 -17.9%
- 6.25 46.00 -12.43  ~18.03  -1.50
C=LTT,L= | -1.42 -12.143 81.38 -16.12 -37.00
~13.06 -18.03 -16.12  82.28 -37.8Y
~17.94%  ~1.50 -37.00 -37.84 134,10

Summary

Lumped-parameter dynamic systems under the influence of
general types of forces such as dissipative, gyroscopic, conser-
vative, and follower forces were considered. The main em-
phasis of this study was placed on developing an effective
method for reducing asymmetric dynamic equations to a sym-
metric form via a similarity transformation. To this end,
systems that are transferable to a symmetric form were divided
into two groups: those without velocity dependent forces,
referred to as pseudo-conservative systems (Huseyin 1978),
and those with velocity dependent forces, named pseudo-
symmetric systems.

For pseudo-conservative systems, the symmetrizability con-
ditions for an asymmetric matrix as stated by Taussky were
used to find a systematic approach for calculating the sym-
metric coordinates (i.e., the coordinate system in which the
system is symmetric).

For pseudo-symmetric systems, a similar approach was
followed to allow for simultaneous symmetrizabilty of the
coefficient matrices, therefore allowing the system to be
reduced to a symmetric form. The scheme presented here com-
putes the symmetric factors of the coefficient matrices and
uses Cholesky decomposition to find the symmetric
coordinates.

The primary advantages of the technique developed here are '

704/ Vol. 54, SEPTEMBER 1987

twofold. First, it is computationally efficient and stable. Se-
cond, it can effectively handle systems with many degrees-of-
freedom, unlike the trial and error approach suggested in
previous studies. Two examples involving systems with 5 and 7
degrees-of-freedom were used to illustrate the utility of the
technique.
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APPENDIX A

Theorem 1. The proof of this theorem is as follows. If the
coefficient matrices are simultaneously symmetrizable, then
according to Inman (1983) equation (16) can be rewritten as

X+8,8,x+8,To,x=0 Aan
S, =8T>0
8y = SzT
T,= T2T
or
F+LLTS,%+LLTTyx=0, (42)
- based on Cholesky decomposition. Letting x = Lg and
premultiplying equation (42) by L~! yields
G+ (LTS, LYG+ (LTT,L)qg=0 (43)

which is symmetric. Therefore, the system shown in equation
(16) possesses symmetric coordinates. Conversely, if the

system (16) has symmetric coordinates z, then it can be written
as
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Z+L7'ALz+L{'BL,z=0,

yvhere the matrices (L7 !AL,) and (L7 !BL,) are symmetric,
ie.,

Li'AL =L 'AL)T (A4)
and
(Li'BL)=(Li'BL,)". (A3)
Equation (A4) can be rewritten as
ATLTTL = (ATLTTLT )T (A6)

which implies that the matrix ATL;TL! is symmetric. Fur-
thermore, equation (44) implies that

A= (L LTY(ATLTTLTY) (A7)

This indicates that the matrix A is symmetrizable, since it can
be written as the product of two symmetric matrices one of
which is positive definite. Similarly it is possible to use (45) to
show that B is symmetrizable and can be written as

B=(L,LT)(BTL;TLY). (48)

Therefore, according to (47) and (A48), the matrices 4 and B
are simultaneously symmetrizable.

* Theorem 2. The proof of this theorem is based on Theorem
1. If the system is pseudo-symmetric, then

A=58,8,,8,=87>0, S,=57 (A9)
B=TT,, T,=T{ >0, T,=T} (A10)

and
S, =T,. (A1D)

Journal of Applied Mechanics

based on equations (19g) and (20a), equation (411) can be
rewritten as

0o 0T=dy 7T (Al12)

or

a=0"1¢ v 79T (A13)
Conversely, if the arbitrary matrices « and v are related to
each other according to (413), then one gets

0o 0T=dy o7 (Al4)

or
S, =T, (415)

using equations (194) and (20q). Therefore, the system is
pseudo-symmetric if and only if the arbitrary matrices o and v
are related according to the equation (A13).

APPENDIX B

A reduced matrix is a matrix which satisfies the following
conditions:
1. The first nonzero entry in each row is 1; this is called
the leading entry.
II. If row r has its leading entry in column c, then all
other entries of column ¢ are zero.

III. Each row having all zero entries, if there is such a row,
lies below any row having a nonzero entry.

IV. If the first nonzero entry in row r lies in column ¢, and
the first nonzero entry of row r; is in column c,, and if
ry < ry,thenc; < ¢;.

A complete discussion of reduced matrices can be found in

Section 10.5 of O’Neil (1983) where it is proved that every
matrix has exactly one reduced matrix row-equivalent to it.
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ERRATA
Errata on ‘‘Asymmetric Wave Propagation in an Elastic Half-Space by a Method of Potentials,”” by R. Y. S.
Pak and published in the March 1987 issue of the ASME JOURNAL OF APPLIED MECHANICS, Vol. 54,

pp. 121-126.
On page 124, equation (30) should read:

X, =Pp=1¢) —iQn-1(§);
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Entrainment of Self-Sustained
Flow Oscillations: Phaselocking or

T. Staubli

Hydraulic Research and Development,
Sulzer Escher Wyss Ltd.,

Zlirich, Switzerland

Mem. ASME

Asynchronous Quenching?

Asynchronous quenching and phaselocking are two different mechanisms leading to
the onset of synchronization of flow instabilities with externally excited oscillations.
Experimental evidence for asynchronous quenching as well as for phaselocking is

given from response measurements of representative pressures, velocities, or of
Jforces for the following types of flow - forcing interactions: an oscillating circular
cylinder in crossflow; interaction of an unstable, planar jet with an oscillating
leading edge; a forced mixing layer between parallel streams, and a thermally forced

cauity shear-layer.

Introduction

If self-sustained flow oscillations are subjected to external
forcing, they usually synchronize with the excitation over a
certain range of excitation frequencies. Such synchronization
effects, commonly known as ‘‘lock-in”’ or ‘“‘locking-on,’’ are
observed for many types of flow instabilities, e.g., for the
Karman vortex street forming behind cylinders or blunt trail-
ing edges, for free shear-layer instabilities, for oscillations of
impinging flows such as flow past cavities, and for jet - edge
(edgetone) oscillations. The external forcing also encompasses
many different types such as mechanical forcing, acoustic
forcing by a loudspeaker, or thermal forcing.

In this context of flow systems containing fluctuating vor-
ticity, our purpose will be to demonstrate that external excita-
tion of such systems exhibits the typical characteristics of
quasiperiodicities and phase-locking in forced dynamical
systems. The contents of this paper focus on the onset of syn-
chronization of self-sustained oscillations, arising from the
flow instability, with the external forcing. From experimental
evidence, it will be shown, that there are at least two means of
attaining this synchronization: phaselocking and asyn-
chronous quenching. This terminology is chosen in accor-
dance with that of Dewan (1972), who discusses the entrain-
ment of van der Pol oscillations.

For phaselocking, the external forcing causes a systematic
phase retardation or advancement of the self-sustained oscilla-
tions in such a manner that the frequency of the self-sustained
oscillation becomes identical with the excitation frequency.
Retardation occurs for excitation frequencies below the
natural frequency and advancement occurs for higher excita-
tion frequencies. As synchronization is approached, this phase
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shifting leads to coalescence of the self-sustained frequency
and the excitation frequency. For phaselocking, therefore,
both components coexist undistinguishably at the same fre-
quency, contribute to the oscillations, and lead to resonance.
Phaselocking usually is observed for small excitation levels.

In the case of quenching the self-sustained oscillation of the
flow is attenuated and disappears when the excitation frequen-
¢y approaches that of the self-sustained oscillation. We call it
asynchronous quenching if this suppression of the self-
sustained oscillations occurs at a frequency different from the
excitation frequency. Quenching usually requires, in contrast
to phaselocking, higher excitation levels.

Synchronization of flow oscillations and body motion can
also be observed for coupled systems involving a self-excited,
fluid-dynamic oscillator and a passive mechanical oscillator,
e.g., an elastically mounted cylinder in crossflow. Although
the frequency of the mechanical system may, for such cases,
be affected considerably by the flow effects, the flow oscilla-
tions themselves will be entrained by the body motion and syn-
chronize with it over certain ranges of the parameters chosen
in the experiment, e.g., flow velocity. Typical for such coupl-
ed systems is that there are ranges where two stable states of
oscillation can be found at the same frequency, which explains
experimentally observed hysteresis effects and jumps in
amplitude and phase (e.g., Feng, 1968). This multi-amplitude
response arises from the coupling of the nonlinear fluid-
dynamic system with a linear mechanical oscillator (Staubli,
1983b). Unfortunately, this coupling makes it difficult to
discuss the response of the fluid-dynamic part alone since the
mechanical system typically has a narrow-band resonant
response due to weak damping, thereby veiling the details in
the onset of synchronization of the self-sustained flow
oscillations. .

This paper discusses the onset of synchronization for the
following types of interaction of external forcing with self-
sustained flow oscillations: an oscillating circular cylinder in

crossflow (Staubli, 1983a); an impinging jet interacting with

an oscillating edge (Staubli and Rockwell, 1987); a forced mix-
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Fig.1 Time records and power spectra of lift force and acceleration for

an oscillating circular cylinder in crossflow in case of not synchronized
vortex shedding (Staubli, 1983a)

ing layer between parallel streams (Oster and Wygnanski,
1983); and a thermally forced, oscillating cavity shear-layer
(Gharib, 1983).

The main parameters in all these studies are the frequency
and amplitude of the forced excitation. Because of the
nonlinearity of the fluid-dynamic system (self-sustained flow
oscillations) only harmonic forcing can be considered.
Typically, the response of the fluid-dynamic system is deter-
mined by power spectra of global, or representative local, flow
properties such as force, pressure, or velocity.

With the frequency and amplitude of forcing as parameters,
there are two ways of attaining synchronization. Either the
amplitude may be increased at a constant excitation frequen-
¢y, or the amplitude may be maintained constant while the fre-
quency is varied. The latter way is preferable to show the
resonance effects that accompany synchronization. If we wish
to ascertain the type of entrainment, both methods are
equivalent and complement each other.

Knowledge of the type of entrainment of the self-sustained
flow oscillations by the external excitation may provide insight
into the physcial events leading to synchronization and, fur-
ther, may lead to an appropriate model in the form of a
nonlinear differential equation modelling the global properties
of the fluid-dynamic system or flow oscillator.

Loading on an Oscillating Circular Cylinder in
Crossflow

Fluid forces acting on an externally-driven cylinder were
measured in a water tank using a towing technique. The ex-
perimental system and the associated measurements are
described by Staubli (1983a). Selected measurements of fluc-
tuating lift will be presented here to demonstrate the transition

Journal of Applied Mechanics
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Fig. 2 Response characteristics of the lift force of an osciilating cir-
cular cylinder (g = 0.11) in crossflow showing: (a) the lift coefficients c,
(self-excited component) and ¢, (externally excited component); (b) the
normalized frequency f,/f} of the self-sustained lift componentc, as a
function of the normalized excitation frequency f./f} (Staubli, 1983a)
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to synchronization in a case where the self-excited oscillation
in the flow is of the Karmén vortex street type.

The power spectra of the measured lift forces showed that
only two discrete frequency components have to be taken into
account for an accurate description of the response of the
fluid forces in case of forced sinusoidal oscillation of the
cylinder. This discrete two-frequency response was observed
under the experimental restriction of small amplitudes of
cylinder oscillations (< 0.8D). For such small amplitudes the
fluid-dynamic response, in terms of lift forces, is typically
deterministic. Concerning the dependency on Reynolds
number, we find this characteristical two-frequency response
for the whole range of technically important Reynolds
numbers with the exception of the transitional range between
Re = 2.10°% and 10%; for supercritical Reynolds numbers the
response to sinusoidal excitation was investigated by
Szechenyi and Loiseau (1975).

The correctness of the superposition of two cosine com-
ponents for approximation of the lift force is confirmed by the
measured time records which show modulations with the
periodicity 1/|f,—f,| (f, = excitation frequency; f, = fre-
quency of self-sustained vortex shedding). An example of time
records and power spectral density distributions is given in
Fig. 1. While the lift signal shows a typical beating wave form
in the time domain, the measured acceleration signal of the
cylinder oscillations shows to a good approximation a
sinusoidal time record.

Accordingly, the forcing function which is given by the
sinusoidal displacement signal 5(¢) (%, = Amplitude/
Diameter) and the resulting lift forces c¢; (¢) can be written as
follows:
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displacement - In the absence of cylinder oscillations the self-sustained
vortex shedding in the wake gives rise to lift fluctuations of the
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folfy = 0.94; (d) f,/f = 1.0 (Staubli, 1983a) .
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f. The frequency f7 denotes the frequency of the ‘‘natural”
Kéarman vortex shedding in absence of cylinder oscillations.
Especially near synchronization, the frequencies f,and f¥ are
not identical. The measured Strouhal number was S = ffD/U
= 0.180 for the Reynolds number of Re = 6+10%.

The spectral components ¢, at the excitation frequency f,
and c, at the self-excited frequency f, were determined from
spectral density distributions after taking window effects
(Hanning windows) into account and by assuming minimal
modulations of f, and f,. It should be noted here, that the
self-sustained component was not completely free of modula-
tions; however, we can conclude from the shape of the peaks
in the spectra that these modulations were minor.

Figure 2(a) displays the lift coefficients ¢, (amplitude of
self-sustained component) and ¢, (amplitude of forced com-
ponent) as a function of the normalized excitation frequency
f./fs for a constant amplitude of displacement 5, = 0.11.
There is a synchronization range near f,/f; = 1 where the
cylinder oscillation entrains the flow oscillation. The coeffi-
cient ¢, shows a distinct resonance behavior within that range;
the maximum lies at f,/f} slightly less than one. For high ex-
citation frequencies, the lift coefficient ¢, increases due to ad-
ded mass effects and is proportional to f2. For frequencies
above synchronization, the self-sustained flow oscillations
recover, and the lift component ¢, shows amplitudes com-
parable to those of the nonoscillating cylinder, i.e., f,/f} = 0.

The onset of synchronization clearly indicates an attenua-
tion of the self-sustained lift coefficient ¢, on both sides of the
synchronization range. Extrapolation of the measured data
points indicates a complete quenching of the self-sustained
flow oscillation near synchronization. Here, the resolution of
the smallest values of the coefficients ¢, which still can be
determined accurately in the measurements is limited by the
signal-to-noise ratio. Although we note, e.g., in Fig. 1, a noise
level due to stochastic or other signal contributions, which is
negligible in comparison to the deterministic peaks in the spec-
tra, this noise makes the determination of the self-sustained
component ¢, more difficult when the latter is small relative to
the externally excited component c,. As can be seen in Fig.
2(a), the coefficient ¢, becomes small relative to ¢, for the
onset of synchronization; it is in this range that noise con-
tributes significantly to the peak of ¢, in the power spectrum
and adds a positive systematic error to the true values of c,,.
Thus, without any noise effects, a stronger drop of ¢, could be
expected in Fig. 2(a) for the onset of synchronization. In an
absolute sense, there is no experimental evidence of an in-
creased noise level for the onset of synchronization.

Even if the noise significantly influences the amplitude of
the lift coefficient ¢, of the self-sustained oscillation, the
associated frequency f, still can be determined accurately.
This frequency f, normalized with the frequency f; of the
“natural’’ vortex shedding, is plotted in Fig. 2(b) as a function
of the normalized excitation frequency f./f;. Since the
measured data points do not approach the line f, = f,, the self-
excited and the excitation frequencies do not coalesce.
Especially for f,/f} > 1, the measured frequency f, shifts
away from its original value f} towards lower frequencies.
This result confirms measurements of Stansby (1976) for an
oscillating cylinder having the same relative displacement
amplitude but a different Reynolds number. These findings
concerning the amplitude of the lift component ¢, and the
shift of the frequency f, near synchronization represent an ex-
ample of entrainment of self-sustained flow oscillations by
asynchronous quenching.

Measurements for constant excitation frequency and in-
creasing displacement amplitude are displayed in the Figs. 3(a)
through 3(d). In none of these cases do the frequencies f, and
f, coalesce. Further, the self-excited component of the lift
force, the coefficient c,, is always attenuated by increasing the
amplitude of excitation; in fact, Figs. 3(b) and 3(c) show a
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complete suppression of c,. This suppression of the self-
excited component for larger amplitudes of displacem=nt
demonstrates the well-known effect of broadening of the syn-
chronization range at larger excitation amplitudes.

Somewhat different is the case shown Figs. 3(d), where the
excitation frequency is identical to the natural Karman shed-
ding frequency, that is f,/f% = 1. For this case, and also for
Jo/fs = 1, we should closely examine the limit of very low ex-
citation amplitude. By definition, for n,—0 the coefficient c,
must approach zero, while ¢, shows the value of the
nonoscillating cylinder. With the available equipment it was
not possible to obtain adequate resolution for displacement
amplitudes smaller than 5, = 0.02. For such a displacement
the measured lift coefficient at excitation frequency f, is
already larger than the coefficient ¢, of the nonoscillating
cylinder.

However, since ¢, grows from a zero value, there must be a
range of excitation at very small amplitudes where we will find
a superposition of two independent components, the self-
excited and the externally forced ones. They both contribute in
case of f,/f; = 1 to the lift force at the same frequency. Of
course, it is not possible to separate contributions at the same
frequency by measurement, but we can conclude from this
transition to zero excitation amplitude that here, in contrast to
larger amplitudes, quenching of the self-sustained flow oscilla-
tions cannot be the mechanism leading to synchronization. We
rather expect synchronization by phaselocking which requires
the coexistence of the two contributions at the same frequency
as a necessary condition. In general, we can conclude from the
above measurements that for the oscillating circular cylinder,
oscillating at amplitudes of practical interest, synchronization
is achieved by asynchronous quenching.

Similar experimental observations of attenuation in the
onset of synchronization are reported by Graham and Maull
(1971), who investigated the interaction of vortex shedding
behind a plate with an oscillating trailing edge. They also
observed an attenuation of the self-excited components when
the excitation frequency approached the frequency of the
natural vortex shedding. Their measurements of velocity fluc-
tuations show in the spectra, somehow overemphasized by the
logarithmic scale, modulations of the self-excited frequency
components. This effect is due to overall modulations of the
self-sustained vortex shedding, but also due to the fact that the
single point measurement of velocity represents only a local
property in a turbulent wake.

Impinging Jet Interacting With an Oscillating Edge

The case of an unstable, planar jet interacting with an
oscillating leading edge has been investigated by Staubli and
Rockwell (1987). Some of the measurements will be presented
here to provide insight into the type of synchronization occur-
ring when the controlled frequency f, of the edge oscillations
approaches the frequency f¥ of the self-sustained jet
oscillation.

In these experiments, pressure fluctuations p(f) were
measured at a representative location on the leading edge. This
localized pressure loading was used to characterize —as lift
forces were in case of the oscillating cylinder — the response of
the jet oscillations to mechanically forced oscillations of the
edge. The geometry and the Reynolds number were chosen
small enough so that the response of the jet-edge interaction
could be described to a good approximation, with only two
discrete frequency components (larger impingement length
and higher Reynolds numbers exhibit multiple frequency com-
ponents of the self-sustained jet oscillation; Lucas and
Rockwell, 1984). Thus, the pressure fluctuation p(f) can be
written in analogy to equation (2) as a superposition of the
following two cosine components with the frequencies f, and

Je:
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Fig. 4 Response characteristics of the pressure loading due to jet-
edge interaction (tip displacement 5, = 0.16) showing: (a) self-excited
pressure component p,, and externally excited pressure component p;
(b) normalized frequency f,/f} of the self-sustained jet oscillation as a
function of the normalized excitation frequency f,/f; (Staubli and
Rockwell, 1987)

p(t)=p, cos 2nf,t) +p, cos Quf,+ ) “

The phase angle ¢ is here the phase between the edge displace-
ment and the pressure fluctuations. In absence of edge oscilla-
tions, equation (4) degenerates to

p(t) =p, cos 2nf3t) &)

The frequency f} is the frequency of the ‘‘natural,”’ self-
sustained jet oscillation which corresponds to the most
amplified jet instability, The forced excitation is described in
terms of the tip displacement of the leading edge (nondimen-
sional with nozzle width 2B)

ﬂ(f)=77e cos (waet) (6)

The response characteristics of the self-excited component
P, and of the externally excited component p, for the constant
amplitude of displacement 5, = 0.16 are displayed in Fig.
4(a). There is a striking similarity with the measurements of
the loading on an oscillating circular cylinder in crossflow.
The forced pressure component p, indicates a pronounced
resonance for f,/f} = 1, comparable to that of the lift coeffi-
cient ¢, in Fig. 2(@). For higher excitation frequencies the
pressure fluctuation p, increases due to added mass effects
and is proportional to f,2. For the high frequencies of excita-
tion the self-sustained jet oscillation completely recover; the
pressure amplitudes p,, at f,/f} > 2.5 reach values comparable
to those of the stationary edge with f,/f} = 0. For the onset of
synchronization the self-sustained oscillations are attenuated
down to a level where they disappear within an overall noise
level. This can be observed on both sides of the synchroniza-
tion range.

Figure 4(b) displays the frequency of the self-sustained jet
oscillation f, as a function of the excitation frequency f,, both
normalized with the frequency f} of the ‘“‘natural’’ jet oscilla-
tions. For the low frequency ratios f,/f} the external excita-
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Fig. 5 Response characteristics of the pressure loading due to jet-
edge interaction (tip displacement 5, = 0.11) showing: (a) seif-excited
pressure component p, and externally excited pressure component p,;
(b) the normalized frequency f,/f} of the self-sustained jet oscillation
(Staubli and Rockwell, 1987)
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Fig. 6 Response characteristics of the pressure loading due to jet-
edge interaction (tip displacement 4, = 0.07) showing: (a) self-excited
pressure component p, and externally excited pressure component p,;
(b) the normalized frequency f,/f}, of the self-sustained jet oscillation
(Staubli and Rockwell, 1987)

tion hardly effects the self-excited frequency f,. For excitation
frequencies above synchronization, the ratio f,/f* becomes
considerably smaller than one and recovers to a value of one
for increasing excitation frequency when the interaction of the
two components decreases.

Figures 5 and 6 show two cases with smaller amplitudes of
displacement, that is y, = 0.11 and 5, = 0.07. The response
characteristics of the forced component p, are qualitatively
the same for all three investigated amplitudes of displacement.
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Fig. 7 Power spectra of the streamwise velocity fluctuations u’ for a
forced mixing layer between paraliel streams (Oster and Wygnanski,
1983). (r = U4/Uy = 0.6; x = 100 mm; y = 0; A = amplitude of flap
oscillation.)

At resonance, there is a minor reduction of the maximum
amplitudes; and, for high frequencies f,, the smaller added
mass effect proportionally reduces the pressure fluctuation p,.
The self-excited pressure p, shows a stronger effect of the
reduction in displacement amplitude, especially near syn-
chronization. As expected for smaller excitation levels, the at-
tenuation of p, is reduced and the actual synchronization
range becomes smaller. At least for 5, = 0.07, shown in Fig,.
6(a), there is no more indication of a complete suppression of
D,. Thus, this experiment shows that there is an amplitude
limit below which the external excitation cannot suppress the
self-sustained flow oscillations, a necessary condition for
quenching. Further indication that we have phaselocking in
this case of very low displacement amplitude comes from Fig.
6(b) showing the frequency f, of the self-excited component
versus the excitation frequency f,. For this graph, and also
already in Fig. 5(b), we observe that the measured points tend
to approach the line f, = f,. This coalescence of the self-
excited frequency with the externally excited frequency is the
second necessary condition for phaselocking.

Thus, we can conclude that the response of the flow oscilla-
tion of the impinging jet on forced edge oscillations is, in
general, comparable to the response of the Karman vortex
shedding behind an oscillating cylinder in terms of force and
pressure measurements; for the large displacement amplitudes
the measurements clearly indicate an entrainment of the flow
oscillations of the asynchronous quenching type. From the
measurements at very small amplitudes in the jet-edge case, as
well as from deduction of the limit of excitation amplitudes
tending to zero, we can conclude that synchronization is
caused there by phaselocking.

The Forced Mixing Layer Between Parallel Streams

Oster and Wygnanski (1983) present velocity meaéurements
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Fig. 8 Velocity fluctuation spectra, presenting interaction of the
natural and forced frequencies in a cavity shear layer for different power
levels (P,); (h) scope trace of case (d) (Gharib, 1983)

in a turbulent mixing layer. Controlled oscillations of a flap
(amplitude A) were applied at the initiation of mixing between
two parallel streams. The frequency of forcing was at least one
order of magnitude lower than the initial instability frequency.
In contrast to the above shown examples, the self-excited fre-
quencies are in this case not restricted to one discrete frequen-
cy but instead represent frequency components in a broad
band between 400 and 600 Hz, as can be seen from Fig. 7(a).
The peak in the power spectrum at f = 230 Hz is a sub-
harmonic of the shedding frequency in the immediate
neighborhood of the trailing edge. Oster and Wygnanski
report the following observation: ‘“With increasing amplitude
of surging (Figs. 7(c), 7(d)) one may note a marked increase
in the energy content at the forcing frequency (f, = 60 Hz)
and a relative reduction at high frequencies, so that the in-
tegral of all spectral components of u remains approximately
constant. Further investigation is required to determine how
the fluctuating energy shifts to the forcing frequency,. . . .”

Thus, these measurements indicate another case of attenua-
tion of the self-excited components, while the level of the ex-
ternal excitation is increased. We can, therefore, classify this
onset of synchronization with the excitation frequency as
asynchronous quenching. Of course, this classification does
not explain how the energy is transferred from one frequency
component to another; but one expects, from similarity to the
foregoing cases of attenuation of the self-sustained oscillation
in the onset of synchronization, that there might be similar
physical principles leading to this attenuation in all cases of
asynchronous quenching.

In contrast to the cases of the oscillating cylinder or of the
jet-edge interaction, which showed only one discrete frequen-
cy component resulting from the self-excited flow oscillations,
the self-excited contribution consists in this mixing layer ex-
ample of a broad-band of effects in the frequency spectrum.
Under these conditions, the response of the fluid cannot be ap-
proximated anymore with two-frequency components, which
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was done in equations (2) and (4). For a description of the
response we have to consider in this case the integral over a
frequency range associated with the self-excited flow effects.
Nevertheless, this example shows that the classification of en-
trainment by quenching is not necessarily restricted to a group
of flow situations where only discrete frequency components
are observed in the flow oscillations.

Effect of Forcing on a Naturally Oscillating Cavity
Flow

Gharib (1983) describes oscillations arising from flow past a
rectangular cavity and a means of controlling them. His ex-
periments have been performed in a water tunnel using an ax-
isymmetric cavity model. The forced oscillations were in-
troduced by a sinusoidally heated thin-film strip, which ex-
cited the Tollmien-Schlichting waves in the boundary layer
upstream of the cavity.

Figure 8 shows measurements taken at a constant frequency
f. and increasing power P, supplied to the heated strip.
Gharib mentions: ‘‘Spectra reveal that as the amplitude of the
forcing increases, the amplitude of the natural oscillation
decreases and eventually disappears.’’ Furthermore, ‘‘strong
modulation of the signal indicates that both frequencies are
present simultaneously.”” From these comments and from Fig.
8 we can conclude that this example describes still another case
of well-defined asynchronous quenching.

Conclusion

In the foregoing, we have addressed four different examples
of self-sustained, fluid-dynamic oscillations subjected to ex-
ternal forcing. In spite of differences between these various
flow configurations, there are qualitative similarities in the
response of the respective flow instabilities to external forcing,
including the onset of synchronization.

Of the two means of attaining synchronization, asyn-
chronous quenching is detected more often. In case of jet-
oscillating edge interaction, measurements indicate phaselock-
ing for very small amplitudes of excitation. This also can be
concluded for all other cases from the fact that there is a lower
limit in amplitude of external forcing for which self-sustained
oscillations can be suppressed.

The similarity of the measured responses for these flow
oscillations suggests that, in all cases, similar nonlinear dif-
ferential equations might be formulated to describe the
measured fluid-dynamic response. These differential equa-
tions for global flow properties might be second or higher-
order differential equations with small nonlinearities for
damping (causing self-excitation) and also with a small
nonlinear spring.

That a nonlinear equation for the flow instability, e.g., the
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van der Pol equation, coupled with a linear oscillator for the
mechanical system can successfully describe the vortex in-
duced oscillation of an elastically mounted cylinder in
crossflow was first demonstrated by Hartlen and Currie
(1970). The great advantage of formulating differential equa-
tions describing the fluid-dynamic response to external excita-
tion would be that once these equations are known, any
mechanical oscillation can be calculated from coupling these
equations with differential equations describing the
mechanical system. Of course, such amplitudes of oscillation
of mechanical systems can also be obtained directly from
measured, fluid-dynamic data, a means which involves ex-
tended computations, as shown by Staubli (1983b).
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A New Method for Predicting the
Critical Taylor Number in Rotating

J. 0. Cruickshank

Cylindrical Flows

A method for determining the boundaries of dynamic stability of a fluid system, as

Avco Research Laboratory, Inc.,
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distinct from the prediction of the subsequent motion, is presented. The method is
based on well-known approaches to the problem of instability in elastic systems. The

extension of these methods to fluid systems, specifically, to the stability of flow be-
tween concentric cylinders, confirms that it may be possible in some cases to deter-
mine the boundaries of stability of fluid systems without recourse to an Orr-
Sommerfeld type treatment. The results also suggest that the concept of apparent
(virtual) viscosity may have implications for fluid stability outside the current realm
of turbulence modelling. Finally, it is also shown that flow instability may be
preceded by the onset of a critical stress condition in analogy with elastic systems.

1 Imtroduction

The study of the stability of fluid systems has been a part of
the ongoing research into the behavior of fluids going back as
far as the famous dye experiments of Osborne Reynolds (1883)
and perhaps earlier. In general, there are two problems of in-
terest to those who work in the field: the prediction of the con-
ditions under which a given fluid system would become
unstable, and the description of the subsequent motion.

Currently, most techniques for the study of unstable flows
are based on models that arise from the perturbation of time-
dependent Navier-Stokes equations. Typical of the resulting
equations are the Orr-Sommerfeld equations, the derivation
of which may be found in any good text on Fluid Mechanics
(Schlichting, 1968; White, 1974).

The stability analysis of elastic systems provide aclue asto a
possible alternate approach of this problem. Simple models of
elastic systems, based on" linear assumptions and
displacements, have been used extensively for the prediction
of the boundaries of stability of such systems, The results,
such as the critical buckling load for columns, have found
wide use in engineering, and the fact that these simple models
stop short of predicting the subsequent (very often nonlinear)
motion has for most situations been irrelevant. It is the prop-
osition here that some of these techniques from solid
mechanics are applicable to some problems in fluid
mechanics. In this paper, we use the problem of instability of
rotating flow between two concentric cylinders to show that
flow instability can be analyzed using concepts analogous to
those used for studying instability in elastic systems and thus

Contributed by the Applied Mechanics Division for publication in the Jour-
NAL OF APPLIED MECHANICS.

Discussion on this paper should be addressed to the Editorial Department,
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y.
10017, and will be accepted until two months after final publication-of the paper
itself in the JOURNAL OF APPLIED MECHANICs. Manuscript received by ASME
Applied Mechanics Division, March 17, 1986.

Journal of Applied Mechanics

Downloaded 03 May 2010 to 171.66.16.27. Redistribution subject(t:cg)gglulgncens

we open up the possibility of an integration of these two cur-
rently disparate fields.

The general methods for the determination of the bound-
aries of stability for elastic systems are fully described in
Bolotin (1964a). In the following modelling, the philosophical
approach is based almost entirely on that work, due regard be-
ing paid when necessary to the differences that naturally exist
between solids and fluids.

It is perhaps worth recalling that the equations that general-
ly govern the behavior of solids and fluids, the equations of
continuum mechanics, are the same until appropriate con-
stitutive relations for stress are invoked. Thus, clearly, as long
as the stress terms are retained and proper attention is paid to
the other subtle differences that exist between fluids and
solids, it is not surprising that some of the equations from
solid mechanics can be used without major modifications.

The notion that some aspects of fluid stability are analogous
to the behavior of solids has its origins in the concept of fluid
buckling. Experimental and theoretical work in this area by
Cruickshank (1980), Blake and Bejan (1984), Bejan (1981),
Suleiman and Munson (1981), and Cruickshank and Munson
(1981) suggests that the investigation of this link can shed
valuable light on flow stability problems ranging from those at
low Reynolds number to high Reynolds number turbulent
situations. Previous work in this area have generally dealt with
unique, isolated instances of the fluid buckling phenomenon.
In this paper, the Euler buckling analogy inherent in the con-
cept of fluid buckling is extended to one of the more classical
problems of fluid mechanics.

2 The Governing Equations

A. The Differential Equations of Dynamic Stability. Con-
sider a three-dimensional element of a continuum performing
a regular three-dimensional motion with transport velocities
(u, v, w) on which a three-dimensional oscillation is then im-
posed. We restrict ourselves to small, though finite
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displacements resulting from the oscillations. During the
oscillatory displacement, the following assumptions as stated
by Bolotin (1964b) are assumed to hold, and they refer to the
effects of the oscillation on the medium:

(¢) Lengths of linear elements, the areas and volumes
change; however, the influence of these changes on the stabili-
ty is usually negligibly small and can be neglected for small
deformation relative to unity. .

(b) Angles of rotation and the general nondimensional
oscillatory displacements in comparison to unity may not be
neglected. Thus, changes in cross section and length are not
considered; however, the additional forces which arise from
rotation of the cross section due to the oscillation are taken in-
to account.

So far, it is clear that even though the original Bolotin work
was developed for solids, its applicability to any medium that
satisfies the concept of the continuum is preserved by not in-
voking the constitutive relation for stress.

The finite displacements, using the terminology of Bolotin,
may be described in a system of rectangular Cartesian or cur-
vilinear coordinates x,, x,, x; referred to the undeformed
medium (in the case of a fluid system, this would be the coor-
dinate system applicable to the base, unperturbed flow). If the
corresponding displacements of points in the medium are u,,
u,, u; then the new coordinates will be

£ =X+ uy(x),%2,%3) n
&y =X+ Uy (Xy,Xp,X3) (2
£3=x3 + U3(x;,%3,X3) 3

Such a formulation would be a Lagrangian as distinct from
an Eulerian formulation. In the Eulerian system, the coor-
dinates of points of the deformed medium (£,, &,, &) are
taken as independent variables, hence according to Bolotin,
the equations that govern the displacement (or oscillation) are
given by:

3
doy Dy,
+X;=
,2 3%, " pr

In equation (4), o;;, are the components of the stress, X; are the
components of the body force per unit volume in the deform-
ed state, p is the density of the deformed medium, and D/Dr is
the substantial derivative. This equation in its simpler
manifestations is part of the standard engineering literature.
For example, the vibrating string equation is obtained by set-
tingu; = 0, u; = 0, and x;, = x; then for this problem x, = 0,
the component of stress o, is T du,/dx, and neglecting the
body force, we have

i=1,2,3 @)

Pu,  Fu,

ot P or
where T is the tension in the string and p is its mass per unit
length. If the string is also moving with velocity v in the x
direction, the resulting equation would be the so-called mov-
ing threadline equation (Swope and Ames, 1963).

B. The Two-Dimensional Problem. We now consider the
application of equation (4) to an element with base (unper-
turbed) motion in a horizontal (x, z) plane, and subjected to
oscillatory displacements perpendicular to this plane. This
simplification is carried out with the application to the Taylor
problem specifically in mind. Other stability problems may re-
quire slight variations from this approach. The oscillations are
thus given by

Uy =0,u;=0,u, #0
Thus,
Ei=x=x
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£3=z

Fig. 1 An element displaced u, above plane of motion (x, 2)
and
23 =X3=2

Furthermore, if the stress components in the £, direction are
independent of that direction, then, upon neglect of body
forces, equation (4) becomes:

doy,  doyy
+ = (4a)
9, &
0y 0oy D%y,
= 4b
3, o, " DP )
do3, 6033: (4e)
&, 9g

Equations (4q) and (4c¢) simply imply that for small
displacements, there is no appreciable change in the stress
components in the corresponding directions. This is equivalent
to the equation

TcosO© — T cos(0+dO)=0

where T is the tension and © is its angle with the horizontal,
obtained for a horizontal resolution of forces during the
derivation of the vibrating string equation. For small dO we
obtain the expression Tcos® = TcosO© which is true but irrele-
vant to the further analysis of the problem. Similarly, we drop
equations (4a) and (4c) from further consideration. Hence, if
we choose a medium that is infinitely deep in the £, direction
such that variations with respect to £, may be neglected, then
the behavior of an element at any (£¢,, £,;) plane will be the
same and the component of stress in the £, direction will be in-
dependent of £,. The component of the transport velocity in
that direction, v, may also be assumed to be zero.
This results in the following equation:
2

6021 + 60'23 =p D uz (4d)

o€, 08 ' DP
Note that ¢,; and 0,3 have a meaning that is slightly different
from the obvious usage, as demonstrated earlier and in equa-
tions (5a) and (5b) below.

Thus, we consider the motion of an element with steady (u,
w) transport velocity components in a horizontal (x, z) plane
with the superimposed oscillatory displacements u, occurring
perpendicular to this plane. A much more general analysis
would include the variation of the stress components in the £,
direction and all three transport velocities would be retained.
For the specified problem, however, this is not necessary.

Figure 1 shows a typical such element after the deformation

described.
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