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A Doubly Asymptotic, 
Nonrefleoting Boundary for 
Ground-Shook Analysis1 

771/5 paper desribes the formulation and implementation of a nonreflecting boun­
dary for use with existing finite-element codes to perform nonlinear ground-shock 
analyses of buried structures. The boundary is based on a first-order doubly asymp­
totic approximation (DAAl) for disturbances propagating outward from a selected 
portion of the soil medium surrounding the structure of interest. The resulting set of 
first-order ordinary differential equations is then combined with the second-order 
equations of motion for the finite-element model so as to facilitate solution by a 
staggered solution procedure. This procedure is shown to be computationally stable 
as long as the time increment is smaller than a limiting value based on the finite-
element mass matrix and the DAA-boundary stiffness matrix. Computational 
results produced by the boundary are compared with exact results for linear 
canonical problems pertaining to infinite-cylindrical and spherical shells. 

1 Introduction 

The primary objective of this effort has been the implemen­
tation of a nonreflecting boundary for use with existing finite-
element codes to perform nonlinear ground-shock analyses of 
buried structures. This boundary is based on the first-order 
doubly asymptotic approximation (DAA,) for elastodynamic 
scattering (Geers and Yen, 1981; Underwood and Geers, 
1981). In addition, a staggered solution procedure is utilized to 
partition the global equations in order to achieve both com­
putational efficiency and software modularity (Felippa and 
Park, 1980). 

This work extends that of Underwood and Geers (1981) for 
linear ground-shock problems, wherein the DAA surface is 
placed on the surface of the buried structure. Here, the DAA 
surface is moved some distance out from the surface of the 
structure, enclosing both the structure and a portion of the 
surrounding soil medium, which may be treated with 
nonlinear finite elements. Other extensions include formula­
tion and implementation for general two-dimensional and 
three-dimensional problems, improved discretization of the 
DAA surface with higher-order interpolation functions, and 
utilization of a conditionally stable staggered solution 
procedure. 

It is important to differentiate between doubly asymptotic 
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10017, and will be accepted until two months after final publication of the paper 
itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by ASME 
Applied Mechanics Division, May 6, 1986; final revision August 15, 1986. 

approximations, which address quasistatic and wave-
propagation effects simultaneously, and singly asymptotic ap­
proximations, which address these effects separately (see, e.g., 
various papers in Kalinowski, ed., 1981, Datta, ed., 1982, and 
Cohen and Jennings, 1983). For example, representation of 
the external medium by an elastic foundation, which may be 
quite satisfactory at low frequencies, does not account, at 
higher frequencies, for energy dissipation through outward 
propagation of scattered waves. On the other hand, represen­
tation of the external medium by a viscous boundary, which 
may be quite satisfactory for wave-propagation problems, 
does not provide elastic restoring forces in the static limit. 

A response-averaging method originally proposed by Smith 
(1974) and extended by Cundall et al. (1978) also fails in the 
static limit. For example, consider the response of a rigid 
structure surrounded by an infinite, linear-elastic medium to 
an internal, quasi-static point force. A computational model 
for this problem might consist of the rigid structure surround­
ed by a portion of the medium enclosed by a nonreflecting 
boundary. If this boundary is that of Smith, the total response 
of the structure is the average of two responses, one associated 
with the structure and bounded portion of medium enclosed 
by a rigid boundary, and the other associated with the struc­
ture and bounded portion of medium floating freely in space. 
Unfortunately, the latter response grows indefinitely in the 
static limit because the freely floating system is not in static 
equilibrium. In contrast, doubly asymptotic approximations 
approach exactness in the static limit. 

2 Governing Equations 

This section presents the governing equations for the finite-
element (FE) model of the structure along with a portion of 
the surrounding soil medium, and for the boundary-element 
model (BE) of the nonreflecting DAA surface. These equa-
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tions are then partitioned, and a staggered-solution procedure 
is introduced to solve for transient response. Throughout the 
development, the dependence of excitation and response 
quantities on time is implicit. 

2.1 Finite-Element/Boundary-Element Model. Let x be 
the computational vector of displacement response in global 
coordinates for the FE model of the structure and a portion of 
surrounding medium. The governing equations for the finite-
element model are then (see, e.g., Zienkiewicz, 1977) 

Msx + Dsx + Ksx = fe + f; (2.1) 

where Ms, D s , and Ks are the mass, damping, and stiffness 
matrices, respectively, for the FE model, ie is the computa­
tional vector of external medium forces imposed by the DAA 
surface, and f,- is the vector of internal nonlinear forces; as 
usual, a dot denotes differentiation in time. Compatibility of 
forces and displacements at the DAA surface may be ex­
pressed as (Underwood and Geers, 1981) 

where the superscript t denotes transpose, where g and u are 
the global force and displacement vectors, respectively, for the 
BE model of the DAA surface, and where G is the force-
transformation matrix when moving from BE to FE 
coordinates. 

Now the force vector g and displacement vector u may be 
decomposed into incident-wave and scattered-wave com­
ponents as 

g = g, + gc 
(2.3) 

u = u7 + u s 

where g, is the known force vector associated with a free-field 
incident wave and g s is the unknown force vector associated 
with the wave scattered by the structure. It is worth noting that 
this dual decomposition does not require constitutive linearity 
of the medium to be valid, for g s and us may each be viewed 
as merely the difference between two vectors, one obtaining 
with the structure absent and the other obtaining with the 
structure present. 

2.2 Doubly Asymptotic Approximation. A first-order 
DAA is used here to relate the scattered-force vector g s and 
the scattered-displacement vector u s (Geers and Yen, 1981; 
Underwood and Geers, 1981). this approximation approaches 
exactness in both the high and low-frequency limits, and ef­
fects a smooth transition between. The development of DAA! 
for a linear, isotropic external medium proceeds as follows. 

At high frequencies, the geometrical vector of scattered-
wave surface tractions for the DAA surface corresponding to 
normal and tangential motions of that surface is given by 

t's(p)=PmCmu's(p) (2.4) 

where p denotes a point on the surface, pm is the mass density 
of the medium, and C„, is the diagonal sound-speed matrix 
corresponding to u's, which is geometrical vector of normal 
and tangential scattered-wave velocities. For the component 
of u's normal to the DAA surface, the corresponding matrix 
component is the dilatational velocity, while for each compo­
nent of u's tantential to the DAA surface, the corresponding 
matrix component is the shear velocity. 

Now the local-coordinate vectors of equation (2.4) may be 
transformed into global-coordinate vectors as 

u's(p)=Q(p)us{p), t>(p)=Q(p)ts(p) (2.5) 

to obtain, inasmuch as Q~x = Q', where the superscripts - 1 
and t denote inverse and transpose, respectively, 

ts(p) = Ql(p)Pl„C,„Q(p)us(p) (2.6) 

Hence boundary-element discretization of us as (see, e.g., 
Zienkiewicz, 1977) 

K, (p )=N(p) us (2.7) 

where N(p) is a matrix of shape-functions and us is a vector 
of displacement degrees of freedom, and defintion of the high-
frequency scattered-wave force vector as 

g*=JN'(p) ts(p)dS (2.8) 

yield, for high-frequency motions, 

gJ = Dffln, (2.9) 

in which 

D„, = jN'<2'pfflC„,QNrfS (2.10) 

At low frequencies, the computational vector for scattered-
wave forces is given by the quasi-static relation 

gi = Kfflu, (2.11) 

where K,„ is a full, nonsymmetric stiffness matrix for the 
boundary-element mesh, whose construction is described in 
the next section. 

Finally, the first-order doubly asymptotic approximation 
DAA[ is formed by the superposition of g's and gj to obtain 

8 S = D » , B . + K » I » ! (2-12) 

It is clear that, at high frequencies where iî  » us, this equa­
tion approaches (2.9), and that, at low frequencies where 
us » u,, it approaches equation (2.11); hence equation (2.12) 
is doubly asymptotic. At intermediate frequencies, equation 
(2.12) constitutes an approximation whose accuracy may be 
explored by solving canonical steady-state problems; this has, 
in fact, been done for an acoustic medium by Geers (1978). 
Unfortunately such explorations have not proven very useful 
in assessing DAA performance in transient problems because 
the frequency content of the excitation dictates so strongly the 
frequency content of the response. Much more useful has been 
the comparison of DAA and exact solutions for canonical 
transient problems, as is done later in this paper. 

Now the assumption embodied in DAA[ of a constitutively 
linear medium for the scattered wave is justified within the 
framework of classical plasticity theory if the material point 
for every exterior location, i.e., every location in the medium 
outside the DAA surface, remains within its corresponding 
yield surface when and after the scattered wave arrives at the 
DAA surface. For incident waves with sufficiently rapid decay 
rates and for a DAA surface sufficiently removed from the 
surface of the structure, the scattered wave causes minor per­
turbations about an elastic state at each exterior location, 
thereby satisfying the preceding condition. 

The assumption of material isotropy outside the DAA sur­
face cannot be rigorously maintained if the material has suf­
fered plastic excursions in response to the incident wave. 
However, it is likely that the resulting anisotropy is no more 
pronounced than that characterizing the ambient state, which 
is generally uncertain in practical cases. Hence, while an exten­
sion to material orthotropy may be theoretically possible, it 
may not be worth the trouble. 

2.3 Response Equations. Introduction of the first of equa­
tions (2.2) and (2.3) into (2.1) and of the second of equations 
(2.2) and (2.3) into (2.12) yields the doubly asymptotic equa­
tions of motion 

Msx + Bsx + Ksx = - G { g 7 + g s) + f,-
(2.13) 

gs = D m [ G ' x - u / J + K m [ G ' x - n / ) 

which may be numerically integrated in time to obtain the 
solution vectors x and gs. Because M^, Ds, and Ks are typically 
large and banded, while K,„ is relatively small and full, it is not 
computationally practical to introduce the second of these 
equations into the first to eliminate gs. 
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However, because D,„ is banded and multiplies the highest-
derivative terms in the second of equations (2.13), it is advan­
tageous to apply the technique of augmentation (Park et al., 
1977), which here merely involves introducing the second of 
equations (2.13) into the first, moving the term containing D,„ 
to the left side of the resulting set of equations, and keeping 
D K,„G'x on the right. This yields the augmented doubly 
asymptotic equations of motion 

Msx + [Ds + GD„,G']x + Ksx=- Gg7 + GD„,u7 

+ GK„,u/ + f,-GK„,G'x (2.14) 

which are highly amenable to staggered solution, as discussed 
in Section 4. 

3 Medium Stiffness Matrix 

This section describes the construction of the boundary-
element stiffness matrix that relates the scattered-wave force 
and displacement vectors at low frequencies. The development 
is based on Somigliana's identities, which derive from Betti's 
reciprical work theorems and Kelvin's problem of a point load 
in an infinite elastic medium (see, e.g., Kupradze, 1964; Rizzo, 
1967; Cruse, 1969; Lachat and Watson, 1976). 

3.1 Elastostatic Boundary-Integral Equations. The sur­
face behavior of an elastic medium, whether occupying an ex­
terior or interior region, may be expressed as (Rizzo, 1967; 
Cruse, 1969) 

c(p)u(p)+ \vT{p,q)u{q)dTq=^U(p,q)t(q)dTq (3.1) 

where p is a point on the boundary and q is the integration 
variable, and where u(p) and t(p) are d x I vectors (d = 2 or 
3) of medium displacements and tractions in Cartesian coor­
dinates on the boundary at p. The elements Ty(p, q) and 
U(j (p, q) of the d x d matrices T(p, q) and U(p, q) are fun­
damental solutions for the tractions and displacements at a 
location q in the direction i due to a point load at location p in 
direction j . With <5,y as the Kronecker symbol, each element of 
the matrix c is defined as 

ciJ(p) = >/2diJ (3.2) 

if there exists a continuous tangent atp, or, with r e as the sur­
face of a sphere of radius e centered at p, 

Cy(p)=lim Tij(p,q)dYq 

if the tangent is not continuous. 
Now an element of the two-dimensional displacement-

kernel matrix U(p, q) for plane-strain problems is given by 

Uij(p,q)= ~* K3-4v)/n(r)8u-rSj] (3.4) 

where G and v are the shear modulus and Poisson's ratio, 
respectively, and r = r(p, q) is the distance between the load 
point p and the field point q; the derivatives are taken with 
reference to the coordinates of q. Withp,- and qf as the coor­
dinates of p and q, respectively, 

n = qi~Pi 

r=(riri ) * 

„ Qi-Pi 

Finally, an element of the traction-kernel matrix T(p, q) for 
both two and three-dimensional problems is given by 

Tij(P'q)=4a*(~i-v)r" M-Wh + WJrjn, 

-(l-2u)(rJnj-rJni)} (3.7) 

where n, and rij are direction-cosines for the surface normal at 
q. The two and three-dimensional forms are explicitly ob­
tained by letting a = 1, 2 and (3 = 2, 3, respectively. 

3.2 Discretization. Numerical solution of the integral 
equation (3.1) requires discretization of the DAA surface, 
over each boundary element of which the displacement and 
traction vectors are approximated. The curved isoparametric 
elements of finite-element theory offer both the generality and 
the accuracy needed for this purpose. With this approach, the 
global Cartesian coordinates of any point in an element are 
taken as related to the nodal coordinates by (cf (2.7)) 

x(p)=N(p) x (3.8) 

i.e., the same shape functions are used to approximate element 
geometry, displacements, and tractions. This allows inter­
polated displacements and tractions along the DAA curve in 
two-dimensional space to be integrated over a normalized 
length in ^-coordinate space, and similar quantities over the 
DAA surface in three-dimensional space to be integrated over 
a standard 2 x 2 normalized square in £, .^-coordinate space. 

On an element-by-element basis, equation (3.8) becomes 

**(*') = £ ^ ( n n (3.9) 

where x? (ije) is the d x 1 vector of Cartesian coordinates of a 
point in element e, the Nk(i-

e) are the element shape func­
tions, and x | is the d x 1 vector of Cartesian coordinates of 
the kth element node; also, £e = £c in 2-D, but %e = £f, & in 
3-D. The elements used in this study are the three-noded, 
quadratic, curved element for 2-D anaysis and the eight-
noded, quadratic, serendipity element for 3-D analysis. The 
shape functions for the three-noded quadratic element are 

JV, = V4$({-1) 

N2 = \-e (3.10) 

where £ € [— 1, 1]; the nodes are located at £ = —1,0, 1. The 
(3-3) shape functions for the eight-noded quadratic element are 

N, Kd-foa-fexi+ei+w 

(3.H) 

(3.5) 

N2 = V4(l-tf)(l-£2) 
7V3 = i/4(l+ £ 1 ) ( i - £ 2 ) ( £ i - £ 2 - 1 ) 

^4 = ^ ( 1 + ? , ) ( ! -SI) 

7V5 = i/4(l + $,)(1 + $2)«, + £ 2 - l ) 

^6 = ^ ( 1 - £ i ) 0 + £2) 

J V 7 = W ( l - f l ) ( l + S 2 ) ( - * l + * 2 - l ) 

^8 = V 4 ( I - f , ) ( l - f i ) 
where £, € [ - 1 , 1] and £2 6 [ - 1 , 1], and all nodes lie at the in­
tersections of the £, = - 1, 0, 1 and the £2 = - 1, 0, 1 lines, 
except at 0, 0, where there is no node. 

In contrast, an element of the three-dimensional displacement-
kernel matrix U(p, q) is given by 

U>(P'q)=l6TrU-,)Gr[0-4v)8« + r ^ ] ( 3 ' 6 ) 

3.3 Matrix Assembly. With DAA-surface coordinates, 
displacements and tractions approximated as 

x(p)=N(p) x, « ( p ) = N ( p ) u , / ( p ) = N ( p ) t (3.12) 

equation (3.1) may be expressed at a node P as 
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E . 

c(P)u(P)+ £ T(P,qm) D N*(«e)ufy({e)tf£« 
e=l J r e * (3.13) 

E » 

where £" is the total number of elements on the DAA surface 
and J(ie) is the Jacobian for xe:£e transformation; also, d%e 

= d%e in 2-D, but d£e = d£\d£.\ in 3-D. Finally, coalescence 
of element contributions at common nodes is implicit in 
(3.13). The numerical techniques used to evaluate the integrals 
in this equation are discussed in Takahasi and Mori (1976), 
Burton (1976), Lachat and Watson (1976), and Mathews and 
Geers (1985). 

The enforcement of equation (3.13) at every node on the 
DAA surface yields a set of simultaneous algebraic equations 
that can be expressed in the form 

A u = B t (3.14) 
so that 

t = B ' A u (3.15) 
Now the nodal force vector g corresponding to a traction 
distribution t on the DAA surface is given by 

g = j r N ' t p ) t(p) dT (3.16) 

Introduction of the third of equations (3.12) and of (3.15) into 
this relation then yields 

g = Kmu (3.17) 

where the generally nonsymmetric medium stiffness matrix 
K„, is given by 

K,„ — [ N'Ntfrlfi- (3.18) 

A symmetric form may be obtained as 

Km = ' /2(Km+K^) (3.19) 

which is identical to that derived from energy considerations 
(Zienkiewicz et al., 1911). As indicated in the Appendix, 
however, the use of K,„ generally yields numerical results in­
ferior to those produced by Km. 

4 Staggered Solution Procedure 

In the interest of computational efficiency, the augmented 
doubly asymptotic equations of motion given by equation 
(2.14) are solved with a staggered solution procedure. The pro­
cedure is conditionally stable, requiring that the time incre­
ment be smaller than the shortest medium-boundary period 
divided by ir. This shortest period may be obtained by deter­
mining the highest natural frequency for the eigenproblem 

o)2Msx = GK,„G'x (4.1) 

In cases where the surrounding soil does not appreciably stif­
fen the embedded structure beyond its inherent level, the 
highest medium-boundary frequency is substantially lower 
than the highest natural frequency characterizing the structure 
itself, thereby allowing the analyst to carry out stable calcula­
tions with a relatively large time increment. The remainder of 
this section describes the staggered solution procedure and the 
stability analysis that leads to equation (4.1). 

4.1 Solution Algorithm. To construct the staggered solu­
tion procedure for equation (2.14), those equations are ex­
pressed at mid-step as 

M,x„ , + D , : + K* x n+i /2 - f „ + i / 2 " i\.MXn (4.2) 

where the time step n - t/At, in which t and At are time and 
fixed time increment, respectivley, and where the total damp­
ing matrix D r , the medium-boundary stiffness matrix KM, 
and the total force vector f are given by 

D r = Ds + GD„,G' 

KM = G K,„G' (4.3) 

f = - G g / + G D,„ii7 + G K„,u7 + f, 

The integration algorithm utilized is the trapezoidal rule (see, 
e.g., Henrici, 1962), for which 

x n + l / 2 = ( X n+l /2 _ x n ) / 0 

x « + l / 2 = ( x « + l / 2 _ x n ) ^ . . .. 

x / i+ l = 2 x „ + i / 2 ~xn 

xn+l = 2x„ + 1 / 2 —
x„ 

where 8 = At/2. Introduction of the first and then the last of 
these into the third yields the standard form 

x
n + i = x

n + - y ( x « + i + i « ) (4 '5) 

Now the first two of equations (4.4) are introduced into the 
left side of equation (4.2) and x„+ 1 / 2 on the right side of equa­
tion (4.2) is predicted as x£+1/2 to obtain the set of algebraic 
equations 

E,x„+1/2 = e„ + 1 / 2 -E r x£ + 1 / 2 (4.6) 

where 

E, = MS + 8DT + 82KS 

E =52K, (4.7) 

x«+1/2 - Ms tfn+1/2 ~ Drx«+1/2 ~ K rx„+ 1 / 2) 

e„+1/2 = <52f„+1/2 + Ms (x„ + 5x„) + 5Drx„ 
Finally, the prediction x£+1/2 is based on the one-term 
extrapolation 

xS+ . /2= x„ (4-8) 
The preceding staggered solution procedure leads to the 
following computational sequence to determine system 
response at time step n + 1: 

(a) f„+1/2 = (f„+f„+ 1)/2 

(b) e„+1/2 = 52f„+1/2 + M i(x„ + 5x„)+6D7.x„ 

( c ) x n + l / 2 = X n 

(d) x n + i /2= E r 1 [e„ + i /2 -E r x^ + 1 / 2 ] 

(e) x«+i = 2x„ + i / 2 — x„ 

CO x° + l/2 = (*n + l /2-XJ/<5 

(g) 

(h) x n + l / 2 = X / l + ^ X n + l / 2 

X« 

where the total stiffness matrix K r = Ks + KM. To improve 
accuracy, an iterative loop has been introduced at (d), 
wherein x{J+1/2 on the right is corrected to the previously 
calculated value of x„+i/2; two iterations generally produce 
satisfactory convergence. The calculation starts at n = 0 with 
x0 = x0 = 0. 

4.2 Stability Analysis. Park (1980) has performed a 
stability analysis of a generalized form of the staggered solu­
tion procedure just described. The result is that the procedure 
is computationally stable if no root of the characteristic 
equation 

detfc2(M J-52KM)+z5D7- + 52K7.]]=0 (4.9) 

has a positive real part. Verification of this condition is 
relatively straightforward when all of the matrices in (4.9) are 
symmetric; it is generally quite difficult when one or more is 
not. Unfortunately, as discussed in Section 3, the medium 
stiffness matrix K,„ is nonsymmetric, which pollutes KM and 
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KT. Fortunately, however, K„, constitutes a small perturba­
tion of Km, which is symmetric; hence it is appropriate to con­
sider the characteristic equation 

det[Iz2(M,-32KM)+z6D7 . + 52K7.]]=0 (4.10) 

where KM = G K,„G' and K r = K, + KM. 
As discussed on page 255 of Bellman (1970), no root of 

equation (4.10) has a positive real part if (Ms — S ^ ^ J ^ D j -
and K r are all non-negative definite and either (Ms - <52KM) 
or KT is positive definite. On physical grounds, D r and KT are 
both non-negative definite, but generally not positive definite. 
However, inasmuch as Ms is positive definite, (M^ - 52KM) is 
positive definite if 5 is sufficiently small. The degree of 
smallness defines the stability requirement, as discussed next. 

Consider the following first eigenproblem: 

Qx = Xx (4.11) 

where Q = M^ 'K^ . This problem yields nonnegative real 
eigenvalues and real eigenvectors. These eigenvectors may be 
assembled into a modal ^transformation matrix ^ that 
diagonalizes Q as ^ ' Q ^ = Qd and normalizes as W = I, the 
identity matrix. Hence the introduction into equation (4.11) of 
a transformation from physical to generalized coordinates as x 
= ^y and subsequent premultiplication through by V yield 
the diagonal eigenvalue matrix 

Consider next the following second eigenproblem: 

Kwx = AlVLx 

(4.12) 

whose eigenvalues and eigenvectors are the same as those of 
the first eigenproblem. Hence the transformation from 
physical to generalized coordinates and premultiplication 
through by •*' yields 

= (M?)-•Ivd (4.14) 

where Mf = * ' M S * and K& = * ' K M ¥ ; 
^•K/M 's> °f course, 

identical to A e . 
Finally, consider the following third eigenproblem: 

(M s -5 2 K M )x = Xx (4.15) 
Transformation and premultiplication through as before 
yields 

A„_* = M s
d - S 2 K l 

= M?[I-52(M?)-1K<y 

= M?[I-52AK / M] 

= M?[I -5 2 A e ] 

Hence the eigenvalues of (Ms — 82KM) are all positive, and 
thus (M, — 52KM) is positive definite, if <52 times the largest 
eigenvalue Xgax is less than unity. With Xgax = (wgax)2, this 
yields the stability requirement 

2 

(4.16) 

At<-
.max 

°Q 

(4.17) 

which is stated in slightly different terms at the beginning of 
this section. 

Establishment of the stability requirement (4.17) for a sym­
metric medium stiffness matrix facilitates the estimation of a 
similar requirement for a nonsymmetric one. Clearly, no root 
of equation (4.9) has a positive real part if 8 is vanishingly 
small, as Ms is symmetric and positive definite, and D T is sym­
metric and nonnegative definite. Also, on physical grounds, 
the eigenvalues of (Ms) ~J KM must be real and nonnegative. 
Finally, the eigenvalues for the three eigenproblems above dif­
fer only slightly from their counterparts when KM is replaced 
by KM because Km constitutes a small perturbation of K,„. 
Hence, as 8 is increased from zero, all the roots of equation 
(4.9) contain negative real parts until the stability requirement 

c infinite elastic medium 
( P m,E m ,V m ) 

3 

ps.E s ,v s 

Incident Wave 
Fig. 1 Geometry and notation for canonical problems 

(4 131 (4.17) is approached, where ojgax now pertains to the use of 
K 

5 Implementation and Computation 

This section describes the techniques used to implement in 
software the approach delineated above, and presents 
numerical results generated by that software. Modern 
software-engineering techniques are used (Felippa, 1981), in 
order to facilitate extension to large-scale production analysis. 
The numerical results pertain to linear canonical problems in­
volving plane, dilatational step-waves that envelope infinite-
cylindrical and spherical shells (Fig. 1). These problems 
possess known analytical solutions. 

5.1 Software Implementation. The approach described in 
Sections 2, 3, and 4 is embodied in an assembly of four soft­
ware entities: 

1. Structural Matrix Generator. The structural mass and 
stiffness matrices, Ms and Kx in equation (2.14), are generated 
by the finite-element code DIAL (Ferguson and Cyr, 1984); Ds 

is neglected. The structural matrices and related data are read 
into a NICE global database (Felippa, 1982). 

2. Medium Matrix Generator. The medium damping and 
stiffness matrices, Dm and K,„ in equation (2.14), are 
generated by software developed as part of this study in the 
manner described above; the force-transformation matrix G is 
constructed as a correspondence table. These data are read in­
to the NICE global database. 

3. Incident Field Generator. The incident-wave displace­
ment, velocity and force vectors, u / ( u7, and g7 in equation 
(2.14) are also generated by software developed as part of this 
study in the manner described below; as these are time-
dependent vectors, they are calculated dynamically as the 
calculation proceeds, f,- is taken as zero. 

4. Staggered Solution Procedure. The solution algorithm 
described in Subsection 4.1 is implemented as a NICE pro­
cedure using a command language interpreter (Felippa, 1983). 
The matrix operations embedded in the algorithm are per­
formed with a matrix utility processor for data in unblocked 
skyline format (Felippa, 1978). 

The FE and BE models are constructed independently, 
although the element grids match at their common boundary. 
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Fig. 3 Half-model grid for the infinite cyiinderical shell problem (finite 
elements extending to r = 2a) 

Geometrical symmetry is exploited in both canonical 
problems. 

5.2 Incident-Wave Vectors. A plane, dilational step-wave 
characterized by a velocity jump V0 and propagating in the xx 

direction may be described in terms of a scalar potential as 

¥ 
Vn 

2c, 
-{cdt-xl -a)2H(cdt-x^ -a) (5.1) 

where cd is the dilatational speed in the elastic medium, H is 
the Heaviside operator, and - a is the point on the x, axis 
where the wave front is located at t = 0. The application of 
classical continuum formulas (Achenbach, 1973) yields for the 
components of the geometrial displacement and velocity vec­
tors for the incident wave 

Mf = 6„. —Mc r fr—*, - a ) f / ( c d f - x , -a) 

uI
i=8uV0H(cdt-xl-a) 

(5.2) 

Hence the elements of the computational vectors u7 and ii7 are 
given by equations (5.2) evaluated at the surface nodes. 

Similarly, the components of the incident-wave stress tensor 
and geometrical surface-traction vector are given by (Achen­
bach, 1973) 

Cd 

-(X + 2 A t 5 I , ) / / ( c ^ - x 1 - a ) 
(5.3) 

fj< 

where A and n are the Lame constants and the «,• are the 
direction-cosines for the surface normal. Hence the computa­
tional vector g7 is determined from equation (3.16). 

5.3 Infinite Cylindrical Shell. The first canonical problem 
is that of an infinite cylindrical shell embedded in an elastic 
medium and excited by a transverse, plane, dilatational wave 
(Garnet and Crouzet-Pascal, 1966). The parameter ratios for 
this problem are Es/Em = 2.5 (Young's modulus), h/a = 0.01 
(shell thickness-to-radius), ps/pm = 1.156 (mass density), vm 

= 0.25 and vs = 0.2 (Poisson's); these pertain to a concrete 
shell in slow granite. The duration of the rectangular incident-
wave pulse is cdt/a = 10. A curved, three-noded shell element 
is used to model the shell, so that the FE/BE discretization 
employs conforming elements. 

The first computational model for this problem places the 
DAA boundary directly on the shell in the manner of Under­
wood and Geers (1981). The use of six curved quadratic 
elements over the half-model yields results that are virtually 
identical to those of Underwood and Geers (1981), which were 
generated with twenty linear elements over the half-model. 
Figure 2 shows DAA and exact displacement-response 
histories; agreement is seen to be excellent. 

Such agreement is not produced by singly asymptotic ap­
proximations. The elastic-foundation approximation 
generates response histories that oscillate markedly about the 
corresponding exact responses and the viscous-boundary ap­
proximation generates response histories that grossly exceed 
their exact counterparts (Geers and Yen, 1981). 

The second computational model introduces eight-noded 
medium finite elements between the shell and the DAA boun­
dary, which is located one shell radius out from the shell sur­
face (Fig. 3). The displacement-response histories thus pro­
duced are shown in Fig. 4 as solid lines, along with their DAA 
counterparts from Fig. 3, which are shown as dashed lines. It 
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Fig. 5 Quarter-model grid for the spherical shell problem (DAA boun­
dary on shell surface) 

Fig. 7 Quarter-model grid for the spherical shell problem (Finite 
elements extending to r = 2a) 
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rf 

X 

-2 
10 12 14 16 18 20 

Fig. 6 Displacement response histories for spherical shell (DAA boun­
dary on shell surface) 

is seen that the use of medium finite elements degrades solu­
tion accuracy somewhat by introducing spurious oscillations 
caused by ringing of the mesh. A third computational model, 
which locates the DAA boundary three shell radii out from the 
shell surface, yields results that are even more oscillatory, 
although peak-response values are still satisfactory. 

5.4 Spherical Shell. The second canonical problem is that 
of a spherical shell embedded in an elastic medium and excited 
by a plane dilatational wave (Grafton and Fox, 1965; Geers 
and Yen, 1981). The parameter ratios for this problem are the 
same as those for the infinite cylindrical shell, and the dura­

tion of the rectangular incident-wave pulse is also cdt/a = 10. 
An eight-noded Ahmad shell element is used to model the 
shell, so that this FE/BE discretization also employs conform­
ing elements. 

As previously, the first computational model for this pro­
blem places the DAA boundary directly on the shell; six eight-
noded quadratic elements are used over the quarter-model of 
the shell (Fig. 5). DAA-based displacement-response histories 
are compared with their exact counterparts in Fig. 6, the latter 
having been generated in the manner of Geers and Yen (1981). 
Here too, agreement is seen to be excellent; and, the singly 
asymptotic approximations also fail, generating response 
histories that exhibit behavior similar to that described above 
for the infinite cylindrical shell. 

The second computational model introduces twenty-noded 
medium finite elements between the shell and the DAA boun­
dary, which is located one shell radius out from the shell sur­
face (Fig. 7). The displacement-response histories thus pro­
duced are shown in Fig. 8 as solid lines, along with their DAA 
counterparts from Fig. 6, which are shown as dashed lines. 
Here too, it is seen that the use of medium finite elements 
degrades solution accuracy by introducing spurious oscilla­
tions caused by ringing of the mesh. 

6 Conclusion 

This paper has documented the formulation and implemen­
tation of a nonreflecting boundary for use with existing finite-
element codes to perform nonlinear ground-shock analyses of 
buried structures. The boundary is based on a first-order 
doubly asymptotic approxiation (DAA,) for disturbances pro­
pagating outward from a selected portion of the soil medium 
surrounding the structure of interest. The resulting set of first-
order ordinary differential equations is then combined with 
the second-order equations of motion for the finite-element 
model so as to facilitate solution by a staggered solution pro­
cedure. This procedure is shown to be computatioally stable as 
long as the time increment is smaller than a limiting value 
based on the finite-element mass matrix and the DAA-
boundary stiffness matrix. Computational results produced by 
the boundary are compared with exact results for linear 

Journal of Applied Mechanics SEPTEMBER 1987, Vol. 54/495 

Downloaded 03 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



ERROR IN CONSTITUENT FORCES GENERATED ON A SPHERICAL 
CAVITY BY A UNIFORM IMPOSED DISPLACEMENT 

Fig. 8 Displacement response histories for spherical shell (solid 
curves: finite elements around shell; dashed curves: DAA boundary on 
shell surface) 

canonical problems pertaining to infinite-cylindrical and 
spherical shells. 

From this study, the following observations may be made: 
1. Doubly asymptotic approximations are clearly 

superior to singly asymptotic approximations, the former in­
corporating both radiative energy dissipation and elastic 
restoring forces, the latter accounting for only one or the 
other. 

2. While the medium damping matrix may be interpreted 
in terms of local dashpots positioned on the DAA surface, the 
medium stiffness matrix is not so easily regarded; attempts to 
simplify the fully coupled nature of K,„ merely degrade the 
validity of low-frequency approximation. 

3. Although it is tempting to use a symmetric medium 
stiffness matrix in DAA computations, the resulting loss of ac­
curacy constitutes too high a price. 

4. The computational stability requirement (4.17) is a 
generous one when the soil is substantially softer than the 
structural material; when this is not the case, however, more 
efficient computations might be realized with an uncondi­
tionally stable staggered solution procedure, which is yet to be 
developed. 

5. The use of modern software-engineering techniques 
greatly facilitates the implementation of methods for the 
analysis of coupled systems. 

6. The results for the linear canonical problems once again 
demonstrate the difficulty of propagating a discontinuous 
wave front through a finite-element grid and, in contrast, the 
good performance of a boundary-element grid located directly 
on the surface of the structure. 
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Symmetric and 
Matrices 

A P P E N D I X 

Nonsymmetric Medium Stiffness 

The accuracy of symmetric and nonsymmetric medium 
stiffness matrices is evaluated here by computing the nodal 
forces generated by a uniform radial displacement applied to a 
spherical cavity in an infinite elastic medium. The correct 
nodal forces follow from the known traction solution 
(Timoshenko and Goodier, 1951) and equation (3.16), the 
nodal forces produced by the nonsymmetric stiffness matrix 
follow from equation (3.17), and the nodal forces produced by 
the symmetric stiffness matrix follow from equation (3.17) 
with K„, replaced by K,„. Figure 9 shows, for the discretization 
of Fig. 5, computational error in nodal-force magnitudes com­
puted with the symmetric and nonsymmetric matrices; K,„ 
clearly outperforms Km. It should be noted that convergence 
of the nodal forces generated by the symmetric medium matrix 
K,„ was obtained by successive mesh refinement. 
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On Tensile Shock Waves in 
Rubber-Like Materials1 

The problem of generation of one-dimensional tensile shock waves in rubber-like 
materials is studied numerically and compared to the exact elastic nonlinear solution 
and the steady wave solution. It is shown that a rate-type semilinear visco-elastic 
model can describe the steepening of the wave during its propagation and a 
"thickness" of the wave is naturally incorporated. An energetic criterion for the 
numerical stability is discussed. The numerical results point out the uncertainty {dif­
ficulty) one may encounter in measuring the dynamic Young's modulus and 
Maxwell-type viscosity coefficient. 

1 Introduction 

The main purpose of this work is to investigate the possibil­
ity of describing rubber-like materials by means of a rate-type 
viscoelastic constitutive equation. In this sense, we try on one 
hand to gain some insight in the way shock waves in nonlinear 
elasticity could be "captured" by using a "smoothing" 
Maxwell-type viscosity approach. On the other hand, we want 
to see how the steepening of the tensile waves in rate type 
viscoelasticity may take place when the equilibrium curve has 
an upwards oriented concavity. We also intend to test an 
energetic condition for the numerical stability of the integra­
tion scheme, obtained under different circumstances 
(Mihailescu-Suliciu and Suliciu, 1985). 

We do not claim to give here a precise constitutive equation 
which could describe accurately the behavior of a certain 
material under dynamic test conditions. However, for the pur­
pose of running the numerical experiments we did choose 
from the experimental literature (Treloar, 1949; Bell, 1973) the 
elastic (or equilibrium) stress-strain curve, the Young's 
modulus, etc., which are appropriate for a certain kind of 
rubber. 

Governing Equations. The equations of one-dimensional 
motion of a body are 

dv bo be bv 
P~^— ~^r = 0, -^—rzr = 0, (1) bt dX dt dX 

where v = v(X,i) is the particle velocity, a = a(X, t), e = 
e(X, f) are the engineering stress and strain, respectively, and 
p = const. > 0 is the mass density in the reference configura­
tion; t is the time coordinate and X i s the space coordinate in 
the reference configuration. 

We shall complete the system (1) either by a nonlinear 
elastic constitutive equation 
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o = R{e)>0,R'(e)>0,R"(e)>0,ee[eue2], (2) 

or by a rate-type, viscoelastic constitutive equation 

a-Ee= -k(o-R(e)), ee[eue2], -oo<o-<oo (3) 

where a = ba/bt, e = be/bt, k = const. > 0 is called the Maxwell-
type viscosity coefficient or simply viscosity coefficient; 
dimension (k) - dimension ((time) ~' j . E = const. > 0 is called 
the dynamic Young's modulus. The Newtonian viscosity coef­
ficient LI is formally related to k by tt = E/k since if in (3) a/k is 
neglected then a = R(e) + /xe. But completing the system (1) 
with such a constitutive equation, one obtains a semilinear 
parabolic system of equations while the semilinear system (1) 
and (3) preserves the hyperbolic character of the system (1) 
and (2). Thus, by a Maxwell-type viscosity approach to a 
nonlinear elastic problem, the hyperbolic character of the 
governing system is preserved. 

It is known that an initial or an initial and boundary value 
problem for system (1) and (2) may, in general, lead to solu­
tions which involve shock waves after a finite interval of time 
even if the data are continuous (or even C"). 

One can think of the constitutive equation (3) as a better 
model than the elastic one for the description of rubber 
behavior in dynamic experiments. Then we have to determine 
k (eventually as function of stress and strain) and E for each 
kind of rubber. 

On the other hand, as it was suggested by Mihailescu-Suliciu 
and Suliciu (1985), if we are given an elastic nonlinear problem 
which involves shock waves we can artificially build the con­
stitutive equation (3) taking a positive and large enough k and 
an E > i?'(e) on [eu e2]. We add to the elastic initial condi­
tions for strain and particle velocity, the initial condition for 
stress 

o(X,0) = <j0(X)=R(e(X,0))-

In this way, instead of the elastic nonlinear problem we get a 
viscoelastic semilinear problem consisting of system (1) and (3) 
and the initial and boundary data. 

In the viscoelastic problem, continuous initial and boundary 
data do not generate shock waves at any time. This means that 
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t t T 
V(x,t)=Vo 

E(x,t)=£(y*E2 

V(o,t) VQ [£(x,o)=£1,V(x,o)=oj 

Fig. 1 The characteristics plane for an elastic nonlinear solution in­
volving a shock wave 

at a given spacial coordinate Xs where the elastic problem will 
lead, at a time ts, to a jump of v and e, the viscoelastic prob­
lem must lead to a continuous but fast increase in time of v, e, 
and a and the increase is faster for larger A: (if E is fixed). 

Another purpose of this paper is to get some information on 
the way shock waves can be "captured" and "shock struc­
ture" described by means of a Maxwell-type viscosity ap­
proach instead of a Newton-type viscosity approach. 

On the Numerical Method and the Experimental Data. In 
order to obtain numerical solutions, the method of 
characteristics is often used for the initial and boundary value 
problem for the system (1) and (3). We only go up to the se­
cond approximation in this method since it is known (see for 
instance Rozhdestvensky and Yanenko, 1978) that, in general, 
the higher order approximations do not improve the order of 
accuracy over Mh2, where h is the time integration step and 
M > 0 is a constant. 

For an isolated body problem in rate-type viscoelasticity 
(i.e., for a problem in which the body does not exchange 
energy with the surroundings) one can prove (Mihailescu-
Suliciu and Suliciu, 1985) using an energy estimate based on 
the second law of thermodynamics that one gets numerical 
stability if the time integration step h is smaller than a deter­
mined value hm. For the initial and boundary value problem 
for which the strain e(X,t) remains in the interval [e l t e2] we 
have 

h,„ = 
E~R'{e2) 
E-R'(e{) 

2 
(4) 

Another purpose of this work is to test numerically if condi­
tion (4) is sufficient for the numerical stability in a non­
isolated body problem. Such a problem is, for instance, that 
of the motion of a semi-infinite body with prescribed one-end 
particle velocity which will be considered here. 

The elastic curve (2) which is the same as the equilibrium 
curve of equation (3) is taken of the form 

a = R(e)=A exp(Be), ee[e!,e2]. (5) 

When 

A = 2.26x10 s dyne/cm2, 5 = 0.34, e, =3.5, e2 = 5.5 (6) 

it gives a good fit to an experimentally reported curve for a 
certain kind of rubber (Treloar 1949, Chapter 1, Section 1). 
For the mass density (cf Treloar, 1949, Chapter IX, Section 3, 
Fig. 69) we take 

P = 1 gramme/cm3. (7) 

These experimental data seem also to agree with those dis­
cussed by Bell (1973, table 141, and Fig. 4.257 on p. 733). 

For the same rubber for which (6) and (7) hold, the Young's 
modulus at zero stress and strain is experimentally found to be 

of order of magnitude 1 x 10' dyne/cm2 (Treloar, Chapter I, 
Section 1). Since we have 

R'(e) <E= 1 X 107 dyne/cm2 
(8) 

we may take this value of E as the dynamic Young's modulus. 
The inequality (8) is essentially used in constructing the free 
energy function compatible with the second law of ther­
modynamics for the constitutive equation (3) (see Mihailescu-
Suliciu and Suliciu, 1985, and the literature quoted there). 
Based on that energy the estimate (4) is derived. 

The Initial and Boundary Value Problems. We choose a 
continuous initial and boundary value problem similar to 
Kolsky's experiment, i.e., 

e(Jt,f)=£i>0, v(X,0) = 0, a(X,0) = R(ei), X^O 

-at, Q^t^t0, a>0 
v(0,t)=vo (()=-> (9) 

Due to the simple form of v0 (t) we explicitly construct in Sec­
tion 2 the exact solution of the problem (1) + (2) + (9) for R (e) 
given by equation (5). In this solution a shock wave is 
developed in a finite time from continuous data. 

In Section 3 we find, by the method of characteristics the 
numerical solution of the viscoelastic problem (1), (3), and (9) 
and compare it with the exact elastic solution for different 
viscosity coefficients. 

2 A Nonlinear Elastic Solution Involving a Shock 
Wave 

We consider the problem consisting of equations (1), (5), 
and (9) with p = 1. This problem describes the motion of a 
semi-infinite elastic nonlinear body initially at rest, with the 
section X=0 subjected to a prescribed particle velocity (9). 
For the purpose of our numerical experiments we need the ex­
act solution of the above problem. We construct this solution 
by elementary methods (see for instance Rozhdestvensky and 
Yanenko, 1978, Chapter I and Chapter IV) and we give it 
below. 

The strain at X=0 is 

. •In[(a5r/2 + C1)/V/y?], for Te[0,ro] 
e ( 0 , T ) = e ( r ) H B (10) 

J(t0)=e2>eu for T>t„ 

where C, =Vi?'(e1) . We obviously have e(r)e[eu e2]. 
The curve OABS (see Fig. 1) separates the rest region from 

the perturbed one. The straight line OA is a segment of the 
characteristic line X = C{t. At the point 

A = (Xs,ts) = (2C1V(«S),2C1/(afl)) (11) 

the shock wave starts to develop. The parametric equation of 
the shock wave AB is t = t(r), X=^X(T), Te[0,to] with 

W) = ts,t{T) = _ , „ , ' , , for re(0,t0] 

X(0) = XS,X(T) = 

where 

C(T)-U(T) 

TC(T) (U(T) -aBT/6-C{/2) 

C{T)~U(T) 

forre(0,Co], 

(12) 

C(T)=^R'(.e(TJ)=aBT/2 + Cl, re[0,to\ 
(13) 

U(0)=Cu <y(T) = [ C 2 ( T ) - C 2 ] / [ 2 1 n - ^ ] , re(0,fo]. 

Here C{T) and U(r) are the acceleration and skock wave 
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-k= 5000 sec 

•k=32000sec 

•k=64000sec 

k=co 

[0)x= 0 cm 
2]x= 6.3 cm 
|4)x=12.6cm 

(6)x=19.0cm 

(8)x=25.3cm 

(10) x= 31.6cm 

(I2)x=37.9cm 

22 t 
msec 

Fig. 2 Particle velocity-time profiles at different cross sections for 
several viscosity coefficients. The full line represents the exact elastic 
solution, and the cross sections, where there are jumps, are indicated 
by full arrows. Double dotted line (— ' ' —) is for ft = 64000 s — 1 , dotted 
line — " —) is for ft = 32000 s" and crossed line (— x —) is for 
k = 5000 s 1 . The numbers (0), ( 2 ) , . . . , (12) represent the arrival time in 
millisec. at the corresponding cross sections computed from the wave 
speed c = VM/p by use of dynamic Young's modulus E = 107 dyne/cm2 

and p = 1 gr/cm3. 

speeds, respectively. Above the point B = (X„, ta) = (X(t0), 
t(t0)) the shock wave BS becomes a straight line 

X=X0 + U0(t-i0), t>t0; 
U2

0 = U1{.t0) = {R(e1)-• t f (e , ) ] / (e 2 -e , ) . (14) 

The solution in the perturbed region is as follows: In the 
region bounded by OABTaO (see Fig 1), e(X, f) = e(r) , v(X, 
t) = V0(T) along X=C(r)(t-T) for each fixed re[0, t0]. In 
the region bounded by TT0BS, e(X, t) = e2, v(X, t) = v0. 

3 Some Numerical Experiments in Rate-Type 
Viscoelasticity 

We construct here by the method of characteristics, the 
numerical solutions of the viscoelastic problem (VEP) (1), (3), 
and (9) with the equilibrium curve a = R(e) given by equation 
(5). This VEP corresponds to the nonlinear elastic problem 
(NEP) solved in Section 2. 

In the case when in the VEP the curve a = R(e) has 
downwards oriented concavity (i.e., R" (e)<0), . the follow­
ing facts are known from both laboratory and numerical ex­
periments. The solutions - v{X,t), e(X,t), a(X,f) of the VEP 
are increasing functions of / for any fixed X and they tend 
asymptotically in time to a "plateau" value * ( e 2 ) , 
respectively. Here the strain e2>e1 is determined by v0. 

The increase in time for a fixed X is faster for larger k and 
for fixed k the increase in time is slower for larger X (see, for 
instance, Cristescu and Suliciu, 1982, Chapter III and IV, and 
also Daimaruya and Naitoh, 1983). However, in this case 
(R" (e) <0), the corresponding NEP does not generate shock 
waves. 

To understand some laboratory data as well as the behavior 
of the rate-type constitutive equation (3), we consider the case 
when the NEP associated with the equilibrium curve o = R(e) 
generates a shock wave starting at some section Xs>0. 

Kolsky's measurements show that the wave becomes steeper 
as it propagates. On the other hand, theoretical results show 
that the wave cannot become a mathematical shock wave if the 
material has a finite viscosity coefficient k and suggest that the 
wave becomes steeper at the same section X for a material with 

20 

15 

10J 

t S 

/ ' /' 

# 

velocity 
in m/sec 

/ ^ ^ - • ^ " • ^ " 

/ ''S // / 
/ / / . / / / 
i ' 

?>r 

• ' • ' 

III 
lit it 

V L" 
li 
7 
— Full line at x=25.3cm 
— Dotted line at x=63.2cm 
-— Crossed line at x=1265cm 

k= 5000 sec"1 

time in millisec 

8 0 8 10 
Fig. 3 Particle velocity-time profiles for the viscosity coefficient 
k = 5000 s ~ 1 at different cross sections with the time origin on the 
elastic shock wave (or as they are seen by observers moving on the cor­
responding elastic shock waves) 

a larger viscosity coefficient. However, we would like to see 
the above facts in more detail and also to see the behavior of 
the wave with the propagating distance for different fixed 
viscosity coefficients k. 

Numerical Experiments. The function R (e), its numerical 
entries as well as the values of E and p are those of Section 1. 
The other numerical entries which will be used are 

e ,=4 , a = l x l 0 6 c m / s 2 , /0 = 2 x l ( T 3 s . (15) 

With these data, from equations (10) and (4) we get 

e2 = 5.055, /zm = 1.631/ks. (16) 

The strain e2 is asymptotically reached in time by the solution 
e(X,t) of VEP, for fixed X. 

We discusss here the results obtained for the following 
choices of k: 

£=5000, 32000, 64000 s~ (17) 

Figure 2 shows the particle velocity in m/s versus time in 
milliseconds at sectionsX=0; 6.32; 12.65; 18.97; 25.30; 31.62 
cm obtained as the numerical solution of the VEP for the 
above values of k as well as the exact elastic solution for the 
above numerical data. 

The exact elastic solution has the following properties: The 
solution stays continuous for 0^ t<ts = 10.18 ms and all 
X^ 0. At a point (Xs,ts), Xs = 17.61 cm, a shock wave starts 
to be generated and it is completely formed at the point (X0, 
f j , t0 = 12.66 ms. X0 = 22.06 cm. For t^ t0 a single shock 
wave will propagate with a speed U = 1897.73 cm/s. Across 
this shock wave (e, v) will jump from (et = 4, v = 0) to (e2 = 
5.055, v0 = 2000 cm/s). This solution is plotted in Fig. 2 by 
full and arrowed lines. 

One observes that for all three values of k, at all sections 
X>0, the velocity-time profile v = v(t) starts tangent to the 
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Fig. 4 Stress-strain relations at X = 25.3 cm and at X = 126.5 cm. The 
line ft = °o represents the equilibrium curve a = R(c). The straight line with 
higher slope represents the instantaneous response curve at e = 400 
percent (and <7 = 8.8x106 dyne/cm2). The crossed straight line 
represents the steady wave stress-strain relation as well as the com­
puted solutons for k = 32000/s and k = 64000/s at X = 25.3 cm. 

line v = 0 and ends asymptotically tangent to the line 
v=v0 = 2000 cm/s. For k= 5000/s the wave spreads with the 
increase in distance from the end X= 0 (see Figs. 2 and 3). For 
k = 32000/s and k = 64000/s, Fig. 2 shows that the wave gets 
steeper with the propagating distance and the viscoelastic solu­
tion gets closer to the elastic one with the increase of k, i.e., 
the wave becomes steeper with the increase of both k and X. 

Another important point is: suppose we deal with a real 
material described by the constitutive equation (3) with 
k= 64000/s, E and R(e) as above. This material will have the 
bar velocity c = 4W7p = 3162.28 cm/s. Suppose we measure 
the particle velocity-time profile of the wave at .AT =31.6 cm 
(say); then the first signals arrives at this section at t= 10 ms 
but at the scale of our Fig. 2 we see something significant ar­
riving only for t> 16.6 ms. This kind of behavior, which one 
must have in mind, places serious experimental difficulties for 
measuring both dynamic Young's modulus E and viscosity 
coefficient k. The same effect is present even if one uses the 
linear standard model of viscoelasticity. 

Numerical Stability. According to the results of 
Mihailescu-Suliciu and Suliciu (1985), a discrete isolated body 
problem formulated for the system (1) and (3) remains stable 
in energy if the maximum time integration step does not ex­
ceed the value h,„ given by equation (4). This restriction on the 
time integration step may be physically interpreted in a similar 
way one does with the Courant number, i.e., for the numerical 
stability of the integration scheme it is necessary to index in 
time at a rate that allows the viscous effects time to develop. 
Since we do not know a similar proof for a nonisolated body 
problem such as (1), (3), and (9), we have tested here 
numerically the validity of the restriction 0<h^ hm, with hm 

given by equation (16)2. The following experiments have been 
run. For each k in (17) we have chosen a time integration step 
hx<hm, but close enough to hm in order to have h2 = 2h]>hm. 

k = 64000/s the numerical solution did not behave properly for 
h = 2h{ in the sense that the stress starts to decrease while the 
strain still increases for a few time steps, after which both of 
them decrease down to very large negative numbers. For 
k- 5000/s the same behavior is observed for h = 4hx. For 
h = 2hx the numerical solution looks stable and it agrees with 
the solution for h = h, at the level of stresses which are not far 

from the equilibrium. However, the two numerical solutions 
(for h = hx and h = 2ht) do not quite agree for stresses which 
are not close to the equilibrium. 

Steady Waves. Our numerical experiments show how the 
particle velocity-time profile transforms in a steady wave pro­
file for large k after propagating a certain distance (compare 
the plottings of Fig. 2 for k = 32000 and 64000/s at the sections 
X=25.3, 31.6 cm and see also Fig. 4 for £ = 64000/s and 
X=25.3 cm). 

Greenberg (1986) studied steady wave propagation through 
materials with governing equations of the form (1) and (3) but 
under the assumptions E = E(e, a), dE/da<0, dE/de>0. 
These assumptions are not satisfied here since E= const. 
However, in a similar manner we find the following steady 
wave solutions 

w ( f ) = C / 0 [ e ( i - ) - e 1 ] , a(t)=R(e1) + E0[e(t)-ei], 

t=t-X/U0, E0=pU2
0 = [R(e2)^R(el)]/(e2-e1), 

(E-E0)e'(n=k[Eo(e(n-ei)-(R(e(n)-R(ei))], 

(18) 

for our equations (1) and (3). (For a detailed discussion on 
steady waves, see Nunziato et al., 1974). The differential equa­
tion for e is of the form e ' ( f) = * / ( e ( f ) ) / ( £ - £ 0 ) , fe ( -oo , 
oo) ore'(iy) =/(e( i j ) ) , i?e( - c o , oo) with v = k£/(E-E0). Any 
solution e(»j) (or e(f)) is a strictly increasing function on 
( — oo, oo) with e(j))—e, when rj oo and e(ij)^62 when 
7 J — - 0 0 . 

Now let A, 0 < A < (e2 - e i )/2 be an arbitrarily small number 
(A= (e2 - e , ) /10 say). One can determine the maximal finite 
interval (riA,riA) s uch that e(ri)e(el + A, e 2 - A ) when 176(7/4, 
r\l). The quantity lA = t]A — 17̂  can be called the conventional 
thickness of the wave in the plane 17 — e; it is independent on k 
and E and it depends only of R (e) on [e,, e2]. (For a similar 
notion in gas dynamics see Witham, 1974, Sections 2.4, 6.15; 
for an exact and finite thickness of wave see Suliciu, 1974, and 
also Cristescu and Suliciu, 1982, Chapter V, Section 2). The 
conventional thickness of the wave Z,A in the physical plane 
f — e is then 

LA = (E-E0)(A/k. (19) 

Since the conventional thickness of the steady wave for 
k= 64000/s does not exceed 0.8 ms (see Fig. 2) if we take k= 1 
x lOVs, then by equation (19) the thickness of the wave will 
be about 0.05 ms which at the scale of Fig. 2 makes this wave 
appear as a shock wave. We also note that for the equilibrium 
curve (5) and (6), for any E verifying equation (8) and any 
k>0, the steady waves (i.e., the solutions of equation (18)) 
always exist. However, for small k the solution of our problem 
(1), (3), and (9), first spreads with the distance (see Fig. 3) and 
then it becomes a steady wave. One can see that this wave is 
almost steady from Fig. 4, where for k = 5000/s at the distance 
of 126.5 cm the triangles representing the stress-strain relation 
along the wave are very slightly above the straight line 
o=R(el) + E0(e — e1) representing the steady wave stress-
strain relation. 

4 Concluding Remarks 

1. The shock waves, in nonlinear elasticity, generated by 
continuous data can be described by using a viscoelastic model 
with a large enough Maxwell-type viscosity coefficient. 
However, one has to decrease accordingly the time integration 
step, at least in the neighborhood of the shock waves. 

2. In the semilinear rate-type viscoelasticity, shock waves 
are not generated by continuous data, but a wave can become 
steeper during its propagation. The wave does not transform 
itself into a mathematical shock wave if the viscosity coeffi­
cient is large but finite, instead it becomes a steep but smooth 
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steady wave. Therefore, a thickness of the wave is obtained, 
which is different in nature from the corresponding notion in 
gas dynamics. 

3. There is a close relation between the size of the time in­
tegration step and magnitude of the viscosity coefficient. If 
this relation is not violated, one gets numerical stability; on 
the other hand, in a given problem it allows a proper choice of 
the time integration step in order to minimize the computa­
tional time. 

4. The numerical results presented here show that one can 
not easily identify, in a laboratory experiment, the dynamic 
Young's modulus from the wave speeds since a high viscosity 
coefficient flattens very much the front of the wave during its 
propagation. Therefore, the dynamic Young's modulus can be 
much larger than it may seem. From this point of view, the 
results are better if one uses measurements closer to the im­
pacted end. This remark is true even for the standard linear 
model of viscoelasticity. 
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Elastic Wave Scattering from an 
Interface Crack: Antiplane Strain 
The two-dimensional scalar problem of scattering of elastic waves under antiplane 
strain from an interface crack between two elastic half-spaces is considered. The 
method used is a direct integral equation method with the crack-opening displace­
ment as the unknown. Chebyshev polynomials are used as expansion functions and 
the matrix in the resulting equations is simplified by contour integration techniques. 
The scattered far field is expressed explicitly in simple functions and the expansion 
coefficients. The consequences of energy conservation are explored and are used as a 
check in the numerical implementation. For incoming plane waves numerical results 
are given for the total scattered energy and the far field amplitude. 

1 Introduction 

The detection of cracks is an important problem in the 
nondestructive evaluation of materials. Cracks have thus been 
extensively studied in the literature, though mainly in highly 
idealized cases. The penny-shaped crack is exhaustively 
treated by Martin and Wickman (1983), who also give many 
further references, and by Krenk and Schmidt (1982). High-
frequency aspects are considered by Keogh (1985 a, b) and 
Achenbach et al. (1978). Nonplanar cracks and partly debond-
ed inclusions are studied by Bostrom and Olsson (1986) and 
Olsson (1986). 

In the present paper we consider an interface crack between 
two homogeneous elastic half-spaces for the case of antiplane 
strain. The corresponding problem with an interface crack in a 
layered half-space is solved by Neerhoff (1970) and Yang and 
Bogy (1985), and Kundu (1986) solves for the transient 
response of an interface crack in a layered plate. Our method 
of solution is an integral equation method with the crack 
opening displacement as the unknown. To derive the integral 
equation we follow a procedure similar to that of Krenk and 
Schmidt (1982), and we thus avoid the introduction of any 
Green's function. One could instead proceed as Neerhoff 
(1979) and derive the integral equation from an integral 
representation containing a suitable Green's function. The 
two procedures should be equivalent but the one avoiding the 
Green's function is probably easier to generalize to more com­
plicated cases. 

2 Formulation of the Problem 

Consider a scattering geometry as depicted in Fig. 1 with 
two homogeneous half-spaces y > 0 and y < 0 in welded con-

• y 
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2a 

Fig. 1 The geometry 

tact except for an interface crack for I x I < a. Time-harmonic 
conditions are assumed throughout and the factor exp( - iut) 
is suppressed. In the upper half-space the shear modulus is ^ , 
the shear wavespeed is cx, and the wavenumber is kx and the 
corresponding quantities in the lower half-space are /x2, c2, 
and k2 . For antiplane strain the only displacement component 
is in the z direction and this component satisfies the Helmholtz 
equation so that the displacments ul fory > 0 and u2 for y < 
0 satisfy 

,2 „ i _,_ ^2„ i = n ^ > o (1) Vzw 1+£?«'=() 
V2u2 + k2

2u
2 = 0 y<0 (2) 

Along the welded part of the interface the displacement and 
traction are continuous: 

•2 y = 0, 

du2 

u' =u 

du1 

ix\ >a 

— = 0— y = o, \x\>a 
ay dy 

(3) 

(4) 
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where /3 = /i2/|"i is the shear modulus quotient. Along the 
cracked part of the interface the traction vanishes and thus 

du1 du2 , , 
— . = - — = 0 >' = 0, \x\<a (5) 
dy dy 

To completely specify the problem we must also give the in­
coming field and the radiation conditions at infinity. 

For simplicity we choose the incoming field as a plane wave 
of unit amplitude incident from below; more complicated in­
coming fields can then be obtained by superposition. To take 
advantage of the known reflection and transmission properties 
of the plane wave at the interface we make the following 
ansatz: 

u\ = Tengox+hmy) + u\ 

u2 = ei(q0x + h02y) + Rei(QoX-h0ly) + yi 

y>0 

y<0 

(6) 

(7) 

where 
„2\l/2 Imhm > 0 

''02 - IA2 — VOJ ' -&W^02 — 0 

and the reflection and transmission coefficients are 

0/!O2 - h\ R=-
hol+0h, 02 

2fiho 

(8) 

(9) 
^01+^02 

The fields t/1 and U2 are the extra fields due to the presence of 
the interface crack. These crack-scattered fields still satisfy the 
Helmholtz equations (1) and (2) and the welded boundary con­
ditions (3) and (4), but instead of equation (5) they fulfill an 
inhomogeneous boundary condition on the crack surfaces. 

3 The Integral Equation 

The crack-scattered fields are now written in the form of 
Fourier representations: 

(10) 

(11) 

where 

Ul=\ fi (q)ei<-"x+hi>')dq 
J — Co 

U2=\ f2(q)ei(qx~h^ dq 
J — 00 

/,1=(^2_q,2)i/2) Imht>0 

h2 = (kl-q2)yl, lmh2>0 

In writing the representations (10) and (11) we have taken the 
radiation conditions into account. One of the boundary condi­
tions says that 

dUl
 n dU2 „ 

—— = (3—— y = 0, a l l* 
dy dy 

and we especially note that this condition holds for all x. This 
gives 

fx(Q)=—r—AO?) (12) 

The other boundary condition along the welded part of the in­
terface is that 

Ul = U2 y = 0, \x\>a 

and this gives 

h. 
f2(q)e">xdq--

0 Ixl >a 

AU(x) \x\<a 
(13) 

Inverting the Fourier transform in equation (13) we can ex­
press the crack-scattered field amplitude f2 in the crack-
opening displacement At/: 

f2(q)=- L AU(x)e~'ixdx (14) 
2 T ( A , + / 3 / I 2 ) 

The last boundary condition, equation (5), gives with equa­
tions (6), (12), and (14) 

0M 2 h0i Te'io* + dq 
27T( / ! ,+ /3 / ! 2 ) 

• elqx 

AU(x')e-i"x dx' =0 (15) 

This is the sought integral equation for the crack-opening 
displacement At/. Once At/is determined, equations (14) and 
(12) give the field amplitudes and equations (10) and (11) give 
the crack-scattered fields. 

To solve the integral equation we expand At/ in a complete 
set of Chebyshev polynomials: 

t>„ ( * ) : 
cos (n arcsin (x/a)) «=1,3,5, . . . 

i sin(« arcsin (x/a)) n = 2,4,6, 
(16) 

This set is convenient because it satisfies the correct edge con­
dition (cf Neerhoff, 1979), and have the following property: 

<j>n(x)e~^xdx = J„(ya) 
J -a y 

We thus expand 

At/(x) = £«„ * „ ( * ) 
n 

Inserting this in equation (15) we have 

/3M2 

(17) 

(18) 

hMTe,"ox + dq 
2q(hx+$h2) 

ei"xYlnanJ„(qa)=0 

Multiplying by 4>„ (x) and integrating over [ - a, a] we get 

D QB«'<*«' = -2nThm/q0J„(q0a) (19) 

where the symmetric matrix Qnn > is 

0M 2 
Qnn' = = m'[. q2(hx+W2) 

Jn(qa)J„> (qa)dq (20) 

The integration range in equation (20) can be reduced to a 
finite range. For a very similar integrand this has been dis­
cussed by van den Berg (1981) so we do not repeat the details 
here. The result is that Qm> can be written as: 

Qnn' =2«« 
• ! 

ki P^fkJ^JkJ^q2 

+ — 6„ 

4k\^q2 + P^lcf^q2 

dq 

J>(qa)^(qa) 

+ 2nn 
•\ 

+ 5, 

HHk2
2-q

2)Vk^q2 

k2 ( l - | 8 2 )^ + /32*i-*? 

dq 
q1 

T-[j>(qa)^(qa) 

1+/3 
(21) 

where At/ is the so far unknown crack-opening displacement. Here > ( < ) denotes the larger (smaller) of n and n'. We have 
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Fig. 2 The total crack-scattered energy as a function of frequency k2a 
for an incoming plane wave making the angle <i0 = 30 deg with the inter­
face and four material combinations: c2 /c1 = 1, ji2'/M = 1 ( )'< 
c2iCf = 1.2, ii2in = 2 <—); c 2 ' c i = i-5>/»2'/M = 5< ); c2/c-i = 1.8, 
J.2 'MI = 8 ( ) 

0 2 A 6 B 10 

Fig. 3 Same as Fig. 2 but direction of incidence 4>0 = 60 deg 

0 2 4 6 

Fig. 4 Same as Fig. 2 but direction of incidence <•>(, = 90 deg 
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::-;;:": 
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Fig. 5 The absolute value of the back-scattered far field amplitude as a 
function of frequency fc2a for an incoming plane wave making the angle 
<*J0 = 30 deg with the interface and four material combinations: c2 /c1 = 
1,/i2'*M = 1( )\c2lci = 1.2, ft2/fti = 2 ( — ) ; c 2 / c 1 = 1.5,/ l2/p1 

= 5 ( ) ; c 2 ; C l = ^.B,|l2lM = 8 ( ) 

assumed that kx < k2, but a very similar form holds when k2 

> kx. For kx = k2 and ( 3 = 1 our problem reduces to that 
considered by van den Berg (1981) and our Qn„> also reduces 
to his corresponding matrix. 

Once equation (19) is solved for the unknown expansion 
coefficients <x„, the crack-opening displacement is determined 
and it in turn gives the field amplitude from equation (14) 

/2(9)=^kr?^^(^ (22) 

and the crack-scattered fields from equations (10)-(12) 

t/>: 

lfi = 

?"a«!l^k7«(^^+ 

T^na"\ 

h{y) 
dq 

(23) 

hi . . dq 
— - i - — /„ (qa)e^- V ) - * (24) 

-°° hi + (3h2 q 

These integrals have in general to be computed numerically, 
but we shall see in the next section that in the far field region 
this is not necessary. 

4 The Far Fie lds 

In the far field the integrals in equations (23) and (24) can be 
computed with the stationary-phase method. Introducing 

polar coordinates x = p cos (j>, y = p sin <j> with p assumed 
large we easily see that the stationary point occurs at q = k cos 
4>. Using equations (8), (9), and (19), the far fields become 

V k \ - k \ cos2 4> 
Ul = -pN8Tr/k[pe«ki»-'Mhan <j> 

A:, sin <j> + @^/k2- k\cos2<\ 

tan 0O-
-Jkf-^k2cosrcj)0 

•Jk2-k2cos24>0 + fik2 s in0o 

X) nn'J„(kla cos<t>)Jn> (k2a cos <t>0)Q»„1' 

^lk\-k\cos2<j> 

(25) 

lf-= -p-J8w/k2p eiikv-'/*han <t> 
V'k2 - k2cos2<t> — /3/r2sinc/> 

tan</>c 
V&2 — k\cos2(j>0 

\/k2-k2cos2(t>0 + fik2sm<j>0 

£ ] nn'J„(k2acos 4>)Jn' (k2a cos<t>0)Q-n
[< (26) 

where we have introduced the direction of propagation of the 
incoming wave 4>o by q0 = k2 cos 0O . We note that the 
reciprocity relations that Ul is symmetrical under the ex-
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change k2 cos </>0 <-> kx cos <f> and U2 under the exchange cA0 <-> 
— <t> are satisfied. 

In the far field region it is easy to check the consequences of 
energy conservation and this we now do. The mean value in 
time of the total energy flux in the radial direction is 

1 f 2 j r 

<P>=—-co Im\ ix u* 
2 Jo 

du 

17 pd<t> (27) 

0 2 4 6 8 10 

Fig. 6 Same as Fig. 5 but direction of incidence </>o = 60 deg 

0 2 4 8 a 10 

Fig. 7 Same as Fig. 5 but direction of incidence 4>Q = 90 deg 

where the star denotes the complex conjugate. As no energy is 
created or destroyed inside the circle with radius p we must 
evidently have 

<^>=0 (28) 

Introduce now the far field amplitudes Fi and F2: 

U1 =V8ir/A:1pl;''<*i''-'r/4>F1 (0) (29) 

Fig. 8 The absolute value of the far field amplitude as a function of 
angle for the frequency k2a = 2 and the same material combinations as 
in Figs. 2-7 and direction of incidence: (a) ̂ 0 = 30 deg; (b) <i>o = 60 deg; 
(c) <j,0 = 90 deg 
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/ 

/ 

I t 
/ / / 

w: 

U2 = -M^Tk^Te'^v - */4>F2 (0) (30) 

where the expressions for Fx and F2 can thus be read off from 
equations (25) and (26). Inserting equations (6), (7), (29), and 
(30) into equation (27) and performing some of the resulting 
integrals by the stationary-phase method, equation (28) finally 
yields 

J* lF,(0)l2rf* + j8[ ' \F2(4>)\2d<t> + Re[T,Fl(4>l) 
J O J 7T 

+ PR*F2($r)] = 0 (31) 

Here <t>, and 4>r are the directions of the transmitted and 
reflected plane waves and are thus determined by Snell's law, 
i.e., 

sm<j>t = hoi /ky, cos4>, =q0/kl 

s in$ r = — h02 /k2, cos<t>r = q0/k2 

The energy conservation as expressed by equation (31) should 
be compared with the corresponding expression given by 
Neerhoff (1979) for the case with an interface crack in a 
layered half-space. The energy conservation is a valuable 
check in numerical work and we thus use it during the 
numerical implementation. 

/ \ 

/ - ~ \ 

/ 

/ 

/ / \ \ 

i ' V 

/ / 

/ / / ; 

i ' I' 
!: s—J: 
i; / N 
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b) 

I ,»» \ 

\ I 

\ / 

Fig. 9 The absolute value of the far field amplitude as a function of 
angle for the frequency k2a = 5 and the same material combinations as 
in Figs. 2-8 and direction of incidence: (a) <t>o = 3 0 deg; (b) o0 = 60 deg; 
(c) 0O = 90 deg 
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5 Numerical Examples 

We now turn to some numerical applications of the forego­
ing. We only compute far-field quantities, but we give both 
the total scattered energy and the back-scattered far field 
amplitude as functions of frequency and the far-field 
amplitude as a function of angle. The far-field amplitude was 
defined in the previous section, cf equations (25), (26), (29), 
and (30), and the total crack-scattered energy normalized with 
the energy density 1/2 w n k2 in the incoming plane wave and 
the crack width 2a is 

°=-P-(P-1V \Fx(4>)\2d<j>+\^ I ^ W l W ) (32) 
k2a V Jo J i / 

In the case of no contrast between the half-spaces this reduces 
to the usual definition of the total scattering cross section. By 
means of the condition of energy conservation, equation (31), 
the total scattered energy can be written in a form that con­
tains no integrals. 

All the computations are easy to perform and one only has 
to ascertain that the truncation, i.e., the number of terms in 
the summations in equations (25) and (26), is sufficiently high. 
The truncations needed depend on the frequency and by trial 
and error it is seen that it is in fact enough to take a number of 
terms that are slightly larger than max (kxa, k2a). 

For the numerical computations, four different material 
combinations have been used: c2/cx = 1 and /3 = /x2//x, = 1 
(a homogeneous space with a crack), c2/cx = 1.2 and |8 = 2, 
c2/cx = 1.5 and /3 = 5, and c2/cx = 1.8 and 0 = 8. The lower 
half-space thus has the larger stiffness and wavespeed. The in­
coming plane wave in the lower half-space propagates in a 
direction which makes the angle 0O = 30 deg, 60 deg, or 90 
deg with the interface. 

Of the numerical results we first show the total crack-
scattered energy as a function of frequency k2a for the incom­
ing directions <j>0 = 30 deg, 60 deg, and 90 deg in Figs. 2, 3, 
and 4, respectively. All four material combinations are shown 
in each figure: c2/cs = 1 and /3 = 1 is shown with a full line, 
c2/cx = 1.2 and jS = 2 with a dashed line, c2/cx = 1.5 and /3 
= 5 with a dotted line, and c2/cx = 1.8 and /3 = 8 with a 
dashed-dotted line. For the homogeneous cracked space the 
total scattered energy should approach 2 cos <j>o (= 1, 1-73, 
and 2 in Figs. 2-4, respectively) at higher frequencies and this 
is well satisfied. With increasing contrasts between the half-
spaces the crack-scattered energy becomes smaller as the inter­
face reflects some energy even in the absence of the crack. 

In Figs. 5-7 the back-scattered far field amplitude is shown 
as a function of frequency for the same directions of incidence 
and material combinations as in Figs. 2-4. As for the total 
crack-scattered energy the values decrease with increasing con­
trast. For <j>0 = 30 deg and 60 deg the curves have a periodic 
behavior with the peaks appearing when the wavefront of the 
incoming wave contains an integral number of half-
wavelengths on the part that can be projected on the crack. 

The angular dependence of the far field amplitude is shown 
in Figs. 8 and 9 for the same directions of incidence and 
material combinations as before and for the two frequencies 
k2a = 2 and k2a = 5, respectively. Figures 8(a), S(b), and 8(c) 
which differ by the direction of the incoming wave are drawn 

to the same scales and likewise for Figs. 9(a), 9(b), and 9(c). 
As the contrasts between the half-spaces increase the far field 
amplitude in the upper half-space grows and develops addi­
tional side peaks. The growth is, however, not associated with 
any growth in crack-radiated energy, cf Figs. 2-4, as the 
material in the upper half-space becomes softer with increas­
ing contrasts. The additional side peaks can be attributed to 
the fact that kxa increases with increasing contrasts. In Figs. 
9(a) and 9(b) we notice that the main lobe in the upper half-
space is closer to the normal for larger contrasts quite in accor­
dance with SnelPs law. The main lobe in the lower half-space 
is, on the other hand, in the direction of specular reflection in­
dependently of the contrasts. 

6 Concluding Remarks 

We have seen how by a modification of the integral equa­
tion approach of Krenk and Schmidt (1982) it is possible to 
treat an interface crack. Only the two-dimensional case with 
antiplane strain has been considered in the present paper. 
More general cases can, however, also be solved with the pre­
sent approach. The three-dimensional acoustic (scalar) 
problem with a soundhard (or soft) disk at an interface can 
thus be solved by the present approach and work in this direc­
tion is in progress. It will also be possible to treat the even 
more interesting case with a penny-shaped crack (which could 
be fluid-filled) at the interface between two elastic materials. 
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Rayleigh-Lamb Waves in an 
Elastic Plate With Voids 
Rayleigh-Lamb waves in a homogeneous and isotropic linear elastic plate containing 
a distribution of vacuous pores (voids) are studied. Assuming that the plate is of 
uniform thickness and that its faces are stress-free, it is found that the waves move, 
in general, in two uncoupled families, of which one is symmetrical with respect to 
the midplane of the plate and the other antisymmetrical; each of these families is af­
fected by the presence of voids. If the plate is thin and the frequency is small, the 
voids influence only the symmetric waves and, because of this influence, the waves 
propagate slower than their classical counterparts. If the plate thickness and the fre­
quency are large, each of the two families degenerates into two uncoupled waves; 
one of these is a classical Rayleigh wave and the other is a new wave not encountered 
in the classical theory. 

1 Introduction 
The theory of elastic materials with voids is one of the most 

recent generalizations of the classical theory of elasticity. This 
theory is concerned with elastic materials consisting of a 
distribution of small pores (voids) which contain nothing of 
mechanical or energetic significance. The general version of 
this theory was obtained by Nunziato and Cowin (1979), and 
the linearized version by Cowin and Nunziato (1983). A novel 
feature of this theory, over other theories on porous materials, 
is that it permits a porous body to enlarge or reduce the overall 
volume the body occupies in the absence of body forces. It is 
believed that the new theory is of practical utility in in­
vestigating various types of geological, biological, and syn­
thetic porous materials for which the classical theory is inade­
quate. Some problems revealing interesting characterizations 
of the theory have been considered by Cowin and Nunziato 
(1983), Cowin and Puri (1983), Passman (1984), Cowin (1984 
a, b; 1985 a, b), Puri and Cowin (1985), and Chan­
drasekharaiah (1986, 1987). Some basic theorems and proper­
ties of solutions have been obtained by Iesan (1985); the inter­
relationships between this theory and various other continuum 
theories have been analyzed by Cowin (1984 b; 1985 b). 

The object of this paper is to discuss the propagation of free 
plane waves (of the Rayleigh-Lamb type) in a homogeneous 
and isotropic elastic plate with voids, by employing the field 
equations obtained by Cowin and Nunziato (1983). Assuming 
that the plate is of uniform thickness and that the faces are 
stress-free, we find that there occur, as in the corresponding 
classical problem, two uncoupled families of waves (in 
general) of which one consists of symmetrical motions about 
the midplane of the plate and the other antisymmetrical mo-
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tions; each of these families is influenced by the presence of 
voids. We obtain the frequency equations for the two families 
and find that the voids have no influence on the cutoff fre­
quencies of pure shear motions. As limiting cases, we consider 
small frequency waves in a thin plate and high frequency 
waves in a plate of large thickness. In the former case, we find 
that the voids have influence only on the symmetric family and 
that, because of this influence, the symmetric family pro­
pagates slower than its classical counterpart; for a typical 
(hypothetical) material model (Puri and Cowin, 1985) the 
decrease in the speed is found to be about 6.64 percent. In the 
latter case, each of the two (symmetric and antisymmetric) 
families degenerates into two uncoupled waves, of which one 
is a classical Rayleigh type wave not influenced by the presence 
of voids and the other is a new wave (caused by the porosity of 
the material) not encountered in the classical theory. A com­
parison between the present analysis and its counterpart in 
thermoelasticity is made at appropriate places. 

2 Basic Equations and Boundary Conditions 

In the context of the theory presented by Cowin and 
Nunziato (1983), the field equations for a homogeneous and 
isotropic material, in the absence of body forces, are given as 
follows: 

jX V 2 W, + ( X + jX) Uk<ki + (3<t>,i = P " 
d2u. 

dt2 

aV2(t>-i;<f>- IT -Pukk=pk 
d24> 

(2.1) 

(2.2) 

In these equations, «,- is the displacement vector, $ is the so-
called volume fraction field (defined in Cowin and Nunziato, 
1983), X, ix. are the usual elastic constants, p is the mass densi­
ty, a,' $, £, co, and k are new material constants characterizing 
the presence of voids, and t is time. The notation of Cartesian 
tensors is also adopted. In the absence of voids, we have <t> = 
0, and equation (2.1) reduces to the classical Navier's 
equation. 
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The stress tensor T,-,- associated with w,- and </> is given by 
(Cowin and Nunziato, 1983) 

Tii = x 8u uk,k + M ("/j + Uj,i) + /%<£ (2.3) 
If we set 

Ui=P,i + eijkqkj (2.4) 

then equation (2.1) is satisfied, provided/? and </,• are governed 
by the following equations: 

/ , 1 a2 \ /3 
( V 2 _ _ U = T * (2-5) 
\ fir 9 r / oaz 

( " 

a2 3/2 

i a2 

)<!i = 0 (2.6) 

Eliminating 0 from equations (2.5) and (2.2) we obtain 

[("-^('•"-^£)}("-7£} 
+ iS*V2|/? = 0 

In the above equations, we have set 

(2.7) 

A + 2/* 
b2--

T k* = 
pk 

paaz 
(2.8) 

From equations (2.5)-(2.7), it is evident that of the three 
unknowns/?, qh and 4>, only/? and q, are independent and that 
pure shear waves are not affected by the presence of voids. If 
in a given problem, p and <?, are determined by solving equa­
tions (2.7) and (2.6), then <j> follows from (2.5). 

Substituting for «,- from (2.4) in equation (2.3), and using 
equations (2.5) and (2.8), we obtain the following expression 
for Tjj in terms of/? and <?,: 

1 32 

= /* [2P!U-[2V2 

df -} V 

E,ft I (2.9) 

If the boundary of the body is free of external loads, the 
following conditions hold on the boundary (Cowin and 
Nunziato, 1983): 

•unJ = 0 (2.10) 

(2.11) 

Here, n, is the unit outward normal to the boundary. By 
substituting for Ty from equation (2.9) we may express the 
boundary condition (2.10) in terms of/? and q,. 

Under the assumptions made, equations (2.5)-(2.7) and 
equations (2.10), (2.11) serve as field equations and boundary 
conditions for the theory considered. 

3 Plane Waves in a Plate 

Suppose that the body considered is a plate occupying the 
Cartesian space - oo < x < oo, — H <y<H,—<x><z<&> 
and that free plane waves propagate in the plate in the positive 
x direction causing plane deformation parallel to the xy plane. 
Then the displacement vector lies completely parallel to the xy 
plane and all the field variables depend only on x, y, and t. 
Under these conditions, only the z component, qi, of qt is rele­
vant; we denote it by q. We denote the x and y components of 
Uj by u and v, respectively. 

If the waves propagate with frequency 0/2ir, we seek, as 
usual, solutions for p and q in the form 

<P,q) = (Po<<lo) e xP V(yx-dt)] (3.1) 

where /?0 and q0 are functions of y and y is a complex number. 
If 7 = 7, +iy2, then for the waves to be physically realistic, 
we should have 7] > 0 and 72S:0; 2ir/7, represents the wave 
length. 

Putting equation (3.1) into equations (2.6) and (2.7), we ar­
rive at the following expressions for p0 and <?0: 

pQ=Ai cosh A«1>'-(-^42cosh m1y + Bl sinh mxy 

+ B2 sinh m2y (3.2) 

qa = Ay sinh m0y + B^ cosh m0y (3.3) 

Here At and B, are arbitrary constants, 

e2 

m\-- • y 2 - b2 (3.4) 

and m,, m2 are (complex) roots of the equation 

{y2-m2)2 

la2 
1 

(l-iw*8-k*e2) + P* (y2 -m2) 

e2 
(\-iw*d-k*62) = 0 (3.5) 

With the aid of equations (3.1) and (3.2), equation (2.5) yields 

paz 

[ ^ ( ^ c o s h w ^ + i^sinh mxy) + r2(A2coshm2y 

+ B2 sinh m2 y)] exp [i(yx-dt)} (3.6) 

where 

f\,i = m\i2- •72+ — a1 (3.7) 

If the faces y = ± H of the plate are stress-free, the boun­
dary conditions (2.10) and (2.11) become T12 = T22 = d<j>/dy 
= 0 for;' = ± H. With the aid of equations (2.9), (3.1)-(3.3), 
and (3.6), these conditions yield the following system of equa­
tions: 

2 i7(w,s 1 ^ 1 +w 2 s 2 / l 2 ) + 7 0 s 0 ^3=0 

2iy(mlclBl+m2c2B2) + y0c0B3=0 

y0(clAl+c2A2)-2iym0c0Ai=0 

ToC î-Bi +S2#2> - 2iym0s0B3 = 0 

rlm1slAl+r2m2s2A2 = 0 

rlm1clBl+r2m2c2B2=0 

Here we have set 

(3.8) 

i'j]2 = sinh mX2H, cl2 = cosh ml2H, 70 = 272 62 

b2 

(3.9) s0 = sinh m0H, c0 = cosh m0H 

From equations (3.8), we see that all the A's are linked 
together, all the B's are linked together, and y4's and B's are 
unlinked. It may be verified that for the waves of the desired 
type to exist, at least one of the two constants Ax and B{ 

should be nonzero; if Bx = 0, the solution (3.1) corresponds 
to waves symmetrical with respect to the midplane (y = 0) of 
the plate and if A{ = 0 , the waves are antisymmetrical. In 
general, the solution (3.1) represents a superposition of two 
uncoupled families of waves, of which one is symmetrical and 
the other antisymmetrical with respect to the plane y = 0. 

4 Frequency Equation 

We now proceed to obtain the characteristic equations 
determining the phase speeds of symmetric and antisymmetric 
families of waves. 

If we put 

T = yH, M0 = m0H, M, 2 = ml2H 
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Q = H, V=-
Qb 

^ 1 , 2 : 1 (4.1) 

then equations (3.4) and (3.7) yield 

V2 

('"B 
n2b v2 
\VbL / V- \ (4.2) 

It is evident that Vrepresents the complex phase speed, only 
the real part of which is physically relevant. 

With the aid of equations (4.1) and (4.2), we find from 
equation (3.5) that /?, and R2 satisfy the equation 

U*R4 + (l-N*~Q*)R2-\=0 (4.3) 

where 

a*/?*//2 

and 

N*--

n*=-

iP-iw^bH-kWb2 

a*Q2b2 

(4.4) 

(4.5) 
a2[ /^-/co*Q6//-A:*Q262] 

Eliminating the constants At and B{ from the system of 
equations (3.8) and simplifying the resulting expressions with 
the aid of equations (3.9), (4.1), and (4.2), we arrive at the 
following two frequency equations: 

(2r2-n2)2[Af2(i-/?i)r l
±1-M1(i-JR

2)r2
±1] 

= 4r2M0MlM2(R
2-Rfr (4.6) 

Here we have put 

r,,= 
Co51,2 (4.7) 

Of the two equations given in (4.6), the one which contains 
Tf1 and T2~

l, obtained by eliminating ^4's from equations 
(3.8), corresponds to the symmetric family of waves. The 
other equation which contains Tx and T2, obtained by 
eliminating B's from equations (3.8), corresponds to the an­
tisymmetric family. 

In view of equations (4.2), equations (4.6) may be regarded 
as equations connecting Kand T as well. Accordingly, each of 
these two equations, being transcendental, yields infinitely 
many discrete roots for V in terms of r , each root corre­
sponding to a mode of vibration. The motions-both sym­
metric and antisymmetric - are obviously dispersive and the 
analysis of their behavior in the general case is complicated. 
However, it is possible to obtain readily the cutoff frequencies 
by setting T = 0 in the frequency equations (4.6). The cutoff 
frequencies so obtained are governed by the following 
equations: 

(0 For symmetric family 

Q = mr, « = 1,2 00 (4.8) 

R2(\-R\) tan (QbR2/a) =/?,(l -R2) tan (QbR^a) (4.9) 

(if) For antisymmetric family 

Q = ( 2 n - l ) - ^ - , « = l , 2 , . . . . o o (4.10) 

R2(l-Rl)tan(QbRi/a)=Rl (1 -R}) tan (QbR2/a) (4.11) 

Evidently, the cutoff frequencies given by equations (4.8) 
and (4.10) are not influenced by the presence of voids and are 
associated with pure shear motions. The cutoff frequencies 

determined by equations (4.9) and (4.11) are associated with 
the compressional motions influenced by the presence of 
voids. Because of the presence of the material constants a*, 
13*, and 03* in the governing equation (4.3) of /?, and R2, the 
cutoff frequencies determined by the transcendental equations 
(4.9) and (4.11) differ from those occurring in the classical 
elasticity theory. 

In the absence of voids, we may take Rx = 1 and R2 = 0 
(see, equations (4.3)-(4.5)). Then the frequency equations 
(4.6) reduce, with the aid of equations (4.2), (4.7), and (3.9), 
to 

WK1—) ] 
Janh 

|/2 \ 1/2 

C V2\2 2-w 
(4.12) 

These are well-known frequency equations for Rayleigh-
Lamb waves in classical elasticity. (Apart from the notation, 
these equations are identical with equations (12) and (48) of 
Lamb, 1917.) 

It may be noted that the field equations (2.1) and (2.2) and 
the constitutive equation (2.3) resemble the corresponding 
equations in linear coupled thermoelasticity; the boundary 
condition (2.11) is analogous to the condition of thermal in­
sulation. Cowin (1985b) has discussed some aspects of the 
similarities between the theory of elastic materials with voids 
and the thermoelasticity theory. In the context of ther­
moelasticity, the problem of Rayleigh-Lamb waves has been 
analyzed, among others, by Nowacki (1975). We find that our 
frequency equations (4.6) are analogous to equations (15) and 
(16) on p. 208 of Nowacki (1975). However equation (3.5) and 
its counterpart in thermoelasticity, viz. equation (8) on p. 207 
of Nowacki (1975), have different structures. 

5 Limiting Cases 

In what follows, we analyze equations (4.6) in two limiting 
cases. 

Case (f) Waves in a Thin Plate. We first suppose that 
| r | < < 1, Q —0. In this case, which obviously corresponds to 
small values o f / / and 0, we find from equations (4.2) and (4.3) 
that 

Rl=(l-N)-W2, fl2-oo. 

Here 

N=a*(3* 
IS2 

pa2Z 

Equations (4.6) now yield the following roots: 

(/) For symmetric family 

r b2 11/2 

F=2T-^wvTJ 
(//) For antisymmetric family 

— [ - f ('»£-)] 

(5.1) 

(5.2) 

(5.3) 

Evidently, the antisymmetric family is not affected by the 
presence of voids; its speed, given by equation (5.3), is iden­
tical with that obtained in the classical theory (see equation 
(50) of Lamb, 1917). 
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On the other hand, the symmetric family is affected by the 
presence of voids; while its speed in the classical theory is 

/ b2 \ 1/2 

v>=2b(*—ar) <5-4> 
(see equation (15) of Lamb, 1917), in the presence of voids the 
speed is modified to 

/ b2\ 1/2 

where a* =a(l — N)l/2\ see equation (5.2) above. It is known 
(Puri and Cowin, 1985) that the constant TV satisfies the ine­
quality 0 < N < 1, with N = 0 holding in the absence of 
voids. Consequently, we have V* < Vs in the presence of 
voids. Thus, symmetric waves of small frequency in a thin 
elastic plate with voids are slower than their classical 
counterparts. 

The values of the material constants characterizing the 
presence of voids are not known as yet for any material. In 
their analysis of plane waves in an unbounded elastic material 
with voids, Puri and Cowin (1985) have considered a typical 
(hypothetical) material model for which a = 3873 m/s, b = 
1937 m/s, and N = 0.2778. For this model, we find that V* = 
3132.0918 m/s. For the corresponding classical model (7V=0), 
we get Vs = 3354. 6933 m/s. Thus, in this model, the reduc­
tion in the speed of small frequency symmetric waves in a thin 
plate, due to the presence of voids, is about 6.64 percent. 

Puri and Cowin (1985) have shown that the constant a* = 
a (1 —N)W2 represents the speed of predominantly elastic low 
frequency waves in an unbounded elastic material with voids. 
As such, the expression for V* obtained above is structurally 
consistent with the expression for Vs, valid in the classical 
theory. 

In the linear thermoelasticity theory, it is known that small 
frequency dilatational waves propagate with speed aT = 
a (1 + e)w2, where e > 0 is the thermoelastic coupling constant 
(Nowacki, 1975, p. 108). From the frequency equation (15) on 
p. 208 of Nowacki (1975), it may be shown that the counter­
part in thermoelasticity of our equation (5.5) above reads 
thus: 

V** = 2b(\-{ 6 \ (5.6) 

This expression is also structurally similar to equation (5.4) 
valid in the classical elasticity theory, and we have V** > Vs. 
Thus, while the presence of voids decreases the speed of small 
frequency symmetric waves in a thin elastic plate, the presence 
of the thermal field increases the speed; in both the cases the 
qualitative behavior of the waves remains unchanged. 

Case (H) Waves in a Plate of Large Thickness. We now 
suppose that | r | > b/a Q |/?1|2 |. In this case, which obviously 
corresponds to large values of H, we find, with the aid of 
equations (4.2), that the two equations in (4.6) reduce to one 
and the same equation given below: 

r Q2b2 "1 / V2\2 

Y2\M\+M\M1+M2
1+~l T2I ( 2 — r r ) 

= 4M 0M IM 2(M,+M 2) (5.7) 

Accordingly, in this case, both symmetric and antisym­
metric motions behave alike. We find that equation (5.7) is 
identical, apart from the notation, with the frequency equa­
tion for surface waves in a half space with voids, obtained by. 
Chandrasekharaiah (1986). 

For Q — oo, equations (4.3) and (4.2) yield 

Mx = r (\-V2/a2)xn, M2 = T ( 1 - F 2 / ^ ) 1 7 2 , 

M0 = r ( l - I / 2 / 6 2 ) 1 / 2 (5.8) 

where 

VI •• 
pk 

(5.9) 

With the aid of expressions (5.8), equation (5.7) leads to the 
following equation: 

/ J ^ V ^ r / V2 \2 ( V2 \i/2 / V2\y2l „ 

(5.10) 
Evidently, each of the two families (symmetric and antisym­

metric) now degenerates into two uncoupled waves. One of 
these is the classical Rayleigh wave not influenced by the 
presence of voids and the other is purely a volume fraction 
wave, caused by the presence of voids, propagating with speed 
Vj,. Thus, the effect of the presence of voids in this case is just 
to exhibit new waves not encountered in the classical theory; 
we note that their speed V^ is identical with the speed of high 
frequency volume fraction waves occuring in an unbounded 
elastic material with voids (Puri and Cowin, 1985). 

In the corresponding situation in thermoelasticity, it may be 
shown, from equations (15) and (14) on p. 208 of Nowacki 
(1975), that the presence of the thermal field does not exhibit 
any new wave; there occur only classical Rayleigh waves 
uninfluenced by the thermal field. 
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Transient Solutions for One-
Dimensional Problems With Strain 
Softening 
Closed-form solutions are presented for the transient response of rods in which 
strain softening occurs and the stress-strain laws exhibit nonvanishing stresses after 
the strain-softening regime. It is found that the appearance of any strain softening 
results in an infinite strain rate if the material is inviscid. For a stress-strain law with 
a monotonically decreasing stress the strains are infinite also. If the stress increases 
after the strain-softening portion, the strains remain finite and the strain-softening 
point moves through the rod. 

Introduction 

A negative slope is found in the constitutive equations for 
phenomena such as erosion in penetration, shear banding and 
other damage mechanisms. Yet, the understanding of the 
behavior of continua which are governed by such constitutive 
equations is very limited. In fact, Hadamard (1903) discarded 
the possibility of such continua by stating that the wavespeed 
is imaginary, so that the continuum cannot exist. Numerical 
solutions for such materials are also quite strange. For exam­
ple, Belytschko et al. (1984, 1985) have recently shown that in 
spherical geometries, strain-softening models can lead to 
numerical solutions characterized by many large peaks in 
strain, and that the locations of these peaks depend very much 
on the mesh size. However, constitutive models with strain 
softening are so prevalent and important in practice that their 
behavior must be understood. 

The only closed-form solutions for problems in which the 
stress tends monotonically to zero are those of Bazant and 
Belytschko (1985), who presented a transient solution for a 
one-dimensional rod problem. These solutions exhibited a 
localization of the strain softening to a domain of measure 
zero, a discontinuity in the displacement and a singularity in 
the strains at the point of strain softening. The argument of 
Hadamard was shown to be irrelevant since the strain soften­
ing does not occur in a finite domain. However, the energy 
dissipation in the strain softening domain was shown to 
vanish, which raised questions as the applicability of this con­
stitutive model to damage. 

1 Visiting Scholar, on leave from the University of Science and Technology of 
China. 
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Fig. 1 Problem description: one-dimensional rod of length 2L with 
velocities prescribed at both ends 

We consider here two different stress-strain laws in which 
the stress does not become a zero in the strain-softening 
branch of the stress-strain law. In the first material law, the 
slope of the stress-strain law after the onset of strain softening 
remains nonpositive; we call this law strain softening/perfect­
ly plastic. In the second material law, the slope of the stress-
strain law is negative for an interval and then reverses; we call 
this law strain softening-rehardening. It is found that if the 
stress decreases monotonically to any nonzero positive value 
after strain softening is initiated, a singularity appears in the 
strain, and the displacement is discontinuous. However, with 
the rehardening law, the strain remains finite and the strain 
softening point traverses through the material. 

Very few closed-form or numerical-transient solutions with 
strain softening in which the slope of the stress-strain curve re­
mains nonpositive have appeared in the literature. Some 
works relevant to this one are Bazant (1976), Aifantis and Ser-
rin (1983), Wu and Freund (1984), Sandler and Wright (1984), 
Belytschko et al. (1984, 1985), Willam et al. (1984), and 
Schreyer and Chen (1984). For materials with rehardening, ex­
cellent theoretical studies have been reported by James (1980). 

Problem Formulation 

Consider a bar of length 2L with a unit cross section and 
mass p per unit length as shown in Fig. 1. The axis of the bar 
coincides with the coordinate x; the origin of the coordinate 
system is the midpoint of the rod so the interval of x is [—L, 
+ L]. The equation of motion is 
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Fig. 2 Stress-strain laws for problems 1 and 2 

da 

17 -pu (1) 

where a is the stress, u(x,f) the displacement and superposed 
dots are time derivatives. The stress-strain law is taken to be 

b = E(<j,e,e)-
dv 

dx 
(2) 

v = u (3) 

In the elastic part of the response, E>0 and equations (l)-(3) 
can be combined to yield 

^ 2 " • • * E
 ( 4 ) 

dx2 p 

Initially, the bar is undeformed and at rest so 

u(x,0) = v(x,0) = 0 -L<x<L (5a) 

The boundary conditions are 

v(L,t) = v0H(t) (5b) 

v(-L,t)=-v0H(t) (5c) 

where H( ) is the Heaviside step function, v„ is a prescribed 
constant velocity, and t is the time. 

Solutions 

The solution to the above system is elastic until the stress 
associated with the onset of strain softening is reached (we will 
not be concerned with any purely elastic solutions). Strain 
softening always occurs first at the midpoint, where the 
stresses of the two elastic waves are superimposed and would 
reach a stress of twice the intensity of the initial waves if the 
material remained elastic. 

The procedure of constructing a solution once strain soften­
ing is attained depends on the following hypothesis: strain 
softening is limited to a single point xs (a set of measure zero) 
and at that point the strain instantaneously increases at least to 
where the stress attains a minimum value along the stress-
strain curve, so after strain-softening e>eb (see Fig. 2). 

Remark 1. This hypothesis was demonstrated in Bazant 
and Belytschko (1985). While this step may need more 
rigorous proof, it enables all of the governing equations to be 
satisfied; furthermore, it is borne out by numerical solutions. 

Problem 1: Strain Softening-Rehardening. In the first 
problem, the stress-strain law is shown in Fig. 2(a). The stress-
strain law can be characterized as follows: 

initial conditions: a = e = 0; S = cr„ 

algorithm: if e>ea and S>ab and e>0 

* X 

e.-c 

e( t ) 

X=-L X=0 

Fig. 3 Wavefronts in problem 1 and the strain distribution e(i) 

then a=E e, S = a 

otherwise a=E+e, 5 = 0 

(6a) 

(6b) 

In the above, S is a state variable for the material. An alter­
native algorithm can be written in difference form: 

difference algorithm: 
CTnew = ( Jold+£+A 6 

if <7new > r ( e n e w ) then, replace above by (7new = 7*(enew) 

(6c) 

(6d) 

T(e)= \ 
E+e 
aa+E~(e-ea) 
ub+E+(e-eb) 

for e<e a 
for ea<e<eb 
for eb<e 

(6e) 

It is assumed that Ev0/c>aa/2, so that when the two waves 
meet at x = 0, strain softening is initiated, so that equation 
(6a) applies. Since it is hypothesized that at the strain soften­
ing point the strain jumps instantaneously, the stress then in­
stantaneously takes on a value which we will call as, as>ab. 

We then have 2 boundary-value problems (BVP): 

BVP(4)-Z,<.x<0: 

Equations (4) and (5a), a(0,t) = as 

BVP(B) Qx<L: 

Equations (4) and (5b), o(0,t) = as 

-<t<t. 

-<t<t. 

(la) 

(lb) 

where f3 is a time to be determined as part of the solution. 
Since these two BVPs are symmetric with respect to the origin, 
we consider only BVP(^4). 

It will be shown in the following that a solution to this 
problem can be found if as assumes any value in the range 

ob<Lls<oa (8) 

see Fig. 2. We will parametrize this family of solutions by the 
strain in the initial reflected wave, the strain in domain 2 in 
Fig. 3, which is denoted by e2. 

The structure of the solution is shown in Fig. 3. In domain 
1, behind the initial elastic wavefront, the velocity, stress, and 
strain are given by 

*i = -v„ e i = - ^ * , = ^ (9) 
c c 
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(subscripts on the left-hand variables designate the domain to 
which the variables pertain). 

It will be shown that the reflected elastic wave moves faster 
than the wave associated with strain softening, so that we have 
elastic behavior in domain 2; hence 

E 

Also, as can be seen from Fig. 2(a), since as>ab, the stress-
strain law gives 

0s = ab+E(e2-i*) (11) 

and since as>ob, 

e2 £e* (12) 

where e* = ab/E. The remainder of the solutions will be con­
structed by using the jump conditions 

[«]=i[e] [a]=ps2[e] (13) 

where [ ] designates a jump and s is the velocity of the 
discontinuity. 

From the velocity jump condition between domains 1 and 2, 
we obtain 

(14a) « 2 - w , = c ( e 2 - e 1 ) 

which, upon the use of equations (9), gives 

2v, 

c 

The displacement field in domains 1 and 2 is then given by 

2x 

u2 = c{e2-^) (146) 

u(x,t)= - y 0 < £ > +(ce1-v0)<$i> (15) 

where £ = t-(L-x)/c and < / > =fH( ). Hence u(0,t) = 
(ce2-2v0)<t~L/c>. Therefore, if the displacement field is 
to remain continuous at x = 0, another wave must emanate 
from that point; the only exception is the unusual situation 
where ce2 = 2v0, which will be examined later. The speed of 
this wave will be denoted by 5 and it represents the interface 
between domains 2 and 3 in Fig. 3. 

The velocity-strain jump condition gives 

s(e3-e2) = u3-u2=2v0-ce2 (16a) 

where the last equality is obtained by noting iii=0 because of 
symmetry and using equation (146). The stress jump condition 
gives 

<T3-<72=pi2(e3-e2) (166) 

and the stress-strain law in the strain softening domain gives 

°z-°b=E(ti-tb) (16c) 
Equations (16) are solved as follows: we can put equation 
(16c) in the form 

o3-o2=pc2(e3-eb-e2 + e*) (17) 

and using equations (166) and (17) yields 

s2(eJ-e2) = c2[e3-eb-e2 + e*] (18) 

Using equation (16a) to eliminate s from equation (18) yields a 
quadratic equation for e3 

2vn \ 2 

~ (19) -e3(.2e2 + eb-e*) + e2(e2 + eb~€*)-(~-e2y -0 

which gives a one-parameter of solutions for e3 

2e, +eh 

[ 
1 

-Ub-e*f + (¥-)']: (20) 

in terms of the parameter e2. Only the solution with the 
positive sign on the radical has been selected in the above since 
it is necessary that e3 > eb; this inequality is violated with the 
negative sign. 

Combining equations (166) and (16c) to eliminate the 
stresses and using equation (16a) to then eliminate e3, we ob­
tain the following equation for s 

(10) where 

A = 
C(et-e') 

2(2v0-ce2) 
(216) 

Hence 

s = c(-A+JTTA2') (22) 

and it follows immediately that if A > 0, then by the triangle 
inequality s<c. The condition that A > 0 is satisfied if 

2y o -C6 2 >0 (23) 

which must be satisfied if strain softening is to be initiated. 
Thus we have a one-parameter family of solutions for this 

problem in which the parameter e2 is restricted by 

6 * < e 2 < - (24) 

An interesting case, which we will see is usually obtained in 
numerical solutions of these equations, corresponds to e2 = e*. 
Equations (20) then becomes 

=*">2 /2v \21 1/2 

1 " A ' (25) 
eb + e* | l(eb-e*)2 

« 3 = — r — + -A— •(¥-)] 

(26) 

The strain e3 can then be shown to be bounded by 

^-(2e2 + eA + e*)<e3<-^+(e6-e*) 
2 c 

Note that if 2u0 —ce*, equation (216) shows that /4 —oo and 
from equation (22), s^Q. 

The solution for -L<x< — s is then 

2x 
u(x,t)=~v0<£ > + (ce * - v0) < £ > (27a) 

c 

•M«-D+(«•-•?•)»«> (276) 

(27c) 

(2ld) 

2x\ 

c \ c 

For -s<x<0 

u = e3xH< £ > 

e = e3H<£> 

The character of the solution is shown in Fig. 3. A noteworthy 
feature which distinguishes it from an elastic-plastic solution is 
the unloading wave emanating from the center. 

Remark 2. Although the point of strain softening moves 
in the solution, this does not contradict the statement in Ba-
zant and Belytschko (1985) (for the case in which ab = 0 and 
E<0 in the softening domain) that the strain softening/elastic 
interface must be stationary. In the case considered here with 
<T 6 ^0 and E becoming positive again after softening, the 
strain softening occurs instantaneously and the point subse­
quently becomes elastic. Thus, the interface s(t) can be con­
sidered to be between two elastic domains. 

Remark 3. Note that if equation (16a) is satisfied, i > 0 as 
required, since e3 >e 2 . 

Remark 4. The solution poses some peculiar mathematical 
difficulties, for at the points x= ±s the stress takes on the 
values in the range aa < <r< as twice in one point in time; thus 
whether it is differentiable, and whether a,x in the governing 
equation (1) is defined, is not clear. 

Remark 5. The propagation of the jump discontinuity and 
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0 tnr Ihe nase uihpn „ L = n 3 Drob1 " '—" • " " 2 for the case when ab = 0.3 problem 2 for the case when ab = 0.8 

subsequent loading may require that ai = T(e1)>oa. Under 
certain conditions this requirement is not met. 

Solution 2. The same BVP is solved with the stress-strain 
law shown in Fig. 2(b). The constitutive algorithm is as 
follows: 

initial conditions: a = e = 0 S = aa, (28a) 

if<r = S = ffiand€>0> cr = 0 (286) 

ifob<S<oa, ff = S a n d e > 0 , a = E~e (29a) 

otherwise d = E+ i (29b) 

The difference algorithm of equation (6d-e) with T(e) 
redefined as in Fig. 2(b) may also be used. 

In constructing the solution for this material law, we note 
that the stress at the strain-softening point becomes ab after 
the jump in the strain, so the elastic solution in domains 1 and 
2 becomes 

°i = ab 
2x 

H(*,0=-!>„<£ > + ( c e * - U 0 ) < £ > 

(30a) 

(30b) 

The size of the strain-softening domain is characterized by s 
withs(/ = 0) = 0, and from (306), the elastic solution at s = 0 is 
given by 

u(0,t) = (ce*-2vo)<t > (31) 

If strain softening has occurred, ce* —2vo<0, so since the 
stresses in both the elastic and strain-softening domain are ab, 

there is no mechanism for developing a wave to eliminate the 
displacement discontinuity. The only way to satisfy the boun­
dary value problems (7) is to allow a discontinuity in the 
displacement at x=0 and an associated infinite strain. Hence 
equation (306) holds in the left-hand plane with s = 0 and the 
magnitude of the displacement discontinuity is 2 ce* ~ 4v0 and 
the strain field is given by 

+ (2ce*-4v0)8(x)H(t ) for x < 0 (32) 

where <5( ) is the Dirac delta function. 
The energy dissipation due to nonlinear material behavior in 

the region ~s<x<s, where s tends to zero, results strictly 
from the Dirac delta term in equation (32) and is given by 

W=2ob(ce*-2v0) (33) 

This agrees with the result of Bazant and Belytschko (1985) 
when o-A—0, i.e., the dissipation vanishes when the stress goes 
to zero in the strain-softening domain. When abj^0, a finite 
dissipation of energy can be achieved, but it is solely due to the 
plastic response and equivalent to that of an ideal plastic 
material with yield stress <jb. 

Figures 4 and 5 show the strain and displacement fields for 
problem 2 in the left-hand plane. Both the analytic solution 
and the finite element solution are shown. In these examples, 
e = l , Evo/caa = 0.6, and CT„=(0.3, 0.8) in Figs. 4 and 5, 
respectively. For the finite element solution, 40 elements were 
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Table 1 Parameters for problem 1 - Figs. 

e„ =1.0 <7„ = 1.0 
eb =1 .2 ab = 0.2 
v0 = 0.8 L = 50 
no. of elements for (0<x<Z,) = 80 
c =1.0 
Courant number ~0.7 
s (for closed form solution) = 0.704 

6-8 

LZJ 

ANALYTIC 

T= 
- — 1= 

50, 
75 

100 

NUMERICAL 

7-
T. 

50 
7 5. 

100 

20 30 50 

Fig. 6 Strain for example of problem 1 

used on the left-hand plane and the Courant number was 0.6. 
Whereas the analytic solution predicts an infinite strain at 
x=0, the strain in the finite element solution is finite but much 
larger than the surrounding strains. The analytic and finite ele­
ment solutions otherwise agree quite well except at the 
wavefront generated by strain-softening (at x=5 in the 
figures). 

Figure 6 shows the strains in the right-hand plane for a finite 
element solution for problem 1; the corresponding analytic 
solution with e2 = e* is also shown. The problem parameters 
are listed in Table 1. Several features are noteworthy: (/) the 
finite element solution exhibits the unloading wave (at which 
e = 0.2) which precedes the strain-softening wave s; (ii) the 
finite element solution correctly captures the wave speed s; (iii) 
the strains behind the wave s(t) are extremely noisy, which 
probably reflects the difficulty the numerical solution has in 
reproducing the complex stress path associated with the 
wavefront (see Remark 4). 

The noise significantly exceeds that found in finite element 
solutions of elastic wave propagation problems (see Holmes 
and Belytschko, 1976). Figure 7 shows the same solution with 
a five-point "averaging" digital filter described in Holmes and 
Belytschko (1976) applied to the strains and stresses. The 
filtering technique more clearly brings out the similarities of 
the finite element and analytic solutions. Figure 8 shows the 
displacements at 3 times, which again illustrates the presence 
of the unloading wave and the excellent agreement of the 
closed form and numerical solutions. 

Capturing the unloading wave in a numerical solution does 
require some care. We used a time-step control so that during 
a time step no element can pass more than 10 percent beyond 
the point (eb, ob) in the stress-strain law. Attempts to obtain 
the same fidelity by reducing the Courant number (time step) 
to about 0.1 were unsuccessful because at such low Courant 
numbers the wavefronts are excessively dispersed. 

A convergence study was made in the L2-norm for this solu­
tion using meshes of 40 to 320 elements. The rates of con­
vergence were quite sensitive to the time step and amount of 

ANALYTICAL 

T= 50 
— 7= 75 
— 7= 100 

0.0 

Fig. 7 
filler 

Strain for example of problem 1 with five-point spatial averaging 
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Fig. 8 Displacements for example of problem 1 

artificial viscosity. The rates of convergence varied from h0-6 

to h1-5, which is substantially below the h2 rate in linear, static 
problems for this element. 

Discussion and Conclusions 

Closed-form transient solutions have been developed for 
rods with strain softening, a negative slope in the stress-strain 
curve. Two types of stress-strain curves were considered, one 
where the stress increases again and one where it remains con­
stant after the strain softening. Finite element solutions were 
also obtained for representative problems. The following con­
clusions are drawn: 

1 If the stress remains constant after the strain softening, a 
discontinuity appears in the displacement. 

2 If the stress increases after strain softening, no discon­
tinuity appears in the displacement, but the strain-softening 
point moves through the rod with jump discontinuities in the 
stresses and strains at a speed that is slower than the elastic 
wavespeed. 

3 Finite element solutions reproduce the salient features of 
these solutions but exhibit excessive noise and slow rates of 
convergence. 

4 When the stress remains constant, the displacement 
discontinuity is associated with a finite dissipation of energy; 
when the stress monotonically decreases to zero, the failure of 
the material associated with the discontinuity in displacements 
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requires no energy to be dissipated because it occurs on a set of 
measure zero. 
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Reexamination of Jumps Across 
Quasi-Statically Propagating 
Surfaces Under Generalized Plane 
Stress in Anisotropically 
Hardening Elastic-Plastic Solids 
Strong discontinuities across quasi-statically propagating surfaces in anisotropic 
elastic-plastic solids under generalized plane stress are reexamined allowing for some 
generality in constitutive response and taking into account the phenomenon of neck­
ing. Jumps in stresses are ruled out on the basis of material stability postulates and a 
previous approach (by Pan, 1982) is discussed. It is noted that for elastic-perfectly 
plastic solids, sliding velocity discontinuities occur under restrictive and exceptional 
conditions (when both the surface and its normal are stress characteristics) for 
generalized plane stress as compared to plane strain. Necks may form along (stress) 
characteristic directions with the relative velocity vector orthogonal to the other 
family of characteristics. 

1 Introduction 

A variety of problems of physical interest involving the 
deformation of elastic-plastic solids may require the admission 
of discontinuities in the gradients of stresses and velocities 
(weak discontinuities) or in these quantities themselves (strong 
discontinuities). Such discontinuities may occur within regions 
that are currently deforming plastically or at elastic-plastic 
boundaries. These possibilities have received wide attention 
for rigid-perfectly plastic solids in plane strain (Hill, 1950) and 
in generalized plane stress (Hill, 1952) in the presence of either 
the isotropic Huber-von Mises or Tresca yield conditions in 
the plastic range. It is well known that for such solids, strong 
discontinuities in stress and velocity cannot be simultaneously 
present, and that velocity jumps occur across characteristic 
surfaces. It has been noted by Hill (1952) that when a rigid-
plastic generalized plane-stress theory is employed in the study 
of the extension of thin plates, two types of strong discon­
tinuities must be considered. These arise because of the neglect 
of elastic deformation and the averaged nature of generalized 
plane stress. A consideration of the second of these factors has 
led to the mathematical idealization of the experimentally 

Contributed by the Applied Mechanics Division for presentation at the 
Winter Annual Meeting, Boston, MA, December 13-18, 1987, of the American 
Society of Mechanical Engineers. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y. 
10017, and will be accepted until two months after final publication of the paper 
itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by ASME 
Applied Mechanics Division, June 10, 1986; final revision, October 28, 1986. 

Paper No. 87-WA/APM-2. 

observed phenomenon of localized necking in thin sheets 
(Nadai, 1950). 

In a recent paper, Drugan and Rice (1984) investigated 
strong discontinuities across quasi-statically propagating sur­
faces in elastic-plastic solids under general three-dimensional 
conditions when all displacement components are assumed to 
be continuous. One important conclusion of their work is that 
all stress components are always continuous, a result that 
follows from certain material stability postulates. 

Pan (1982) has also discussed quasi-statically moving strong 
discontinuities for elastic-perfectly plastic Huber-von Mises 
materials under generalized plane stress. He assumes that a 
strong discontinuity can be replaced by a transition layer of 
elastic material in which all stress components are assumed to 
vary continuously. He subsequently argues that all stress com­
ponents are continuous across propagating surfaces, by using 
the specific nature of the Huber-von Mises locus and arriving 
at a contradiction. 

In the present work, we reexamine quasi-static discon­
tinuities for the more general case of an anisotropic hardening 
solid, using an integral form of the maximum plastic work ine­
quality and the usual assumptions in the theory of generalized 
plane stress (Section 2). It is demonstrated in Section 5 that the 
use of the maximum plastic work inequality leads to full stress 
continuity for a broad class of solids, which includes some 
hardening materials and anisotropic behavior. Pan's assump­
tions and the limitations of his approach are discussed in Sec­
tion 5. A complete analysis of all possible velocity jumps, in­
cluding sliding discontinuity and localized necks, is carried out 
in Section 6 with some generality in constitutive behavior. 
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Fig. 1 Elastic-plastic body with discontinuity surface £ 

2 The Generalized Plane-Stress Problem 

Consider an elastic-plastic body occupying an open cylin­
drical region R of height h (see Fig. 1). Let the boundary dR of 
the above region be composed of two traction-free planar sur­
faces S} and S2 and a lateral surface L. 

Consider further a fixed orthonormal coordinate system 
(0 ' , ej\ e^, e3'j such that e3' is parallel to the generators of R. 

Generalized plane stress conditions require that the height 
of the cylinder (also referred to later as the thickness of the 
cylindrical plate) be small as compared with any other dimen­
sion of the cylinder, and that the prescribed tractions t be such 
that: 

t = 0 or ff3; = 0 on Sj and S2 

and 

h=0,ta = t*(Xi^c2)oaL. (2.1) 

Here ay are the components of the symmetric Cauchy stress 
tensor, Greek subscripts have the range 1, 2 while Latin 
subscripts take the values 1, 2, and 3. (This convention will be 
adopted through the following development.) 

In what follows, field quantities such as a, e, u, and v will 
represent thickness averages of the stress and strain tensors 
and the displacement and velocity vectors, respectively. It is 
also assumed that, 

<T3/ = 0 onR. (2.2) 

The above assumptions result in solutions of the generalized 
plane stress problem which, in general, will not satisfy the ex­
act three-dimensional field equations as discussed in detail by 
Timoshenko and Goodier (1970) and Hill (1950). This is 
because some of the compatibility equations are not generally 
satisfied, and errors are involved in using the averaged quan­
tities in the constitutive law and the yield condition. However, 
if the plate thickness is sufficiently small, the generalized plane 
stress solution is expected to provide an accurate 
approximation. 

Let E be a planar surface, parallel to the x{ - x3 plane, 
dividing the region R in two open subregions R + and R ~ such 
that 

R^R + UR-IE. 

We will define the normal n(x) to E at apoint x £ E as the out­
ward normal of the closed subregion R~ {R* = R± U E) at 
the same point x 

In what follows, the surface E will be viewed as a potential 
surface of strong discontinuities (discontinuities in stresses 
and strains) and will be allowed to translate quasi-statically 
with a normal velocity Vn. 

Since the approximate theory of generalized plane stress 
treats the thickness of the plate as vanishingly small, Hill 
(1952) points out that every quantity whose gradient is of 

1 ^ 2 

R 
R 

Fig. 2 Local coordinate system translating with the surface 

order (\/h) in a zone of breadth comparable to h should be 
modelled as a discontinuity. Thus, the experimentally ob­
served formation of necks (Nadai, 1950) in thin plates sub­
jected to tension (rapid variation of thickness of the plate in 
narrow zones) would be modelled as discontinuities in the out-
of-plane displacement component w3. 

The jump in a field quantity g(x), across the surface E, will 
be denoted by: 

[g] = g + (x) -g~(x) where 

g± (x) = Iim g(x±en(x) ) x£E and e>0 
e-0 

(2.3) 

3 Smoothness Considerations 

All field quantities will be referred to, with respect to an or­
thonormal frame {0, e„ e2, e3 j translating with the surface E 
and such that 0 € E, e3 = e3 and e, = n; see Fig. 2. 

Inplane displacement components ua are required to have 
the following smoothness properties: 

(3.1) 
ua€C(R) and 

W a 6C' ( i? -E) , 

with the understanding that dua/dx0 need not be continuous 
across E. Then, according to the Hadamard compatibility 
relations (Hill, 1961) for jumps in the derivatives of a con­
tinuous function, 

L bxa -I 
•\„nR on E. (3.2) 

where Xa are arbitrary functions of position on E. The out-of-
plane displacement component u3 will in general be allowed to 
suffer a jump across E, as discussed in Section 2. Thus: 

M 3 eC( i? + )nc 1 (/?-), (3.3) 

with the understanding that on E, w3 and its gradient need not 
be defined. On the other hand, [H3] , the jump in the limiting 
value of u3 from R~ to R+, will be assumed to be a con­
tinuous and continuously differentiable function of position 
onE . 

It is now possible to extend the Hadamard compatibility 
relations (3.2) for the treatment of jumps in the derivatives of 
discontinuous functions. This extension was first discussed by 
Thomas (1957). The following simpler version was later pro­
vided by Hill (1961), 

f d»3 1 30 
— = X 3 « , H 

L dx, J 3 ' dx. 
on E. (3.4) 
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where X3 is an arbitrary function of position on E and $ is an 
arbitrary continuous function, together with its gradient on E 
and in one neighborhood, say R~ , with the additional restric­
tion that 

4> = [ui] on E. 

One choice of $ in R + would be to consider 4> continued 
analytically along the normals. Any other choice would merely 
change A3, which is given by 

A3 = [V« 3 «n] - V </>•«. 

Relations (3.2) and (3.4) allow definition of jumps in the 
strains across E, consistent with the assumptions of the ap­
proximate theory of generalized plane stress. 

Within the contexts of a small strain formulation, 

1 
e( /=-2-("/ , . /+ "/ , /) . (3-5) 

and the jumps in the inplane strain component eaj3 can be ex­
pressed by equation (3.2) as: 

[eap]= — ( X ^ + X ^ n J o n E . (3.6) 

On the other hand, the jump in the out-of-plane strain compo­
nent e33 can be expressed by equations (3.2) and (3.4) as: 

[e33] = X 3 « 3 + - ^ o n E . (3.7) 

where cj> e Cl(R + ) and 4> = [u3] on E. 

4 Material Idealization 

Within the context of the small-strain flow theory of 
plasticity, the total strain rate tensor can be decomposed into 
elastic and plastic parts: 

i = ie + iponR, (4.1) 

where the dot denotes differentiation with respect to time. The 
elastic strain rate tensor ie is related to the stress rate tensor & 
through a constant, positive definite four-tensor H (the in­
verse of the elasticity tensor C). H is assumed to possess the 
usual major and minor symmetries. For an anisotropic elastic-
plastic solid, ie is given by: 

ee = n&onR. (4.2) 

Attention will be focused on the class of materials obeying 
Drucker's stability postulate. A particular form of this 
postulate known as the maximum plastic work inequality can 
be expressed as: 

( f f - f f * ) . £ p > 0 . (4.3) 

V / ( a , ep) = 0, and/(ff*, ep) < 0, where/(a, ep) is the yield 
function. An important implication of the above postulate is 
the normality of the plastic strain rate ip to the yield surface 
leading to a flow rule of the form, 

ep = XP, (4.4) 

where X > 0 and P = V „ / . X and P are scalar valued and 
symmetric tensor valued functions of a, respectively. In the 
following section, an integral form of (4.3) will be used in con­
junction with equations (4.1) and (4.2), as well as the com­
patibility conditions for the jumps in total strains (3.6), (3.7) 
to define the jumps in the stresses and the plastic strains pro­
duced during the passage of a discontinuity E through a 
material point. 

5 Stress Continuity Across the Propagating Surface 

In this section it will be demonstrated that all stress com­
ponents are continuous across the surface E, propagating 
quasi-statically through the thin plate. It will be shown that 

this is true even if the out-of-plane displacement u3 suffers a 
discontinuity across E. The following proof is based on the 
maximum plastic work inequality and the positive definiteness 
of H. It is an adaptation for plane stress of the proof given by 
Drugan and Rice (1984) for the general three-dimensional 
case. In the present analysis, only the in-plane displacement 
components ua are assumed continuous, and the proof is 
adapted to suit the assumptions of the theory of generalized 
plane stress. Also, unlike the discussion by Pan (1982) and 
consistent with the assumptions of generalized plane stress 
(Hill, 1952), our discussion treats necks as jumps and not as 
narrow transition layers. 

If inertia terms are neglected, the balance of linear momen­
tum requires that across the quasi-statically moving surface E 
the traction be continuous. Thus 

[ta] = [aaBn?] = 0oxiT,. 

With respect to the local orthonormal coordinate frame (0, 
ei, e2, e3 J moving with E, nj = 8U and the above conditions 
become: 

[ f f , J=0on£ . (5.1) 

Equations (2.2) and (5.1) imply that the only stress component 
that can suffer a nontrivial jump is a12 • The plastic work Wp 

accumulated discontinuously at a material point due to the 
passage of the surface E is given by: 

p-

Wp--=\*p+ °'dtp. (5.2) 

It should be observed here that some error is involved in using 
the averaged stress and strain quantities of generalized plane 
stress in the above integral. The above integral is evaluated ac­
cording to the assumptions of Section 2. On applying equation 
(2.2), we find that the plastic work accumulation in equation 
(5.2) reduces to 

p-

Wp=\a
p

0
+<yapdep

aP. (5.3) 

Using equation (5.1), the above becomes: 
p-

»*=-«'ii[efi]-2ff1 2[ef2]+ \P+o22dep
22. (5.4) 

Je2 2 

Also, by using the fact that n$ = <51/3, equation (3.6) implies 
that: 

[e2 2]=0onEor[ef2]= - [e£, ]onE. (5.5) 

By setting dep = dt — dee, using the continuity of e22 across E 
equation (5.5) and integrating by parts, equation (5.4) 
becomes 

e — 

Wp=-<Ju[ep
1]-2vn[ep

2]- \J+ a22dt\2. (5.6) 

The integral in equation (5.6) can now be evaluated by using 
equations (2.2), (5.1), and the constitutive law, to give: 

C£22~ 1 
e+ a2idee

22= — H2222{a2
+

2 + <722)[ff22]. (5 .7) 
Je22 Z 

In addition, from equations (2.2), (5.1), and (5.5), 

Hi] = ~ Uh\ = -H2222[a22] on E. (5.8) 

Thus, equations (5.6) and (5.7) give: 

W = - <7„ [ef,] - 2a12[ef2] — ^ - ( ^ + o22)[ep
22] 

or, 

Wp=—L(ot+ay)[efj]. (5.9) 

It should be observed that the restrictions imposed on the path 
in stress space in the evaluation of the integral in equation 

Journal of Applied Mechanics SEPTEMBER 1987, Vol. 54 / 521 

Downloaded 03 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



(5.6) are the plane stress conditions and the continuity of trac­
tions across E. This effectively implies a straight line path in 
stress space from a22 to a22 • 

The integral form of the plastic work inequality (4.3) can 
now be used by setting a* = a+ where /(<r+ , ep) < 0. Thus, 
a+ is constrained to remain always at or inside the yield sur­
face during passage of E. Thus, by our using equations (2.2), 
(5.1), and (5.9): 

[vj = 
r foe ] on E, (6.1) 

1 
p+ {oy-aftde^ — — (a2

+
2 + a2-2)[6f2] + <72

+
2[ef2]>0 

77 ^ 

which, by equation (5.8), gives 

(5.10) now requires that [<J22] = 0, since H2222 > 0. 

(5.10) 

Remarks. The following remarks are relevant: 
1. Under generalized plane stress conditions, all stress 

components are continuous across the slowly prop­
agating surface E, even if the out-of-plane displacement 
u3 suffers a discontinuity. 

2. The present discussion applies to general anisotropic 
elastic-plastic hardening solids obeying a flow rule of 
the associated type. The proof of full stress continuity is 
based on an integral form of the maximum plastic work 
inequality and the positive definiteness of the elastic 
potential. 

3. An earlier discussion by Pan (1982) is limited to elastic-
ideally plastic solids of a Huber-von Mises type under 
generalized plane stress conditions. His argument, 
which does not make use of the maximum plastic work 
inequality, follows from Hill's statement (Hill, 1950) 
that the stress state from o£2 to a22 can be bridged only 
by a succession of elastic states. This assumes a smooth 
variation of stresses in a "transition layer." Such an 
assumption is questionable for generalized plane stress 
since, as pointed out in Section 2, any field quantity 
whose gradient is 0{l/h) in a zone of breadth com­
parable to h should be modelled as a discontinuity. 
Even if this assumption is accepted, Pan's argument 
clearly does not apply to arbitrary yield surfaces or 
general hardening solids. For instance, in elastic-
perfectly plastic solids characterized by a Tresca yield 
condition when the neck (discontinuity in w3) coincides 
with a principal stress direction and an = ± a0, the 
stress component a22 can have any value between 0 and 
± a0 and still lie on the yield surface (Hill, 1950). 
Hence, A in equation (4.4) is not necessarily zero in the 
transition from a+ to a~ (Hill, 1952), and the argument 
fails. Also, for any type of hardening solid, the con­
sistency condition requires the stress state to lie on the 
yield surface during the process from <r+ to a~ and no 
elastic unloading is possible. 

6 Discontinuities in Strains and Velocities 

In this section, the earlier result pertaining to continuity of 
stresses across E will be used to provide restrictions on the 
nature of admissible jumps in strains and material particle 
velocities across E for a general anisotropic hardening solid. 
Attention will then be turned to plastically incompressible, , 
generally anisotropic, elastic-perfectly plastic solids with 
smooth but otherwise arbitrary yield surfaces. Specialized 
results will be given for Huber-von Mises solids at the end of 
the discussion. 

General Considerations. The jumps in the in-plane velocity 
component va are given (Hill, 1961; Drugan and Rice, 1984) 
by: 

where Vn is the normal velocity of E. Making use of equations 
(3.2) and (3.6) the velocity jumps may be expressed as: 

[ « , ] = - H e , , ] r 

on E. (6.2) 
[v2]=-2V\el2] 

Full stress continuity and equation (4.2) require the elastic part 

of the strains to be continuous across E. 

[efy] = 0onE . (6.3) 

The above, and equation (5.8), therefore imply 

te2°2]=0onE. (6.4) 
As a result, the expression for the positive plastic work ac­
cumulation in equation (5.9) becomes 

Wp=-an[ep
l]-2al2[ep

2}>0, (6.5) 

and the jumps in the velocity components vt and v2 are given 
by: 

[vl]=~V[efl] 
on E. (6.6) 

[v2]=~2V[ep
2] 

The plastic work Wp can now be expressed in terms of velocity 
jumps as follows: 

Wp=y(on[vl} + au[v2\)>0. (6.7) 

No specific restrictions on the constitutive model other than 
the general assumptions made in Section 4 have been imposed 
in the derivation of equations (6.1)-(6.7). 

For the specific class of plastically incompressible solids: 

[ e?3 l= - [e f i ] -U£]onE . (6.8) 

which, by use of equation (6.4) simplifies to: 

[ e£ ]= - [ e f i ]onE . (6.9) 

Equation (6.9) serves to determine the jump in the out-of-
plane plastic strain component eP

} in terms of the jump in the 
inplane plastic strain component eft for plastically incom­
pressible solids. 

If the displacement component «3 happens to be continuous 
across E as in (Drugan and Rice, 1984), then e33 and hence e^ 
would also be continuous. Equations (6.8) and (6.6) will then 
imply that ef, and v{ should also be continuous across E. 
Thus, it follows that for a plastically incompressible solid, 
when the surface E does not coincide with a neck Gump in w3), 
only a sliding velocity discontinuity (jump in v2) is 
permissible. 

Elastic-Perfectly Plastic Solid. For such solids, the yield sur­
face is represented by 

/(<r) = 0oni? , (6.10) 

where/(a) depends symmetrically on a and aT. It will also be 
assumed here that the yield surface is smooth (has a con­
tinuous normal). 

Under such circumstances the flow rule takes the following 
form: 

ip = \VonR, (6.11) 

where \ > 0 is an undetermined scalar function of position, 
and 

. . P ( ' ) = V , / ( a ) o n * (6.12) 

is a symmetric tensor-valued function of a. Under conditions 
of generalized plane stress, equations (6.10) and (6.12) should 
be used in conjunction with the constraint (2.2). Inside regions 
that are currently deforming plastically, it can be shown from 
the two inplane equilibrium equations, the yield condition, 
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Characteristic 
Directions 

/?" 

Fig. 3 Moving discontinuity surface and characteristic directions of 
the plastically deforming side 

and the plane stress assumption (2.2) that along stress 
characteristic directions the direct components of Pa& should 
vanish (Hill, 1950). 

It is also clear that, Py should be continuous across E from 
assumed smoothness of the yield surface and the requirement 
of full stress continuity. Then, from equation (6.11) the jumps 
in the plastic strain component efj becomes 

[e^]=-r ,P , y onE. (6.13) 

where rj = {*+ e?A>0 is an undetermined scalar function of 
position on E. 

Since [e22] = 0 across E, equation (6.13) implies that either JJ 
= 0 or P22 = 0 or both. If i) = 0, equation (6.13) requires all 
strain components to be continuous. Thus, the necessary con­
dition for nontrivial jumps in strains to exist across E is that 
P22 should vanish on E. In other words, E should coincide 
with a stress characteristic direction of its plastic side. 

This condition is less restrictive than the necessary condition 
for nontrivial jumps in the plastic strain components derived 
by Drugan and Rice (1984) when all displacements were con­
tinuous across E. The corresponding necessary condition 
derived by them states that P22 = Pi3 = P2i = 0 on E. 

From the above, the following important observation can 
be made. Consider at least one side of E (which coincides with 
a neck, say R + ) to be currently deforming plastically. If, in 
addition, E coincides with one of the stress characteristic 
directions, say direction A (see Fig. 3), then the velocity com­
ponent along the other characteristic direction B, is con­
tinuous across E. Thus, 

[VB] = 0onL. (6.14) 

The above result follows by first observing that since E coin­
cides with a stress characteristic direction, P22 vanishes on E. 
Also, if the other characteristic direction makes an angle 5 (5 
j± ± 7r/2) with the xx axis, then by the fact that PBB = 0 and 
the transformation relation, we have 

tan 5 = 
2Py 

for P 1 2 ^ 0 . (6.15) 

In addition, combining equations (6.6) and (6.13) and noting 
that P12 ^ 0, we see that the following is true: 

i>i = -
2Py 

[v2] on E. (6.16) 

The velocity jump [vB] along the other characteristic direction 
will be given by 

[vB] = cos8([vl] + [v2]tan8), 5 ^ ± - ^ , 

which vanishes by use of equation (6.15) and (6.16). This 
general result was also noted by Pan (1982) for the special case 
of an isotropic Huber-von Mises solid and it also holds for sta­
tionary necks in a rigid-plastic solid (Hill, 1952). 

If in addition P12 = 0, both the stress characteristics merge 
along E(5 = ± ir/2) and as a result E becomes a "parabolic 
line." Equations (6.6) and (6.13) then imply that if Pl2 = 0, 

[D2] = 0onE . (6.17) 

Thus, when E coincides with a "parabolic line," the tangential 
velocity is continuous and only the normal velocity has a 
jump. 

When E coincides with a neck and the two characteristic 
directions do not merge along E (see Fig. 3), then the ac­
cumulation of plastic work (6.7) due to the passage of E 
becomes: 

Wp-- (? 
\P\\ +2(J12P1; 

2Py 
)[!,2]>0. (6.18) 

Also, the fact that ayiy 

°ijP,j< 
By equation (2.2) and P2 

0 implies that 

>0. (6.19) 

0 along E, (6.19) becomes: 

(6.20) 

Inequalities (6.18) and (6.20) result in 

1 [v2] ->0 , Pn*0. (6.21) 
V 2Pl2 

When the two characteristics merge along E(S = ± TT/2 and 
•P22 = P\2 ~ 0), it follows from equations (6.7) and (6.17) that 

-pMf.l&O. (6.22) 

Isotropic Huber-von Mises Solids. The above results can 
now be specialized for an isotropic elastic-perfectly plastic 
solid that obeys the Huber-von Mises yield condition. For 
such a solid, the yield condition states 

/ ( ' ) = s.s- ~rl- Oonf i , (6.23) 

where S = a — 1/3 tr al is the deviatoric stress tensor and T0 is 
the yield stress in pure shear. For such a solid, 

P( , r )=V„/{a) = S o n i i . (6.24) 

All the results and corresponding remarks from equations 
(6.3)-(6.22) hold for this solid with P replaced by S. In par­
ticular, equation (6.16) takes the form (Pan, 1982): 

r.. , S l l 

2S12 

and equation (6.18) reduces to 

[ t / 2 ] i fS 1 2 *0, 

Wp-- T&>- ]>0. 

(6.25) 

(6.26) 

Summary of Results. The results of Section 6 can now be 
summarized as follows: 

(a) For a general anisotropic hardening solid that is also 
plastically incompressible, the following is true: When 
the propagating surface E does not coincide with a 
neck (full displacement continuity), only a jump in the 
tangential velocity component (sliding discontinuity) 
is admissible. 

(6) If, however, the solid is perfectly plastic, E coincides 
with one characteristic direction (P22 = 0). In addi-
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tion, full displacement continuity together with plastic 
incompressibility also give P33 = P u = 0. This states 
that the direction normal to E is also a characteristic 
direction. Unlike plane strain, this occurs under plane 
stress conditions only under exceptional cir­
cumstances (Hill, 1950). In particular, for Huber-von 
Mises solids this is true when the surface coincides 
with a plane of maximum shear stress, and the latter is 
equal in magnitude to the yield stress in pure shear. 

(c) For a general anisotropic elastic-perfectly plastic 
solid, when a surface coincides with a neck (discon­
tinuity in w3), both tangential and normal velocities 
have jumps. This requires that the neck should lie 
along one characteristic direction. Then the compo­
nent of the velocity along the other characteristic 
direction (not generally perpendicular to E) is con­
tinuous (see equation (6.14)). Thus, necks cannot 
form if the plastically deforming side of the surface is 
in an elliptic state of stress. 

(d) For an elastic perfectly plastic solid, if in addition to 
(c), Pl2 = 0, both the characteristics merge along the 
neck, and this results in a parabolic stress state. Then, 
the tangential velocity is continuous and only the nor­
mal velocity has a jump. For the special case of a 
Huber -von Mises solid, P\2 — 1̂2 ~ 0, and the 
characteristic surface coincides with a principal stress 
direction. 

7 Remarks and Applications 

The jump conditions discussed here have some relevance to 
the stress and strain fields near the tip of a quasi-statically 
growing crack in an elastic-plastic solid under generalized 
plane stress conditions. For instance, in the elastic-perfectly 
plastic Huber-von Mises material (Rice, 1982) a "constant 
stress" (asymptotic) plastic sector cannot occur direclty 
behind a "centered fan" plastic sector because the condition 
for positive plastic work accumulation (6.21) will be violated 
at the interface. This renders the asymptotic solution for the 
plane stress stationary crack by Hutchinson (1968) unaccept­
able when the crack begins to grow. From the preliminary 
asymptotic analysis by Rice (1982), it then follows that only an 
"elastic unloading" sector can occur behind the centered fan. 
Hutchinson's stationary crack solution also has a jump in the 

inplane stress component between two constant stress sectors. 
This is also inadmissible when the crack begins to propagate. 

No solution for this problem, which satisfies all the condi­
tions set forth in the present work, has yet been constructed. 
An open question that arises, for which detailed experimental 
and numerical studies may provide an answer, is whether 
necking occurs near the growing crack tip. Otherwise, except 
in special circumstances (e.g., a fan angle of 90 deg), no strong 
discontinuities near the growing crack tip can be admitted. In 
view of the fact that the (fully yielded) stationary crack tip 
solution (Hutchinson, 1968) has a strong discontinuity, one 
wonders whether the condition of full continuity in both stress 
and velocity near the propagating crack tip may be too restric­
tive to satisfy. 
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A Continuum Model for Void 
Nucleation by Inclusion Debonding 
A cohesive zone model, taking full account of finite geometry changes, is used to 
provide a unified framework for describing the process of void nucleation from in­
itial debonding through complete decohesion. A boundary value problem simulating 
a periodic array of rigid spherical inclusions in an isotropically hardening elastic-
viscoplastic matrix is analyzed. Dimensional considerations introduce a 
characteristic length into the formulation and, depending on the ratio of this 
characteristic length to the inclusion radius, decohesion occurs either in a "ductile" 
or "brittle" manner. The effect of the triaxiality of the imposed stress state on 
nucleation is studied and the numerical results are related to the description of void 
nucleation within a phenomenological constitutive framework for progressively 
cavitating solids. 

1 Introduction 

The nucleation of voids from inclusions and second phase 
particles plays a key role in limiting the ductility and toughness 
of plastically deforming solids, including structural metals and 
composites. The voids initiate either by inclusion cracking or 
by decohesion of the interface, but here attention is confined 
to consideration of void nucleation by interfacial decohesion. 

Theoretical descriptions of void nucleation from second 
phase particles have been developed based on both continuum 
and dislocation concepts, e.g., Brown and Stobbs (1971), 
Argon et al. (1975), Chang and Asaro (1978), Goods and 
Brown (1979), and Fisher and Gurland (1981). These models 
have focussed on critical conditions for separation and have 
not explicitly treated propagation of the debonded zone along 
the interface. Interface debonding problems have been treated 
within the context of continuum linear elasticity theory; for 
example, the problem of separation of a circular cylindrical in­
clusion from a matrix has been solved for an interface that 
supports neither shearing nor tensile normal tractions (Keer et 
al., 1973). The growth of a void at a rigid inclusion has been 
analyzed by Taya and Patterson (1982), for a nonlinear 
viscous solid subject to overall uniaxial straining and with the 
strength of the interface neglected. 

The model introduced in this investigation is aimed at 
describing the evolution from initial debonding through com­
plete separation and subsequent void growth within a unified 
framework. The formulation is a purely continuum one using 
a cohesive zone (Barenblatt, 1962; Dugdale, 1960) type model 
for the interface but with full account taken of finite geometry 
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changes. Constitutive relations are specified independently for 
the matrix, the inclusion, and the interface. The constitutive 
equation for the interface is such that, with increasing inter­
facial separation, the traction across the interface reaches a 
maximum, decreases, and eventually vanishes so that com­
plete decohesion occurs. Since the mechanical response of the 
interface is specified in terms of both a critical interfacial 
strength and the work of separation per unit area, dimensional 
considerations introduce a characteristic length. 

Arbitrary inclusion geometries and quite general matrix and 
inclusion constitutive relations can be incorporated into the 
formulation. The specific boundary value problem analyzed 
here is one simulating a periodic array of rigid spherical inclu­
sions in an isotropically hardening elastic-viscoplastic matrix. 
The aggregate is subject to both axial and radial stresses and a 
circular cylinder surrounding each inclusion is required to re­
main cylindrical throughout the deformation history in order 
to simulate the constraint of the surrounding material. By con­
sidering histories with different ratios of radial to axial stress, 
the effect of stress triaxiality on nucleation is studied. The 
numerical results are related to the description of void nuclea­
tion within the phenomenological constitutive framework of 
Gurson (1975, 1977). 

2 Interface Model 

Attention is directed toward an interface supporting a 
nominal traction field T (force/unit reference area) which, in 
general, has both normal and shearing components. Two 
material points, A and B, initially on opposite sides of the in­
terface, are considered and the interfacial traction is taken to 
depend only on the displacement difference across the inter­
face, £MAB. At each point of the interface, we define 

= n»Au,i = t-Au, 

and 

r„=n-T, 7;=t.T, 

H,=b'Au, 

b»T 

(2.1) 

(2.2) 
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Fig. 1 Normal traction across the interface as a function of u„ with ut 
s "6 = 0 

In equations (2.1) and (2.2), n, t, b form a right-hand coor­
dinate system chosen so that positive u„ corresponds to in­
creasing interfacial separation and negative u„ corresponds to 
decreasing interfacial separation. 

The mechanical response of the interface is described 
through a constitutive relation that gives the dependence of 
the tractions T„, T,, and Tb on u„, u„ and ub. Here, this 
response is specified in terms of a potential <l>(u„, u,, ub), 
where 

4>(u„,u„ub)= - JJ [T„du„ + Ttdu, + Tbdub] (2.3) 

As the interface separates, the magnitude of the tractions in­
creases, achieves a maximum, and ultimately falls to zero 
when complete separation occurs. The magnitude of the trac­
tions is taken to increase monotonically for negative un. 
Relative shearing across the interface leads to the development 
of shear tractions, but the dependence of the shear tractions 
on u, and ub is taken to be linear. The specific potential func­
tion used is 

4>(un,u„ub) 
27 

4«(*)aM*)+Gr)a] 

for un < 5, where ffmax is the maximum traction carried by the 
interface undergoing a purely normal separation (ut = ub = 
0), 8 is a characteristic length and a specifies the ratio of shear 
to normal stiffness of the interface. When u„ > 8, <l> = < ŝep, 
where 4>sep is the work of separation. 

The interfacial tractions are obtained by differentiating 
equation (2.4) to give 

T =-

+ a 

Th 

for u„ < 5 and T„ = T, = Tb = 0 when u„ > 8. 
The motivation for choosing a potential of the form (2.4) is 

to obtain a response of the type shown in Fig. 1 where the nor­
mal traction, T„, is plotted as a function of u„ with u, = ub = 
0. The particular functional form (2.4) was chosen for 
analytical convenience; other forms can readily be used in the 
present framework. As can be seen in Fig. 1, the maximum in­
terfacial stress is achieved at un = 5/3 and complete separa­
tion occurs when un = 5. The work of separation (in Fig. 1, 
the area under the curve between u„ = 0 and u„ = 8) is 

= 9amnx5/16 (2.8) 

With u, # ub & 0, T„, T,, and Tb all vanish when u„ = 8 so 
that, in general, 5 serves as a characteristic length. Further­
more, due to the existence of a potential, equation (2.8) gives 
the work of separation regardless of the path. Equation (2.8) 
is regarded as defining the characteristic interface length 8 by 5 
= 16 J 9 ''max' Although 8 has dimensions of length, it 
does not necessarily correspond to any physical distance. 

The interface description adopted here is a pheno-
menological one characterized by the three parameters <rmax, 8 
and a. In the numerical examples parameter values represen­
tative of iron carbide particles in spheroidized carbon steels 
will be used. Based on the results of Argon et al. (1975), 
Goods and Brown (1979), and Fisher and Gurland (1981), the 
order of magnitude of 5 can be estimated for this case; <jmax » 
103 MPa and 0sep is in the range of 1 to 10 Jm~2 so that 5 = 
10-9 to 10"8 m. 

There does not appear to be any similar basis for specifying 
a value of the shear stiffness parameter a. In the calculations 
carried out here, the value of a is arbitrarily set to 10, the 
presumption being that the interface exhibits a stiffer response 
for relative sliding than for the normal displacement leading to 
separation. However, as will be illustrated subsequently, the 
numerical results in the specific cases analyzed are not very 
sensitive to the choice of a. 

3 Finite Element Formulation 

The finite element analysis is based on a convected coor­
dinate Lagrangian formulation of the field equations with the 
initial unstressed state taken as reference. All field quantities 
are considered to be functions of convected coordinates, x', 
which serve as particle labels, and time t. This formulation has 
been employed extensively in previous finite element analyses, 
e.g., Needleman (1972) and Tvergaard (1976), and is reviewed 
by Needleman (1982). 

Attention is confined to quasi-static deformations and, with 
body forces neglected, the principal of virtual work is written 

f TiJ8EijdV+ \ S0c?S= ( r8u,dS (3.1) 
J V J Sjn t J S e x t 

Here, T'J are the contravariant components of Kirchhoff stress 
(T = Jo, with a the Cauchy stress) on the deformed convected 
coordinate net, V, Sext, and Sint are the total volume (inclusion 
plus matrix), external surface and interfacial surface, respec­
tively, of the body in the reference configuration, and 

Ti=(TiJ + TkJu[k)vj (3.2) 

T" ("'.v' + ui.i + uk,iuKj) ( 3 - 3 > E,r 

where v is the surface normal in the reference configuration, Uj 
are the components of the displacement vector on base vectors 
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Fig. 2 Axisymmetric model of a material containing an array of 
spherical voids. Due to the assumed symmetry, only the shaded 
quadrant is analyzed numerically. 

in the reference configuration and (),• denotes covariant dif­
ferentiation in the reference frame. 

For the specific boundary value problem considered here, 
we use a cylindrical coordinate system with radial coordinate 
x1, circumferential angle x2, and axial coordinate x3. As 
sketched in Fig. 2, we consider spherical particles of radius r0 

located along the axis of a circular cylinder with an initial 
spacing of 2b0 between particle centers. The cylinder has in­
itial radius R0 and attention is confined to axisymmetric 
deformations so that all field quantities are independent of x2. 
Furthermore, the circular cylindrical cell surrounding each 
particle is required to remain a circular cylinder throughout 
the deformation history and within each cell symmetry is 
assumed about the cell center line so that only the shaded 
region is analyzed numerically. As discussed by Tvergaard 
(1982), this axisymmetric configuration can be considered an 

approximation to a three dimensional array of hexagonal 
cylinders. 

The boundary conditions for the axisymmetric region 
analyzed numerically are 

= 0, f u 0, P = Q, o n x 3 = 0 (3.4) 

' - O , 7^ = 0, onxi = b0 (3.5) 

P=0, onxl=R0 (3.6) 

Here, ( ) = dQ/dt and e„ is a prescribed constant while Ul is 
determined by the analysis. With these boundary conditions, 
the deformed circular cylindrical cell has radius R = R0 + 
[/,, and height 2b = 2b0 + 2U3. 

The lateral displacement rate, C/j is determined from the 
condition that the average macroscopic true stresses acting on 
the cell follow the proportional history 

- = P 

with p a prescribed constant and 

=, = *!*' 1 Rb 
— [T[] i 
Rb lb0 Jo L '* -

dxH 

xxdxx 

(3.7) 

(3.8) 

(3.9) 

The matrix material is characterized as an elastic-viscoplastic 
isotropically hardening solid. The total rate of deformation, 
D, is written as the sum of an elastic part, D e , and a plastic 
part D p , with 

1 + v v 
D* = — T - — (T: I ) I (M0) 

D p 31 

~2~d~ 
(3.11) 

where f is the Jaumann rate of Kirchhoff stress, I is the identi­
ty tensor, f:I is the trace of f, e is the effective plastic strain 
rate, Eis Young's modulus, v is Poisson's ratio and 

T ' = T — ^ - ( T : I ) I , < T 2 = ^ - T ' : T ' (3.12) 

<! = e0[>/g(e)]1/m, 

g(e)=a0(e/e0 + l)N, e0 = a0/E (3.13) 

Here, e = \edt and the function g(i) represents the effective 
stress versus effective strain response in a tensile test carried 
out at a strain-rate such that I = e0. Also, o0 is a reference 
strength and N and m are the strain hardening exponent and 
strain rate hardening exponent, respectively. 

Expanding equation (3.1) about a state of approximate 
equilibrium gives 

At \ [jHhEij + T^ulfiu^ j]dV 

+ At \ [S""u„5u„ + S'" (u„Su, + utbu„) 

+ S"u,8u,]dS = At\ FSiijdS-W r^dEydV 

\ 5<t>dS- \ r8u,ds\ (3.14) 

where S'j = d24>/duiduj. In equation (3.14), the integral over 
Sint has been specialized to the case of axisymmetric deforma­
tions with the b direction identified with that of the cir­
cumferential angle so that ub =. 0. The term in square brackets 
on the right-hand side of equation (3.14) is an equilibrium cor­
rection term that vanishes when the known state is an exact 
equilibrium state. 
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Fig. 3 The 16 x 24 finite element mesh used in the calculations. Each 
quadrilateral consists of four linear displacement "crossed" triangular 
elements. 

The set of equations for the unknown displacement rates is 
obtained by combining equations (3.10) and (3.11) and then 
using the relation between the Jaumann and convected stress 
rates in equation (3.14). The finite element mesh used in the 
numerical calculations is shown in Fig. 3. The mesh has 16 
quadrilaterals around the inclusion and 24 quadrilaterals in 
the radial direction. Each quadrilateral consists of four 
"crossed" triangles. The circular inclusion is approximated by 
a polygon consisting of linear segments that are the sides of 
the elements along the interface. The method for evaluating 
the integrals along Sint in equation (3.14) is similar to an ap­
proach used in surface diffusion calculations by Needleman 
and Rice (1980). The integration scheme uses four Gauss 
points within each linear segment and the interfacial tractions 
are evaluated at the Gauss integration points rather than at the 
finite element nodes. This permits partial debonding within a 
linear segment. 

The deformation history is calculated in a linear incremental 
manner and, in order to increase the stable time step, the rate 
tangent modulus method of Peirce et al. (1984) is used. This is 
a forward gradient method based on an estimate of the plastic 
strain rate in the interval between t and t + At. The incremen­
tal boundary value problem is solved using a combined finite 
element Rayleigh-Ritz method (Tvergaard, 1976). 

In most cases, the prescribed overall strain rate, em is taken 
constant and equal to the reference strain rate e0. However, 
equilibrium solutions do not necessarily exist to the boundary 
value problem so posed. For a certain range of interface 
characterizations, equilibrium solutions only exist if [/3 

decreases during decohesion. In such cases, the boundary 
value problem is modified so that equilibrium solutions are 
sought for increasing interfacial separation and the prescribed 
velocity condition in equation (3.5) is replaced by «3 = con­
stant along x3 = b0; em then becomes an unknown determined 
by the solution procedure. 

4 Numerical Results 

In the numerical calculations carried out here, the inclusion 
volume fraction and geometry, as well as the matrix material 
properties, remain fixed; only the interface characteristics are 

(a) (b) 

Fig. 4 Contours of constant plastic strain, l, in the deformed con­
figuration of the quadrant analyzed numerically. The rigid inclusion is 
shaded. The volume fraction of inclusions is 1.04 percent. The interface 
is characterized by amax = 3<r0, 5/r0 = 0.01, a = 10.0 and the stress 
triaxiality parameter, p, in equation (3.7) is 0.5. (a) ea = 0.040; (b) <a = 
0.121; (c)ta = 0.169; (d) £a = 0.240. 

varied. The inclusion geometry is specified by b0/R0 = 1 and 
r0/R0 = 0.25, giving an inclusion volume fraction of 1.04 per­
cent. The matrix material properties arei? = 500 o0, v = 0.3, 
N = 0.1, and m = 0.01. In most calculations, the value amax 

= 3 <r0 is employed which is a plausible value for iron carbide 
particles in a spheroidized steel, e.g., with a yield strength of 
350 to 450 MPa and an interfacial cohesive strength in the 
range 1000 to 1400 MPa (Argon et al., 1975; Goods and 
Brown, 1979; Cialone and Asaro, 1979; and Brownrigg et al., 
1983). 

Figure 4 shows contours of constant plastic strain, e, at 
various stages of the nucleation process. While the matrix and 
inclusion remain bonded, the main strain concentration occurs 
along the inclusion surface at about 45 deg from the tensile 
axis. Debonding does not begin at the axis of symmetry; it 
begins at the end of the strain concentration nearest the sym­
metry axis. The crack rather rapidly propagates to the axis of 
symmetry and then a spherical cap void opens. Already, at the 
stage of deformation shown in Fig. 4(a), the maximum normal 
displacement is on the symmetry axis and there are "dead" 
zones at 0 deg and 90 deg. As the decohering region pro­
pagates toward the midsection, the deformation pattern 
changes to one where the maximum straining is near the 
midsection. 

Curves of effective stress, Ec, versus axial strain, ea = /«(1 
+ U3/b0), are plotted in Fig. 5 for three values of <5/r0, where, 
for the axisymmetric configuration analyzed, we define 

Ei l , 
1 

(E3+2E,) (4.1) 
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Fig. 5 Curves of aggregate effective stress, Ee, versus axial strain, ia, 
for a 1.04 percent volume fraction of inclusions with /> = 0.5 in equation 
(3.7) and using three interface characterizations. In all three cases <rmax 

= 3ff0anda = 10.0; (A) 51r0 = 0.01; (B) Slr0 = 0.006; (C) 5/r0 = 0.002. For 
comparison purposes, corresponding curves for a 1.04 percent volume 
fraction of perfectly bonded inclusions and for a 1.04 percent volume 
fraction of initial voids are also shown. 
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Fig. 6 Curves of normalized logarithmic plastic volume change, 
ln(VpIV), versus axial strain, ta , for a 1.04 percent volume fraction of in­
clusions with p = 0.5 in equation (3.7) and am a x = 3 o0, a = 10.0 and 
t>lr0 = 0.04. Numerical results are shown obtained from a coarse 8 x 12 
mesh as well as results obtained using the 16 x 24 mesh shown in Fig. 
3. The normalized logarithmic plastic volume change, ln(VpIV), versus 
axial strain, ea, curve for a 1.04 percent volume fraction of initial voids is 
shown shifted by an amount <M along the strain axis. 

With regard to iron carbide particles in spheroidized carbon 
steels, these values of 5/r0 correspond to particle sizes of the 
order of 1 micron (10 "6 m). 

The variation of S/r0 can be regarded either in terms of a 
variation in </>sep at fixed particle size or as a variation in parti­
cle size at fixed work of separation. A sufficiently small value 
of 8/r0 gives rise to "brittle" interface behavior, while larger 
values lead to a more ductile mode of separation. For com­
parison purposes, the corresponding curves for a rigidly bond­
ed inclusion and for an initial void are shown. 

As debonding progresses, the overall stress-strain behavior 
changes from that characteristic of a matrix reinforced by 
rigid inclusions to one weakened by an equal volume fraction 
of voids. For the larger two values of 5/r0, this transition takes 
place gradually and with increasing extension. As 5/rQ 

decreases, the stress drop becomes more abrupt and, for the 
case with 5/r0 = 0.002, the stress drop cannot be affected with 
continued plastic loading. Even though explicit elastic 
unloading is not incorporated into the material description, 
the material response is essentially linear elastic during this 
abrupt stress drop and, as can be seen in Fig. 5, the stress drop 
occurs with the initial elastic slope. Initial debonding occurs in 
the element nearest the axis of symmetry, in contrast to the 
situation for a more ductile interface, where debonding in­
itiates off the axis. The stress drop occurs before initial de-
bonding, when the traction across this interface segment is on 
the descending branch of the traction versus displacement 
curve in Fig. 1. After initial debonding, the stress increases, 
although, as can be seen in Fig. 5, there are slight oscillations 
(which may be an artifact of the numerics) in the overall stress-
strain curve as debonding propagates along the interface. 

As illustrated in Fig. 4, void nucleation is a process that oc­
curs over a range of strain. A void nucleation strain, eN, can 
be defined in various ways, with the appropriate definition 
depending on the context in which it is to be used. For exam­
ple, the void nucleation strain can be identified with the strain 
at which initial debonding takes place or with the strain at 
which complete separation occurs. In the phenomenological 
constitutive framework of Gurson (1975, 1977), a void created 
by inclusion debonding has been regarded as equivalent to a 
void occupying the same fraction as the inclusion being 

abruptly introduced into the material at eN. To define a 
nucleation strain in this context, the normalized logarithmic 
plastic volume change, In ( V/V), is calculated via 

O-KiWi)-1 
(4.2) 

Jo' x « o ' -

The expression (4.2) is approximate because the effect of the 
inclusions is not accounted for in the elastic volume change 
term, but this is not of significance for the present purpose. 

In Fig. 6, plastic volume change versus axial strain curves 
are plotted using two different finite element meshes; one is a 
coarse 8 x 12 mesh, while the other is the 16 X 24 mesh 
shown in Fig. 3 and used in all the remaining calculations 
reported on here. The results in Fig. 6 are for a rather "duc­
tile" interface; d/r0 = 0.04. Initial debonding takes place at ea 

= 0.068 with the 16 x 24 mesh and at e„ = 0.08 with the 
coarse mesh. On the other hand, complete separation occurs 
somewhat earlier for the coarse mesh; at ea = 0.29 as com­
pared with e„ = 0.34 with the finer mesh. The more rapid 
separation with the coarse mesh is expected since the last 
points to debond are in the low strain region near the x' axis 
and the strain depression is resolved better in the fine mesh 
calculation. In the 16 x 24 mesh calculation complete de-
bonding has occurred in all elements except the last one at ea 

= 0.31. The strain interval over which debonding occurs 
depends on the value of 8/r0. With <5/r0 = 0.01, but all other 
parameters as in Fig. 6, initial debonding takes place at ea = 
0.034 and complete separation at ea = 0.18. 

A plastic volume change versus axial strain curve is also 
shown in Fig. 6 (using the 16 X 24 mesh) for an initial void of 
the same size as the inclusion. The curve of ln( V/V) versus 
axial strain for the void is shifted an amount eN. The value of 
eN for which the In ( V/V) versus ea curves nearly coincide at 
the larger volume changes shown (i.e., volume changes of the 
order of 1 percent) is taken as the nucleation strain. The fine 
mesh calculation gives a nucleation strain of 0.19, as shown, 
while the coarse mesh calculation implies eN = 0.17. 

This definition of nucleation strain is inherently imprecise. 
The sensitivity to the particular volume fraction at which the 
values of In ( V/V) are matched depends on the "ductility" of 
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the interface, with more ductile interfaces being more sensitive 
to the value of ln(Vp /V) chosen. In Fig. 6 where S/r0 = 0.04, 
the above values of eN were based on matching the response at 
ln(V"/V) = 0.015. Using ln(P»/V) = 0.01 gives nucleation 
strains of 0.172 and 0.176 for the 8 X 12 and 16 x 24 meshes, 
respectively. With 8/r0 = 0.01, but all other parameters as in 
Fig. 6, defining eN based on ln{V"/V) = 0.015, 0.01, and 
0.005 leads to eN = 0.084, 0.082, and 0.079. 

Some calculations were carried out to explore the 
dependence of the nucleation strain, as defined above, on in­
terface properties. A series of calculations were carried out us­
ing three values of 5/r0, i.e., for three sizes of inclusion. The 
model predicts a definite size effect and the results will be 
discussed in connection with void nucleation criteria in the 
context of Gurson's (1975, 1977) constitutive framework. 
There is a stronger dependence of nucleation strain on inter-
facial strength than on size. To illustrate this, two sets of inter­
face parameters were chosen that have values of 4>sep in (2.8) 
60 percent of that for the case with <xmax = 3 a0 and S/r0 = 
0.01; in one case <xmax = 3a0 and 8/r0 = 0.006, while in the 
other case amax = 1.8 a0 and 8/r0 = 0.01. These give rise to 
nucleation strains of 0.060 and 0.024, respectively, while in the 
reference case eN = 0.084. 

The role of the shear stiffness parameter, a, was in­
vestigated for the casep = 0.4, <7max = 3cr0, 8/r0 = 0.02. With 
a = 10.0, the nucleation strain is 0.23. Increasing a to 50 in­
creases the nucleation strain to 0.25, while with a = 1, eN = 
0.20. In fact, taking a = 0 in this case gives a nucleation strain 
of 0.18. Hence, for the geometry and loading conditions here, 
the interface shear stiffness plays a relatively minor role. This 
may not be the case for other inclusion geometries and for im­
posed stress states with a large shear component. 

5 Void Nucleation Criterion 

Within the constitutive framework for progressively 
cavitating solids introduced by Gurson (1975, 1977), the voids 
are represented in terms of a single parameter, the void 
volume fraction, / . The evolution equation for the void 
volume fraction includes contributions from both void growth 
and void nucleation, 

/ /growth '/nucleation W-IJ 

The void growth contribution is determined from the plastic 
flow rule using the condition that the matrix material is 
plastically incompressible whereas the void nucleation con­
tribution is specified separately. Although various void 
nucleation criteria can be formulated within this framework, 
two have been used in practice (Gurson, 1975, 1977; 
Needleman and Rice, 1978). One is a plastic strain criterion 
for which 

/nucleation = *-*£ (5 .2 ) 

while the other is the stress-based criterion 

/nucleation =B(^e + S/, ) (5 .3) 

In equation (5.3), Le is identified with the matrix effective 
stress appearing in the Gurson (1975, 1977) flow potential. As 
long as the void volume fraction is zero, as it is prior to nuclea­
tion, the matrix effective stress and the macroscopic effective 
stress are equal. In (5.2), D is considered a function of e, while 
analogously in equation (5.3), B is taken to be a function of 
(Ee + Eh) so that the quantity (Ee + Lh) plays the role of a 
nucleation stress. 

Analyses of localization, carried out within the Gurson 
(1975, 1977) framework, indicate that equations (5.2) and 
(5.3) can lead to quite different predictions of macroscopic 
ductility (Needleman and Rice, 1978; Saje et al. 1982). What is 
of particular significance in this regard is that the hydrostatic 
stress dependence of void nucleation in equation (5.3) leads to 

Table 1 Nucleation strain and stress for various values of stress tri-
axiality. The interface is characterized by ffmax'ffn = 3, a = 10 and &lr0 

= 0.02. 
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Table 2 Nucleation strain and stress for various values of stress tri-
axiality. The interface is characterized by i»max '"o

 = 3, a = 10 and l>lr0 

= 0.01. 

I> 

0.250 

0.333 

0.400 

0.500 

0.625 

S,,/E, 

0.667 

0.833 

1.00 

1.33 

2.00 

CN 

0.50 

0.27 

0.17 

0.084 

0.024 

(EeV/tro 

1.723 

1.594 

1.509 

1.388 

1.192 

Ave. 

(E, + C E ^ N / ^ O 

c = 0.35 

2.125 

2.058 

2.038 

2.036 

2.027 

2.057 

c = 0.39 

2.171 

2.111 

2.098 

2.110 

2.122 

2.122 

Table 3 Nucleation strain and stress for various values of stress tri-
axiality. The interface is characterized by ammha = 3, a = 10 and &lr0 

= 0.04. 

I> 

0.250 

0.333 

0.400 

0.500 

0.625 

E/./E, 

0.667 

0.833 

1.00 

1.33 

2.00 

IN 

0.61 

0.40 

0.31 

0.19 

0.070 

(EeWtfo , 

1.752 

1.664 

1.605 

1.501 

1.322 

Ave. 

(S£ + cEyJyv/ao 

c = 0.35 

2.161 

2.149 

2.167 

2.201 

2.248 

2.185 

c = 0.314 

2.119 

2.099 

2.109 

2.129 

2.152 

2.122 

a strong nonnormality in the plastic flow rule which promotes 
early flow localization. 

In order to explore the predicted hydrostatic stress 
dependence of the void nucleation strain, eN, calculations 
were carried out for various values of the stress ratio p in equa­
tion (3.7). In each case eN is defined in the manner sketched in 
Fig. 6. Tables 1 to 3 illustrate the hydrostatic stress 
dependence of e^ for interfaces characterized by three values 
of S/r0. The other interface parameters are kept fixed at <rmax 

= 3<r0 and a = 10. 
For low stress triaxiality, £;,/£„ = 0.667, the nucleation 

strain varies between 0.50 and 0.61 as &/r0 is increased by a 
factor of four, from 0.01 to 0.04. At higher values of the stress 
triaxiality, the absolute magnitude of the variation in eN is 
smaller, but the relative variation is greater; for example, 
when S/,/Ee = 2.00, the nucleation strain increases from 0.024 
to 0.070 as 8/r0 is varied over the same range. With 5 regarded 
as fixed, this corresponds to a decrease in nucleation strain 
with increasing particle size at fixed volume fraction. 

Also shown in Tables 1 to 3 is the outcome of correlating the 
results in terms of an effective nucleation stress, written as 

LN = Le + cLh (5.4) 

where Le and EA are obtained from equation (4.1) at ea = eN. 
For the case 8/r0 = 0.02, c = 0.35 leads to a mean nuclea­

tion stress, £N , of 2.122 a0. If equation (5.4) held precisely, 
the value of LN would be independent of p in Table 1. The 
maximum deviation from the mean is 1.5 percent and this oc­
curs for the lowest nucleation strain where the work hardening 
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is highest; more significant is the deviation from the mean for 
£/,/£e = 0.667 since this occurs at large strains where the 
work hardening rate is low. 

Tables 2 and 3 show the results of calculating nucleation 
stresses for 8/r0 = 0.01 and 8/r0 = 0.04 in two ways; one 
calculation uses a constant c, while in the other calculation c is 
chosen so that the average value of LN is the same for all three 
cases. A somewhat better correlation is obtained by varying c 
suggesting that more "brittle" interfaces (larger particles) may 
be characterized by a more strongly hydrostatic stress depend­
ent nucleation stress. 

With c = 1 in equation (5.4), the nucleation stress appear­
ing in equation (5.3) is recovered, and with c = 1 and ^h/Le = 
0.667 a nucleation stress of 2.887 is obtained; at EA/EC = 
1.00, EN (c= 1) = 3.109 and at Lh/Le = 2.00, LN (c= 1) = 
3.806. Although it is interesting to note that these values, par­
ticularly for the cases with lower stress triaxiality, are 
reasonably close to <rmax, use of c = 1 in equation (5.4) gives 
rise to a strongly hydrostatic stress dependent nucleation 
stress. Values of c less than unity in equation (5.4) can be 
thought of as due to part of the remote hydrostatic stress being 
"converted" to local shearing stresses around the inclusion, 
the magnitude of which are limited by the work hardening 
capacity of the material. 

6 Concluding Remarks 

The cohesive zone interface model developed here provides 
a unified description of void initiation from initial debonding 
through complete separation and subsequent void growth. 
This cohesive zone model is particularly attractive when, as is 
often the case, interfacial strengths are relatively weak, say of 
the order of several times the yield strength of the matrix 
material. Then the very high stress gradients associated with 
cracks in homogeneous bodies do not develop and standard 
finite-strain finite-element methods can be extended to incor­
porate the interface integrals. The model is a purely con­
tinuum one, so that discrete dislocation effects are not ac­
counted for, but the formulation provides a framework for 
analyzing the effects of matrix and inclusion material proper­
ties, inclusion size and shape, and imposed stress state and 
loading rate on the nucleation process. 

Dimensional considerations introduce a characteristic inter­
face length into the model and numerical results exhibit a duc­
tile to brittle transition in the mode of separation. For suffi­
ciently large inclusions (relative to the characteristic length) 
equilibrium solutions do not exist for increasing extension 
during debonding. The interface debonds in a "brittle" man­
ner, with an abrupt stress drop. One can speculate that if this 
were to occur at a particular weak inclusion, the stress drop 
could lead to load shedding to nearby inclusions. The in­
creased stress could then precipitate further nucleation, 
leading to another stress redistribution and so on, so that a 
profusion of voids are nucleated over a rather narrow strain 
interval. In actuality, in such a case, debonding would occur 
dynamically and dynamic effects may well play a significant 
role in the mechanics of the stress redistribution. By way of 
contrast, the smooth load drop associated with a more "duc­
tile" interface (smaller inclusions) suppresses this mechanism 
of void profusion. In this regard it is important to note that 
the range of strain over which voids nucleate can affect stabili­
ty against flow localization; void profusion over a narrow 
range of strain is potentially destabilizing (Needleman and 
Rice, 1978; Saje et al., 1980). 

The onset of nucleation at various levels of triaxiality of the 
imposed stress state has been correlated, within the framework 
of Gurson's (1975, 1977) constitutive relation for progress­
ively cavitating solids, in terms of a critical nucleation stress. 
This critical nucleation stress depends linearly on the 
hydrostatic tension, but with a coefficient that is less than 
unity. 
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An Elastic-ViscopIastic Model for 
Metals Subjected to High 
Compression 
Specific constitutive equations are proposed for a material exhibiting isotropic-
elastic response in its reference configuration, strain-rate, temperature and density 
dependent plastic flow with isotropic and directional hardening, and thermal 
recovery of hardening. The shear modulus is temperature and density dependent and 
it vanishes when the temperature reaches the density dependent melting 
temperature. These equations include modifications, relative to those proposed by 
Rubin (1986), which are appropriate to describe metals subjected to high 
compression. The constitutive functions characterizing pressure are determined by 
comparison with a Mie-Gruneisen equation of state which includes functions that 
are obtained from common shock-wave experiments. To examine some of the 
features of these equations at high compression we consider an example of 
homogeneous uniaxial strain and show that the deviatoric stress may be quite large 
at ultra high compression rates and high compression. 

Introduction 

Recently, Rubin (1986) considered a rather general class of 
constitutive equations modeling elastic-viscoplastic behavior 
of metals. Restrictions on these equations were obtained to 
ensure consistency with the thermodynamic procedures 
proposed by Green and Naghdi (1977, 1978). In addition, 
specific constitutive equations were proposed for a material 
exhibiting isotropic-elastic response in its reference 
configuration, strain-rate and temperature dependent plastic 
flow with isotropic and directional hardening, and thermal 
recovery of hardening. These specific equations represent a 
generalization to the nonlinear region of the works of Bodner 
and Partom (1972) and Bodner (1984, 1985). 

The objective of this paper is to discuss specific constitutive 
equations which characterize the elastic-viscoplastic behavior 
of metals subjected to high compression. Modifications of the 
specific equations proposed by Rubin (1986) are presented 
which are motivated by the interest in shock-wave plate impact 
experiments (Clifton, 1983) which are used to obtain material 
properties at high strain rates. Among other modifications, we 
note that the Helmholtz free energy (equation 1(a)) is modified 
to include a temperature and density dependent shear modulus 
which vanishes when the temperature reaches the density 
dependent melting temperature. The flow rule (equation 16(a)) 
and the requirement of plastic incompressibility are also 
modified. We emphasize that these modified equations are 
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within the scope of the general equations considered in Rubin 
(1986) so it is not necessary to reexamine their consistency with 
the first law of thermodynamics. However, the various 
restrictions associated with the second law of thermo­
dynamics must be reconsidered. 

An important feature of these constitutive equations is the 
equation for stress (3a) which is a hyper-elastic equation 
relating stress to deformation quantities. In particular, stress 
is not calculated using a hypo-elastic equation for a stress rate 
as is common. For a recent review of the state of hypo-elastic 
equations see Reed and Atluri (1985). 

In the following sections we record the modified 
constitutive equations and discuss each of the modifications. 
Then, we show how some of the constitutive functions can be 
estimated by comparing with a Mie-Griineissen equation of 
state (equation (24)) which is used often to analyze shock-wave 
experiments. To examine some of the features of these 
equations at high compression we consider an example of 
homogeneous uniaxial strain and show that the deviatoric 
stress may be quite large at ultra high compression rates and 
high compression. 

Specific Constitutive Equations 

In this section, we record the modified constitutive 
equations and discuss each of the modifications (relative to the 
equations proposed in Rubin, 1986). We refer all quantities to 
the reference configuration because the relevant quantities 
referred to the reference configuration are trivially invariant 
under superposed rigid body motions. An important 
manifestation of this invariance property is that the evolution 
equations may be formulated without introducing special 
invariant rates like the Jaumann rate. 
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Here, we consider a finite body with material points which 
are located by their position vector X in the reference 
configuration. A motion of the body is defined by a 
sufficiently smooth vector function \, which assigns position 
A: = X ( X , 0 to each material point X at each instant of time t. 
The model under consideration here may be characterized by 
specific constitutive equations for the specific (per unit mass) 
Helmholtz free energy \j/, the entropy flux P (per unit area in 
the reference configuration), and the specific internal rate of 
entropy production £ which take the form1: 

2 P o ^ = -2poh(6)-(0-eo)f1(I3)+f2(I3) + 2pot', (la) 

2p0\p' = jxbta, a <m' '3p 

P = 
K(h,e) 

9 
- / ^C- 'G , 

p o e { = - P « G + p o 0 £ \ 

73=detC, /3p = detCp> 

A = A ( M ) , G = 
ax 

i\b,c) 

(Id) 

(lc) 

(lf,g) 

(lh,i) 

In these equations: F = dx/dX is the deformation gradient; 
C = F r F is the Cauchy-Green deformation tensor; Cp is the 
plastic deformation tensor which will be defined later through 
a flow rule; d is the absolute temperature and 60 is its reference 
value; G is the temperature gradient with respect to X; 
h = (Pr//°)2 is a P u r e measure of total dilatation with p being 
the mass density in the present configuration and p0 being its 
reference value; Iip is a pure measure of plastic dilatation; /} is 
a shear modulus and /x0 is its reference value; Kis the heat con­
duction coefficient; £' is related to plastic dissipation; and h, 
f\,f2 are functions to be specified. 

The part \j/' in equation (lb) of the Helmholtz free energy 
represents the strain energy of elastic distortion and has been 
modified (relative to Rubin, 1986) by introducing the scalar a 
defined by equation (lc). The quantity a is a pure measure of 
elastic distortion which is insensitive to changes in total 
dilatation 73 or plastic dilatation Iip (i.e., C may be replaced 
by «2C, and Cp may be replaced by b2Cp without changing the 
value of a). Furthermore, the quantity a attains the value uni­
ty when there is no elastic distortion and C differs from Cp by 
only a uniform dilatation (C = a2Cp). 

The entropy flux P in (Id) is also modified (relative to 
Rubin, 1986) to be consistent with the assumption of Fourier 
heat conduction in the present configuration. That is, equa­
tion (Id) is consistent with 

1 
P=-

K(h,e) 
-g. g= 

ae 
"ax" 

(2a,b) 

where p is the entropy flux and q is the heat conduction vector, 
each per unit present area; and g is the temperature gradient 
with respect to x. In equations (Id) and (2a) we have included 
dependence of the heat conduction coefficient K on the dilata­
tion 73 for generality in dealing with high compression 
situations. 

By considering general constitutive equations of the type (1) 
restrictions may be obtained (Rubin, 1986) to ensure con­
sistency with the first law of thermodynamics. In particular, 
the symmetric Piola-Kirchhoff stress S, the specific entropy TJ, 
and the rate of plastic dissipation po0£' are related to 
derivatives of the Helmholtz free energy \j/. These restrictions, 
together with an expression for the specific internal energy e 
may be summarized in the form: 

'The prime used here should not be confused with the use of prime in a 
different context in Rubin (1986). 

S = 2pc 

3</< 

~ac~' 

2p0V = - 2pc = 2p0 

2 p o l ' 

dh 

~dT 

djx 

-+fl(I3) + 2poV', 

Una, 

2poe = 2po(i/< + 0»7) = 2po(e, + e ' ) , 

2poe1(/3,0) = 2po (V-^— h) +eafiVi)+Mh), 

2p0 ( » - * ) 

P06£' = -p0-
d\fr 
ac7 

Ina, 

•cp, 

(3a) 

(3b) 

(3c) 

(3d) 

(3c) 

(3,0 

(3*) 

where a superposed dot denotes material time differentiation 
holding X fixed, and A»B = tr(ABT) denotes the inner product 
of two tensors. 

The Cauchy stress T and the symmetric Piola-Kirchhoff 
stress S are related by the expression 

T = /3- , / !FSF r (4) 

For many applications, and in particular for metals which are 
isotropic in their reference configurations, it is desirable to 
decompose the Cauchy stress T into a pressure p and a 
deviatoric part T ' . Using equation (4) it follows that both T 
and S admit the unique decompositions 

T = - p I + T \ T ' . I = 0, (5a,b) 

S = - ^ / 3
/ l C ~ ' + S ' , S ' .C = 0, (5c,d) 

T'=/ 3 - , / jFS'F 7 ' , (5e) 

where I is the identity tensor. Note that S' is the counterpart 
of T" even though it is not a deviatoric tensor. An interesting 
manifestation of the kinematic separation of pure dilatation I3 

from pure elastic distortion a is that the stress S naturally 
separates into the form (5c). To see this we substitute equation 
(la) into equation (3a) to deduce that 

p=pl(I3,0)+p', (6a) 

Pi(h,S) = (e-e0y dh 

P - —i3 

dfi 

dL 

•Una, 

s'^'-^wK1-0' 

(6b) 

(6c) 

(fid) 

Furthermore, it may be shown that the rate of plastic dissipa­
tion may also be written in the form 

1 
p0<r=(<VC)S'.E„, Ep= — ( C , - I ) , (la,b) 

where Ep is the plastic strain. 
This constitutive assumption for stress was motivated by the 

physical notion that a plastic material flows somewhat like a 
fluid. In this regard, we observe that if the shear modulus p. in 
equation (6d) vanishes then equations (5a,c) yield constitutive 
equations for an ideal fluid (T = —pi) with S proportional to 
C _ 1 . Motivated by this result we sought a form for the 
kinematic variable a in equation (lc) which led to the result 
(6d) with S' being proportional to C~' and C~'. The quantity 
S' and the deviatoric Cauchy stress T ' are controlled by the 
amount of elastic distortion. Specifically, these quantities 
vanish when elastic distortion vanishes (a= 1) and the elastic 
deformation is characterized by a pure dilatation (C = a2Cp). 
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Furthermore, it is of interest to note that if equation (6d) were 
rewritten in terms of the total strain E = (1/2)(C-I) and the 
plastic strain Ep (equation 1(b)) then S' cannot be expressed as 
a function of E - E^ only. This means that the quantity E - Ep 

does not have the meaning of elastic strain in the same sense 
that it does in the linear theory. 

Substituting equation (6d) into equation (5e) we may write 

tinuities in the shear stress, entropy and internal energy, we re­
quire 

T=p.T=lxo', 1'=I3
Aa', ii = pJiVl, (Sa,b,c) 

a' =FS'F̂ = [(—i-^FC-'F^l], (Sd) 

From equation (8d) we observe that a' depends only on elastic 
distortion and is independent of both total and plastic dilata­
tions. Consequently, the effective shear modulus n in equa­
tions (8a,c) contains the complete dependence of T ' on dilata­
tion. Further, from equation (8c) we observe that the effective 
shear modulus depends on the total dilatation I3 even if fi, is in­
dependent of I3. We emphasize that the results (6) are a direct 
consequence of the first law of thermodynamics. Therefore, if 
the shear modulus has a nontrivial dependence on I3 

(d(i/dl3?£0) then the pressure must depend on the elastic 
distortion through/?' in equation (6c). In other words, p' is 
the pressure response to elastic distortion. 

In the study of shock waves in solids it has become common 
to assume that the pressure depends on the dilatation I3 and 
temperature 6 only, even if the shear modulus has a nontrivial 
dependence on I3. In view of the discussion above, this 
assumption is valid only whenp' can be neglected. For these 
constitutive equations p' is second order in elastic distortional 
strain. Consequently, for most applications at low, medium, 
and high strain rates/?' is negligible relative t o p , . However, 
for large elastic distortion which can occur at ultra high strain 
rates, p' may be significant (see the example in the last 
section). 

Steinberg et al. (1980) have proposed a model for the shear 
modulus, which depends on pressure, density, and 
temperature, and a model for melting. They show consistency 
of their model with certain theoretical limits and certain ex­
perimental data which are referenced in their paper. Here, we 
present different models for the shear modulus and melting 
which also appear to be consistent with these theoretical limits 
and experimental data. 

In their model Steinberg et al. (1980) propose that the shear 
modulus depends linearly on pressure and temperature, and 
nonlinearity on density. Since pressure is usually assumed to 
depend linearly on internal energy and internal energy is usual­
ly assumed to depend linearly on temperature, this is 
equivalent to assuming that the shear modulus depends linear­
ly on temperature 6 and nonlinearly on the dilatation I3, which 
is a special case of equations (1/0 and (8c). For our purposes, 
we also assume that when the temperature reaches the melting 
temperature dM(I3) the shear modulus vanishes and the 
material ceases to support shear stress. Here, we propose the 
form 

A = Mo/3(W4(0) forffX), 
£ = 0 for 0 ^ 0 , 

A eM(h)-e 

(9a) 

(9b) 

(9c) 

where the melting temperature may be characterized by 
(Steinberg etal., 1980) 

6M(h) = eM0exp[2«, (1 - If)\I3
(F(r -1/3) (10) 

In equation (10), T0 and al are constants related to the 
Griineisen gama Y which is given by 

T(I,) = Y0-a\(\-m. (11) 

To ensure that at melting (6 = 8M, 0 = 0) there are no discon-

Consistent with these conditions, we specify 

/4=exp[J^(i__L)], 

(\2a,b) 

(13) 

where a2 and a3 are nonnegative constants. For small (< < 1) 
values of a3 this function / 4 exhibits nearly linear dependence 
on temperature and drops rather abruptly to zero near melting 
(6 = 0), which is consistent with the observed dependence of 
the shear modulus. The simplest form for the function/3 in 
equation (9a) which is consistent with the effective shear 
modulus n in equation (8c) approaching the Thomas-Fermi 
limit (n^I3~

2/i as /3—-0) becomes 

/ 3( / 3) = /3-"6 . (14) 

In addition to the restrictions (3) various statements of the 
second law of thermodynamics must be satisfied. For the 
specific constitutive equations proposed here, these statements 
are satisfied provided that2 (see Rubin, 1986) 

r dh l 
-h(6)\ dd 

dh 
(ffi)-A(fl,)] >0, 

K(I3,6)^0, $ ' > 0 . 

(15a) 

(I5b,c) 

Equation (15a) requires the specific heat at constant volume 
and zero elastic distortion to be positive; (15b) requires heat to 
flow from hot to cold; and (15c) requires plastic dissipation to 
be nonnegative. 

From equations (6d) and (8a,d) it is observed that deviatoric 
stress vanishes when C is parallel to Cp; but not necessarily 
equal to C ,̂, as was required by the equations in Rubin (1986). 
This distinction is essential when considering metals at high 
compression. To see this we observe that when a material is 
severely compressed the dilatation I3 = det C = (p0/p)2 is ap­
preciably different from one. However, the notion of plastic 
incompressibility suggests that I3p = det Cp = 1. Consequently, 
if 0 = 0^, then the material cannot be both severely com­
pressed and plastically incompressible. Motivated by this 
observation we modified the flow rule to take the form: 

(16a,b) 

(16c) 

(I6d) 

(16e) 

(16/,g) 

(16/0 

JlD 

h 

Ji = 

cP = 

,exp|^ 

=gA' A = i/3--c-

1 ([ZR(I3,6)]2y 
2 V 372 / 

= J _ T ' . T ' = £2 /2=^V<j 

1 
V . 9 ' = - i - / 3 - i ( C S ' 

_ s 

-cp) 
-c , i 
/ 3 ' 9 > ] , 

' '6, 

• S'C) 

u = SI 

In equations (16) D0 is a constant; Z is a scalar measure of 
hardening which is additively separated into isotropic harden­
ing k and a scalar measure of directional hardening $; $ is a 
tensor measure of directional hardening (which models the 

In obtaining the restriction (15a) we have interpreted thermal equilibrium to 
be a state with zero elastic distortion, so that a= \ and plastic deformation rate 
vanishes. 
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Bauschinger effect); and IAI = (A-A)'/2 denotes the magni­
tude of the tensor A. Further, the quantities Z, R, 0, (i are non-
dimensional quantities which should not be confused with 
similar unbarred quantities used in Rubin (1986). 

The modified flow rule (16a) states that plastic deformation 
Cp evolves in the direction of total deformation C. This en­
sures that plastic deformation evolves towards a value which 
will make the deviatoric stress T" in equations (8) vanish. In 
equation (16a) plastic incompressibility is not enforced in a 
strong sense by requiring I3p to vanish as was done in Rubin 
(1986). Instead, plastic incompressibility is enforced in a weak 
sense by requiring plastic deformation to evolve towards a ten­
sor whose determinant is unity [det(/f1/3C)= 1]. In general, 
this allows small deviations of I3p from unity. Further, it is 
worth mentioning that it is possible to model plastic com­
pressibility of geological materials by replacing I3

1/3 in equa­
tion (16b) with a function of I3 and I3p. 

For definiteness, let the reference configuration be a stress 
free configuration which is specified by 

x = X, C = I, C p = I , d = 60, (\la,b,c,d) 

K = Z2, $ = 0, (llej) 

<H0, 1 = 0, S = 0. (17g,/i,0 

It follows from equations (la,b,c), (3a-c), (6), and (17) that 
we may specify 

/ i ( l ) = 0, /2(1) = 0, 
dh 

<1) = 0, 

dh 
A(flo)=0. - ^ ( « o ) = 0. 

(18a,6,c) 

(18cte) 

Using equations (lc) and (6b-d), we deduce that the stress-free 
configuration attainable after an arbitrary plastic deformation 
is characterized by 

e = e(I3) = Q0+^-/-^-, C = 7 C p , (I9a,b) 

where 7 is an arbitrary scalar. We emphasize that unloading 
from a given plastic state may require additional plastic defor­
mation to attain equation (19b) since, unlike the total defor­
mation C. plastic deformation Cp is not necessarily derivable 
from a displacement field and hence is not necessarily 
associated with an attainable configuration. 

The function g in equations (16a,c) is consistent with a 
kinetic equation of the form 

\tp\=g{I3,Bj2,Z) (20) 

and causes yield-like behavior in the sense that Cp is 
vanishingly small for small values of J2 and increases rapidly 
when J'2 attains a value of the order of (ZR)2. The quantity D0 

in equation (16c) corresponds to the maximum value of plastic 
shear strain rate (say, Ep

n = V%C<l2). This requirement that 
\Cp I be bounded from above has particular significance at 

ultra high strain rates which are much larger than D0 since the 
predicted material response is nearly elastic (see the example in 
the last section). An important modification of g in equation 
(16c) relative to g in Rubin (1986) is that Z in Rubin (1986) has 
been replaced by jlZR. The effect of this modification is that 
at melting J2 does not necessarily vanish even though J2 does. 
This means that at melting plastic deformation will continue 
to evolve towards total deformation so that the stress free con­
figuration (apart from density changes) will never be far from 
the present configuration. Furthermore, in equation (16c), the 
quantity ZR controls the normalized shear strength of the 
material and n controls the strain-rate sensitivity of the 
material. For high compression applications it is possible that 
n and R will be functions of I3 and 6 instead of n being a func­
tion of d only and R being unity as was taken in Rubin (1986). 
The dependence of R and n on I3 effectively introduces a 

dependence of plastic flow on pressure. In this regard, we note 
that even if R and n in equation (16c) are independent of the 
total dilatation I3 and J2 is relatively insensitive to changes in 
I3, the effective flow stress (3J2)'

A will depend on the dilata­
tion I3 through the dependence of the shear modulus p. (see 
equation (16d)). 

The hardening variables R and /3 are determined by evolu­
tion equations of the form: 

R = m1(p0S^)(,Zl-R)-Al(e)Z](^^-yi , 

$ = m2(Poe^)(z3\j-$)-A2(e)zl(-S-y2 ^ 

v=- 101 

(21a) 

Wb) 

(21c) 

The first terms in these evolution equations represent harden­
ing and the second terms represent thermal recovery of 
hardening. In equations (21) ml and m2 are constants deter­
mining the rate of hardening; Zlt Z3, and Z2 are nondimen-
sional constants representing the saturation values of R and $, 
and the annealed value of R, respectively; and the constants rl, 
r2, and functions ^4j(0),_ ^42(0) control the rate of thermal 
recovery. The constants ZltZ2, Z3 together with the reference 
value R0 of R are normalized values of Z{,Z2, Z3, K0 in Rubin 
(1986) and are defined by 

Z , = • 
Z i z 3 = - K 0 = -

«0 
(22a,b,c,d) 

Mo Mo Mo Mo 

where na is the reference value of the shear modulus £. When 
the material melts the quantity p0d%', which represents the 
rate of plastic dissipation, vanishes and hardening ceases. 

In the following, we briefly discuss how the nonlinear 
theory presented above may be reduced to one consistent with 
the usual linear theory. For the linearized theory quadratic 
terms in the quantities E, Ep and (6-60) are neglected. With 
this approximation it can be shown that equations (1), (3), (6), 
(7), (16), and (21) reduce to the usual linearized equations and 
are equivalent to those in Bodner (1985) provided that 

Mi­
di, 

-(l) = 3Ar0a0 

d1h 
-7i2-<*o> = 

-(D = 
k0 

T' (23a,b) 

n = n(6), R = l, 

(23c) 

(23d,eJ) 

d62 

£(l>0o) = Mo> 
where k0, a0, Cv are the reference values of the isothermal 
Bulk modulus, the coefficient of linear thermal expansion and 
the specific heat at constant volume, respectively. The condi­
tion (lid) is satisfied by the specifications (9)-(14). 

Finally, we note that unlike the linearized form of plastic 
dissipation (7a), the nonlinear form of (7a) is different from 
the usual expression for rate of plastic work (S«Ep). We em­
phasize that in most developments the form for plastic dissipa­
tion is assumed, whereas here the expression (7a) is a direct 
consequence of the first law of thermodynamics. At present it 
does not seem possible to prove that (7a) satisfies the restric­
tion (15c) for all thermodynamic processes. Consequently, we 
suggest monitoring the value of £' and limiting any calcula­
tion to that range for which £' remains nonnegative con­
tinuously. We note, however, that for the linearized theory £' 
is nonnegative for all processes. 

Determination of Certain Constitutive Functions 

In this section we show how the constitutive functions h,fl, 
f2 in equation (la) may be estimated by comparison with a 
Mie-Griineisen equation of state of the form 

Px -PH(h) = Poh-Y'T(I3)[e1 - e „ ( / 3 ) ] , (24) 
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which relates those portions px and e, of the pressure and in­
ternal energy which depend only on the dilatation I3 and 
temperature 8. In equation (24), pH, eH,Y are functions of 13 

only; pH and eH are determined by Hugoniot shock-wave data 
using the fluid approximation which neglects deviatoric stress; 
and T is the Griineisen gamma. 

To determine the function h in equation (la) we observe 
from equations (3d,e) that the specific heat C„ at constant 
deformation C and zero elastic distortion ( a = 1) is given by 

de d2h 
-Cv(d). 

de lc,a=i de2 

Integration of (25) subject to the conditions (18d,e) yields 

' X CV(T) 

(25) 

h(6) S
O [• A 

00 J»0 
-dTdh, (26) 

which shows that h is determined once the specific heat is 
measured. When the specific heat is constant, equations (26) 
and (3b,e) yield 

h = C, (27a) •„[m(±)-ie-e0)], 

2Poij = 2p0CBfo(—) +/1(/3) + 2p0iJ ' , (21b) 

2p0el=2p0Cv(d-60) + d0fl(I3)+f2(I3). (27c) 

Since the specific heat of a solid is nearly constant we specify 
h, 7), e{ by equations (27) and note that this specification is dif­
ferent from that in Rubin (1986). 

To determine the functions/, , / 2 we solve equation (27c) for 
d-60 and rewrite (6b) in the form 

Pi-\c„ dijei h L 
dh_ 
dL 

1 
- ( 0 o / i + / 2 > 

df± 
dL -]• (28) 

2p0Cv ui3 

Comparison of equation (28) with equation (24) yields two dif­
ferential equations of the forms 

dL 
-=Pocvi3-

lr(i3), 

df2 

dL • + • £ * • 21, 
G(I3), 

G(I3)-
( •¥•>• 

+ I3'
A(paI3

v'TeH-pH), 

(29a) 

(29b) 

(29c) 

to determine the functions/! and / 2 , subject to the conditions 
(18a, b). The condition (18c) is satisfied because both e,,(l) 
andpH(l) vanish. Using the expression (11) for the Griineisen 
gamma, equations (29a,b) may be integrated to obtain 

fl(I3) = P0Cvf(I3), (30a) 

f(I3) = T0(nl3 - a, [tnl3 + 2<t>], (30b) 

(30c) 

(30d) 

> = 1 - / | \ 

f2(I3)= - e - W / 3 ) ( ' G(\)e'A^d\. 

Finally, we assume that for a planar shock the shock veloc­
ity U is a linear function of the particle velocity u, such that 

U=C0+slu, (31) 

where C0 is the low pressure wave speed and st is a constant. 
Then, using the fluid approximation (deviatoric stress is 
neglected) the jump conditions yield 

Pocg0 citf 
PH=~ 

(i-M)2 £HZ 

2(1-s^)1 (32a,b) 

Table 1 Uniaxial strain data for the compression 0 = 0.5 
0MO = 1220 K l W ) = 27.6 GPa) 

=300 K, 

'11 
(GPa) 

•=11 
(GPa) 

P 

(GPa) 

i 

P 

(GPa) 

8 

(K) 

9M 
(K) 

a - 1 

A -1 
3p 

V 

(GPa) 

a - I04 s 1 

-222 

-0.432 

222 

0.529 x to"3 

1060 

6610 

14.2 x 10"6 

8.14 x 10~ 

99.3 

.n8 -1 a ~ 10 s 

-227 

-3.95 

223 

0.0461 

1270 

6610 

1.22 x 10~3 

0.487 x 10~3 

98.6 

.n'2 -1 a - 10 s 

-306 

-67.0 

239 

19.0 

730 

6610 

0.687 

17.8 x 10~6 

100 

Uniaxial Strain 

In this example we calculate the stresses and temperature 
produced by homogeneous uniaxial strain at high (104, 10s) 
and ultra high (1012) compression rates. Referring the position 
vectors x and X to the base vectors e,(/= 1,2,3) of a fixed 
Cartesian coordinate system we take 

xx =(l-at)Xu x2=X2, x3=X3, (33a,b,c) 

1 0 V 1 0 V 1 0 ' V (33cQ 

where a is the constant rate of loading. 
Since the loading is very rapid we assume that the process is 

adiabatic and neglect heat conduction and thermal recovery of 
hardening so that 

K=0, Ax=0, A2=0. (34a,b,c) 

It follows that the temperature may be calculated by the 
balance of entropy equation which reduces to 

PoV = Po£'- (35) 
Here, we consider typical material properties of Aluminum 
which are specified by 

^0 = 27.6GPa, p0 = 2 .71Mg/m\ C0 

r 0 = 1 . 9 7 , at = 1.5, a2 = 0.2, a3 

s, = 1.35, C„ = 0.862 J/gK, 

0O = 3OOK, eM0 = 1220K, 

£)o = 108s- ' , K0 = 1 .63xl0- 2 , Z 1 = 3 . 6 2 x 1 0 -

w , = 2 2 0 ( G P a ) 1 , m2 = 0, Z 3 = 0 , 

R = l, n = n0(-£), «0 = 5.0. 

5.38 km/s,(36a,b,c) 

0.01, (36d,e,f,g) 

(36/2,0 

(36j,k) 

(36t,m,ri) 

(36o,p,q) 

(36r,s,t) 

Since no set of consistent data is available these values have 
been collected from different sources and are representative of 
different aluminum alloys. Specifically, from Bodner (1984) 
we took the values of D0, n0 (Table 3, p. 49), and Wj (Table 1, 
p. 47). The values of n0, TQ,al,a2,a3,dQ, 6M0, a0, Z, are con­
sistent with the data in (Steinberg etal., 1980, p. 1499)witha2, 
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3 0 0 

GPa 

2 5 0 -

0 01 0-2 03 0 4 0-5 

Fig. 1 Cauchy stress f-n versus compression <!• for the compression 
ratesa = 104, 108 ,101 2 s _ 1 

02 03 
4> 

Fig. 3 Temperature 0 versus the compression 4> for the compression 
ratesa = 10 4 ,10 8 ,10 1 2 s ~ 1 

60 

GPa 

50 

Fig. 2 Deviatoric Cauchy stress f^ and pressure p' versus the com­
pression (/> for the compression rates a = 104, 10 , 10 s ~ 

a3 characterizing the temperature dependence of the shear 
modulus. The values k0 and Z{ predict the appropriate initial 
and saturation flow stresses in uniaxial tension at a strain rate 
of about 10~4 s~l. The values of p0, C0, s, were taken from 
Pugh (1970, p. 692) and the value of C„ was taken from 
Carslaw and Jaeger (1973, p. 497). Furthermore, directional 
hardening was neglected {m2, Z3 vanish), the value of R was 
taken to be unity for simplicity, and the functional 

dependence of n on 8 was chosen to be consistent with obser­
vations that the strain rate sensitivity increases with increased 
temperature. The remaining constants are not specified 
because they are not needed for the calculation. 

For this process we have neglected directional hardening 
(/3 = 0) so the flow rule (16a), the evolution equation (21a) and 
the balance of entropy (35) reduce to four equations to deter­
mine the quantities Cp

n, C§2 (C§3 = Cf2), R and 6. These equa­
tions were integrated numerically subject to the initial condi­
tions 

Cfi=Cf2 = l, R = K0, 9 = d0. (?la,b,c) 

Table 1 summarizes the values of various parameters at the 
end of the high compression (</> = 1 - If =0.5) for three values 
of the compression rate a. In this table tn and t'n are the com­
ponents of the Cauchy stress and Cauchy deviatoric stress, 
respectively, in the et direction, a-I is a measure of the 
change in elastic distortion, and Ifp - 1 is a measure of plastic 
volume change. From this table we observe that relative to the 
values of tn andp , the values of t'n a n d p ' are insignificant 
for a=10 4 i , " ' ) are minimally significant for a=10 8 s~l and 
are quite significant for a= 10l2s~'. For the high compression 
rates (104, 108) plasticity is important whereas for the ultra 
high rate (1012) the material response is essentially elastic. This 
is because the ultra high compression rate is four orders of 
magnitude larger than the maximum value of plastic strain 
rate. Consequently, even though the plastic strain rate is quite 
large (~108) the compression time is too short for Cp to 
evolve appreciably towards 73~'/jC. This is manifested in the 
large value of the change in the elastic distortion a - 1 and the 
low value of the temperature 6. The values for 0 are higher for 
the high rates (104, 108) then for the ultra high rate (1012) since 
at the high rates there is sufficient time for plastic dissipation 
to increase the material temperature. It is also worth noting 
that the plastic volume change (7^,-1) remains small for all 
compression rates. Furthermore, in each of these calculations 
the plastic dissipation po0£' was monitored and found to be 
non-negative for the entire process, which is consistent with 
the restriction (15c). 
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Figures 1, 2, 3 show graphically the values of tu, t[x, p', 6 
for values of the compression 4> from 0 to 0.5 and for three 
values of the compression rate a. The values of p' for the high 
compression rates (104, 108) are not plotted in Fig. 2, because 
they are too small. 

In typical plate impact experiments (see Clifton, 1983; or 
Steinberg et al., 1980) the particle velocity increases rapidly 
from zero to a constant value during loading. It follows that 
compression rate increases from zero to a maximum and back 
to zero during this loading. Since our calculations are for con­
stant compression rate they qualitatively correspond to an 
average loading rate. More specifically, the viscoplastic 
behavior of our model would predict a relaxation of the 
deviatoric stress as the compression rate reduces to zero but 
this is not exhibited in our calculation because the compres­
sion rate is constant. 

In summary, we recall that when the shear modulus has a 
nontrivial dependence on the dilatation I3 then the pressure is 
not a function of I3 and the temperature 8 only. Specifically, 
the pressure also includes a dependence on the elastic distor­
tion through the function/?' in equation (6c). When the com­
pression rate is smaller than the maximum value of plastic 
strain rate (~D0) then plasticity limits the increase of elastic 
distortion and both the deviatoric stress t'n and the pressurep' 
are small relative to the value of tn at large compression. 
However, for ultra high compression rates ( > A > ) t n e material 
response is essentially elastic and both the deviatoric stress t'n 

and the pressure p' become significant at large compression 
since the elastic distortion is also large. We emphasize that the 
numerical results presented here are qualitative in the sense 
that the functional dependence of \j/' in equation (lb) on a, 
the functional dependence of R and n in equation (16c) on I3 

and 0, and the value of D0 in equation (16c), are not known 
for aluminum at ultra high compression rates. 

Finally, the results of this paper suggest that, in order to in­
terpret data from shock-wave experiments which typically 

span the full range of compression rates from zero to ultra 
high, it is essential to determine \p', R, n, andZ>0. 
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Incompressibility in Dynamic 
Relaxation 
A method is described for enforcing the incompressibility constraint in large-
deformation solid mechanics computations using dynamic relaxation. The method is 
well-suited to explicit time-integration schemes because it does not require the solu­
tion of a system of linear equations. It is based on an analogy with thermoelasticity 
involving manipulation of the natural state of a solid. 

1 Introduction 

The imposition of kinematical constraints is difficult when 
numerical methods relying on explicit time-integration are 
used. The difficulty arises because of the inherently local 
nature of the algorithm. The motion of each node in each time 
step is computed solely from known data at nodes immediate­
ly surrounding it in the previous time step. This property of 
explicit time-integration greatly simplifies the coding of such a 
method, since it is unnecessary to solve large sets of linear 
algebraic equations. However, the imposition of global con­
straints becomes more difficult, since a given node does not 
receive information about distant nodes which could affect its 
own motion through the constraint. 

An example of such a constraint is that of incompressibility 
in the deformation of a solid. Various means of enforcing in­
compressibility are available for implicit methods and other 
methods (see Needleman, 1978, for a summary of these ap­
proaches for finite elements). The penalty method is probably 
the most common approach. There are also algorithms for 
finite elements involving a variational formulation requiring 
pressure to be regarded as an additional degree of freedom. 
One approach to modeling incompressible bodies with an ex­
plicit integration scheme is to use the constitutive relation of a 
"slightly compressible" material, a material that is very stiff 
with respect to volume changes. Unfortunately, the use of 
such a slightly compressible constitutive law causes the stable 
time step to be controlled by high-speed dilatational waves 
which are an artifact of the compressibility. Therefore the 
slightly compressible approach is inefficient with explicit in­
tegration. All of the above methods have both advantages and 
disadvantages which will not be dealt with further here. In 
general, the available numerical methods for incompressible 
solid mechanics introduce either considerable added complexi­
ty over the compressible case or require much additional com­
puter time. 

The purpose of this paper is to present a simple method for 
enforcing the incompressibility constraint in a dynamic relaxa­
tion method which uses a Lagrangian finite-difference for-
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mulation (Silling, 1985). The method is based on an analogy 
with thermoelasticity in that it involves manipulation of the 
natural state of the material locally in each zone. It is therefore 
called the pseudotemperature method. The primary advan­
tages of the method are that it allows the main benefits of the 
dynamic relaxation approach to be retained, namely simplici­
ty, reliability, and flexibility with regard to constitutive rela­
tions. A numerical stability analysis described below shows 
that the pseudotemperature method does not unduly limit the 
stable time step, which for the compressible case is controlled 
by the Courant condition. Implementation of the method re­
quires only minor modification of a computer program 
designed for compressible materials. Another advantage of 
the pseudotemperature method is that the incompressibility 
condition is satisfied with increasing accuracy as a run pro­
gresses, and would be satisfied exactly in the limit of an in­
finite number of time steps. This is not true of the penalty 
method or of slightly compressible models. While the present 
application is for a finite-difference code, extension of the 
method to finite-element programs using dynamic relaxation 
appears straightforward. 

The primary disadvantage of the pseudotemperature 
method is that some viscous damping of the kind used in 
dynamic relaxation is necessary for numerical stability. 
Therefore, extension to truly dynamic problems is not current­
ly possible. The method has found applications in a variety of 
problems in rubber elasticity, soil mechanics, and the study of 
phase changes in solids. Some of these results are described in 
Section 4 below. 

2 Basic Numerical Method 

This section describes the basic computer program for com­
pressible materials which has been extended according to the 
techniques described in the next section to model incom­
pressibility. The basic computer program is CHIMP (Silling, 
1985), a method for plane-strain compressible finite elasticity. 
The program uses the Green's theorem differencing method, 
which is widely used in codes such as HEMP (Wilkins, 1969). 
The differencing method is summarized below. A detailed 
discussion has been provided by Herrmann and Bertholf 
(1983). CHIMP uses the first Piola-Kirchhoff stress and per­
forms all differencing in the reference configuration. In this 
respect it differs from HEMP and related codes, which 
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Fig. 2.1 Integration path used in Green's theorem method for differ­
encing stress gradient components 

generally use the Cauchy stress tensor and perform differenc­
ing in the current configuration. The CHIMP method is more 
convenient for purposes of finite elasticity, although the 
HEMP method is more convenient for incremental plasticity. 
The applicability of the pseudotemperature method is not at 
all dependent on this choice. 

The region is discretized into a mesh with nodes indexed by 
(7, j). Time steps are labeled by the index n, with n = 0 
representing the initial condition. Each node has associated 
with it a fixed position vector x'^' in the reference configura­
tion and a time-dependent position vector y'- •>•" in the current 
configuration. The quadrilateral region between each set of 
four adjacent nodes is a zone, labeled by (/' + Vi, j + Vi). 
Node-centered quantities, in addition to x and y, include the 
velocity vector v and the acceleration vector a. Zone-centered 
quantities include the first Piola-Kirchhoff stress tensor a and 
the deformation gradient tensor F. 

Denote the components of a in the plane by aa&. (Greek 
subscripts have the range 1, 2.) The Green's theorem dif­
ferencing method leads to the following approximation for the 
a component of Vx'a at node (/, j) at time step n: 

(°(J°'0\ ''J'" _ e0y f _/+ <Aj+ !/i,« ixi, j+1 _ x i + i,j) 

+ ^'A,J+'A,n (Xi-l,j:-xiJ+l) (1) 

+ aia~>A,j-*,n{xiJ-l_xi-l,j) 

+<y/2,y'",/2'"(<'''/-*Ty'"1)] 

where e^7 is the two-dimensional alternator symbol defined by 
ei2 = _ £2i = l>en = e22 = 0; and/I' '- 'is the equivalent node 
area, equal to one-half the area of the shaded quadrilateral in 
Fig. 2.1. For a node lying on a boundary of the mesh, the 
areas and stress components of the missing zones are set to 
zero in the above difference formula. See the discussion by 
Herrmann and Bertholf (1983) for a more detailed analysis of 
the boundary conditions. 

The difference formula (1) is obtained by one-point integra­
tion of the following form of Green's theorem applied to the 
quadrilateral region D enclosed by the curve C as shown in 
Fig. 2.1: 

l^dA=£^c^ (2) 

where 4> is any sufficiently smooth field on D, in this case the 
components of a. 

An elastic constitutive relation of the form 

<r = h(F) (3) 

is assumed, where h is a tensor-valued stress response function 
and F is the deformation gradient tensor, defined by 

These components are evaluated by the following difference 
formula: 

V dxe ) 

= Si j fv-W+l _ y ' + ' . - n (vi+i,j+l,n _vi,j,n\ 
2Ai+yi,j+</2 ly y T ' ^ a Ja i 

- ( < 1- '+' -xljJ) (y>^+ »•" -y„+ w.») ] . (5) 

The origin of equation (5) is similar to that of equation (1), but 
with the four zone edges taken as the contour for Green's 
theorem. The integrand is the mean value of ya along a zone 
edge. 

Dynamic relaxation is a standard method which involves the 
modeling of an equilibrium boundary-value problem as the 
large-time limit of a damped dynamic problem. This method 
was first introduced by Day (1965). A thorough discussion of 
this method has been provided by Underwood (1983), and the 
following summary is partly based on this source. A discre­
tized version of the equation of motion is most conveniently 
represented as a form of Newton's second law: 

f(n/'" + f tiiy + tMy' = ™Jj '»'• h" + Pm'g V ' >•» + * , (6) 

where /3 is a damping constant, wfjJ is the nodal mass, v1' •'•" + Vl 

is the velocity vector, a',y''" is the acceleration vector, 
and f{^/'", i'iJi", and ffy^ are the nodal forces due to internal 
stress gradients, body forces, and boundary loads, respective­
ly. The force on the node from internal stresses is given by 

-af) (7) 

which is evaluated using the difference formulas (1). The 
quantities f^" and t'^ are found by multiplying the body 
force density field or boundary traction field by the nodal area 
or length. 

The difference approximations used in equation (6) for ac­
celeration and velocity are the following: 

a i , j,n _ ( v i , j,n + 'A _ v i , j,n -'Ayfjt (g) 

and 
yi,j,n+'A =(yi,j,n+l - j ' , i , » ) / / j » t ' / i (9) 

where h" and h"+Vl are the time steps, related by 

h"= — (hn-'A+hn+"). (10) 

The discretized equation of motion (6) is solved for y1'- J-"+' for 
each node using equations (8) and (9). The difference 
representation is an explicit differencing method, since y''-''',+1 

depends only on quantities which are known from time step n. 
The difference formula (6) differs slightly from the usual 

one for dynamic relaxation in that the damping term uses the 
velocity value centered at n + Vi rather than n, which appears 
in the inertial term. This inconsistency causes an increase in 
truncation error, but it is used here because it makes the 
stability condition for the pseudotemperature method simpler. 
Of course, the error in the time-differencing is of no concern 
in dynamic relaxation provided the method is stable. A suffi­
cient condition for the numerical stability of the method is the 
Courant stability condition: 

/!"+ , / l<min {e/c\i+Vi-J+Vl-n. (11) 
i.j 
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Here c is the local speed in the reference configuration of 
whatever type of infinitesimal wave moves fastest. The zone 
width e is the minimum of the lengths of the zone edges and 
diagonals. In order to accommodate meshes in which e varies 
widely, CHIMP equalizes the stable time step throughout the 
mesh by assigning a suitable fictitious mass density (Welsh, 
1967) which influences the local value of c. 

For the quickest approach to an equilibrium solution, the 
damping coefficient (3 is chosen in such a way as to provide 
critical damping of the fundamental mode of the mesh. 
Hourglassing is controlled using small resistive forces found 
from an algorithm similar to the one proposed by Hancock 
(1979), although in CHIMP the algorithm is based on 
displacement rather than velocity. 

3 Pseudotemperature Method for Incompressibility 

CHIMP uses a new algorithm which enforces incom­
pressibility by adjusting the hydrostatic pressures in the zones 
in such a manner that the zone volume change tends to zero 
for large times. So far the method has been used only for 
large-deformation elasticity, although extension to other types 
of materials appears straightforward. 

If a material is incompressible, then the constitutive relation 
(3) must be modified to include a pressure term: 

o- = h ( F ) - P F - 7 ' , d e t F = l (12) 

where P is a scalar field and F ~ T is the inverse of the transpose 
of F. Since the first Piola-Kirchhoff stress a is related to the 
Cauchy stress T by 

T = O¥T/J, / = d e t F , (13) 

(12) is equivalent to 

T = h(F)F r - jP l , det F = l . (14) 

The incompressible stress response function h in equations 
(12) is defined only on the set of unimodular tensors (det F = 
1). In the pseudotemperature method, h is formally replaced 
by a compressible stress response function h* with the follow­
ing properties: 

(a) h*(F) = h(F) whenever det F = 1; 
(b) h* must repesent the response of a physically 

reasonable material. 

Assume that the mesh is initially in a stress-free state. The 
calculation proceeds using h* as if the material were com­
pressible. However, the computation of stress in each zone is 
modified in a special way. A new zone-centered scalar field 6 is 
introduced and stored in an array. In each zone in each time 
step, 6 is adjusted according to how far the zone is from satis­
fying incompressibility: 
gi+'/i,j+ Vifi _ j 

gi+'AJ+'/i,n =Qi+Vi,j+Vi,n-\ + ft/j _ Ji+ Vi,j+ Vi,n ^ n>\ ( J 5 ) 

where a is a dimensionless nonnegative constant. For each 
zone in each time step, a scalar quantity p is computed: 

~/ + 1/2,j'+ Vi,n — fc(Qi+i/2,j+ Vi,n ji+ V2, j+ Vi,n \ (16) 

where k is a constant. The stress tensor for a zone is then com­
puted from 

0i+'/iJ+'/i,n _ j ,* /p i '+^ ,7 '+ !^ ,n j _ ( JnJ(-Ty+ Vi, j+ Vi,n _ iyj\ 

p does not by itself give the hydrostatic pressure, since there is 
a contribution from Tr h* F7". 

Changes in 6 have the effect of adjusting the natural state, 
or unstressed state, of the zone in a manner similar to 
temperature in thermoelasticity. For this reason 6 is called the 
pseudotemperature. Note that if J < 1, the zone gets "hotter" 

according to equations (15). This induces an increase in 
pressure through equation (16), leading to an expansion of the 
zone in subsequent time steps. The effect is to drive / to 1 in 
the limit of large time. 

Two new constants have been introduced, a and k. These 
are set through considerations of numerical stability and con­
vergence rate, i.e., the number of time steps needed to attain a 
solution sufficiently close to the conditions of equilibrium and 
incompressibility. The remainder of this section presents a 
derivation of stability conditions for these parameters by a 
von Neumann stability analysis. A detailed look at this 
analysis is of interest because many related methods, especial­
ly those in which P is manipulated directly (as opposed to the 
indirect effect of pseudotemperature) have much more severe 
stability conditions. 

Consider an infinite mesh which is uniform and rectangular 
in the reference configuration. Let e, and e2 be the zone spac-
ings in the xx and x2 directions. Let the mass density in the 
reference configuration be p0 . Assume that the mesh 
undergoes a homogeneous deformation, possibly a large one, 
with principal stretches X, and X2. These principal stretches 
are assumed to be in the xx and x2 directions, respectively. 

The von Neumann stability test (see Richtmeyer, 1967) at­
tempts to detect whether any of the vibrational modes of the 
mesh, if excited by a small disturbance, grows nonphysically 
with time. A full two-dimensional treatment of this type is 
prohibitively complex. However, a reliable stability condition 
may be derived by making a reasonable assumption about the 
mode that is the first mode to exhibit nonphysical growth as h 
is increased. The assumption is that this most sensitive mode 
corresponds to a dilatational wave in the direction of one of 
the principal stretches. This assumption is reasonable because 
one would expect pseudotemperature to affect only dilata­
tional modes, rather than shear modes, since its effect is felt 
only through the hydrostatic pressure. Further, in isotropic 
materials, the fastest dilatational waves occur in the direction 
of one of the principal stretches. 

The above assumption allows the stability analysis to be car­
ried out as though the mesh were one-dimensional. Consider 
an arbitrary node (/, j). Assume a motion of the form 

where I «'••'•" I « e p Following the usual procedure for von 
Neumann stability analysis, assume 

uij,„ = v„e4^\d ( 1 9) 

where K > 0 is the wave number and v is a complex constant 
which characterizes the growth rate of a vibrational mode. 
(Here the superscript in v" signifies exponentiation.) A con­
stant time step h is assumed. 

The first aim is to express the difference formulas entirely in 
terms of u values. Under the present assumptions, the dif­
ference formulas (1) and (5) simplify to (omitting they labels) 

(u'-n+' -2u l ' n + u'-"-') + I3h(u'-n + l - u''n) 

= -^—(a\rA'n-ain'/^) (20) 
Po«i 

After linearizing the constitutive relation (17) and again using 
the difference formula (5) for the deformation gradient, one 
finds 

a[\v^" = au + - ^ - ( w ' + 1 ' n - « ' > ) - X 2 p ' ' + , / ! ' " (21) 
«i 

where an is the stress associated with the homogeneous defor­
mation, c, is the speed of dilatational waves in the x{ direc­
tion, relative to the reference configuration, through a com­
pressible solid characterized by h* which has been subjected to 
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the homogeneous deformation. Combining equation (21) 
with its analogue for time step n — 1 leads to 

P o l (u'+l<"-u' • U1'" + U>< ') 

-\2(p'+'/>'n-p'+'/>-"-1) (22) 

Using equations (15), (16), and the appropriate expressions for 
the J terms yields 

+ —1"(1+«)(«'>-M / + 1 '")+M , '+ ' •"- '-M'' '"-1]] (23) 

Combining equation (20) with its analogue for the previous 
time step while using equations (22) and (23) provides an equa­
tion in which displacements are the only variables: 

(1 + /3/!)«'>+1 + ( - 3 -2/3/;)«'> + (3 + 0/i)!/''•"-' - W'"-2 

ef <A ̂ c 2 / V / 

( \-+l)(ui+1-"-1 -2u'-"-1 +ui-l-"-l\l 

(24) 

Note that values for four different time steps appear in equa­
tion (24). Using the complex representation (19) and making 
use of the identity cos K = (exp(V- IK) + exp( - V - 1K))/2 in 
equation (24) yields a cubic equation for the complex number 
v. 

(\+W)v'i 

[ - 3 - 2 | 3 / I + ( 2 - 2 C O S K ) ( ;§-(!+«) + l ) c 2 L : 

(25) + [3 + 0/i-(2-2cos/c)(' 2
1-+l)c2lv-l=0 

where the C is the Courant number, C = hci/e1. 
The condition for stability is that I v I < 1 for all vibrational 

modes. The cubic equation (25) has no root v whose modulus 
exceeds unity for any mode if both of the following conditions 
hold: 

V PnCf / Pocf 
<?<! (26) 

and 

a<Ph. (27) 

The stability conditions (26) and (27) are generalized to two 
dimensions by replacing cx by c, the maximum wave speed in 
any direction; X2 by X, the maximum principal stretch; and e! 
by e, the zone width previously defined. Making these 
substitutions and using the definition of C, the stability condi­
tion is found to be 

h"+Y'<hcr = mm \ . , e „ - ] 
i.j W c 2 + A:X2/p0J 

i+ V2,j+Vi,n 
(28) 

(27) must also be satisfied once hn+v" is chosen. 
Inspection of (28) shows that one can adjust the relative ef­

fect of pseudotemperature on the stable time step by defining 
a separate value of k for each zone at the start of the run: 

ki+Vi,j+'A =K(poC2/X2y+v1j+y1,o (29) 

where K is a preassigned nonnegative number. In practice, a 
specific value for the time step length is found from h"+ Vl = 
shcr, where s is an ad hoc safety factor, 0 < s < 1, and hcr is 
found from (28). The safety factor accounts for the approx­
imate nature of the above stability analysis. 

The stability condition (28) reduces to the usual Courant 
condition for the case of no pseudotemperature, k — 0. Also 
note that (27) implies that the pseudotemperature method 
would be unconditionally unstable in its present form in the 
absence of damping. 

In summary, if the k and h values are generated by equa­
tions (29) and (28), and if a satisfies (27), then the condition 
for stability is satisfied. In order to maximize the convergence 
rate, a and s should be chosen as large as possible such that 
(27) holds and s < 1. Values of a" = 0.9(3 hn+ Vl and s = 0.9 
usually work well, although a smaller value of s is sometimes 
necessary. Note that a" and h"+ Vl must be recomputed at each 
time step. The constant K determines the stiffness of the 
material with respect to volume changes. As was shown above, 
too large a value of K would reduce the time step unaccep-
tably. On the other hand, a very small a value of K would 
make the pseudotemperature method ineffectual. Based on ex­
perience a value of A" = 0.5 appears to result in good con­
vergence rate for most problems. 

In applications involving very large distortions, the stability 
criterion (28) may become so restrictive as to make the calcula­
tion inefficient. In this case, one can reassign all the mass den­
sities and k values using equation (29) as is done initially in a 
run. In this event it is best to set all the node velocities to zero 
in order to avoid creating kinetic energy. 

When applying the pseudotemperature method to a specific 
incompressible material, the user must provide a compressible 
constitutive relation h* subject to the restrictions discussed 
earlier. There is considerable flexibility in this choice, and con­
stitutive relations of the form used in Section 4 for the neo-
Hookean material generally work well. 

The user must also provide c, the maximum sound speed in 
any direction as a function of F relative to the reference con­
figuration. The exact value of this quantity for an elastic 
material is 

c = max 
m,n 

1 dht, 
dF^,, 

(30) 
P0 U1yi 

where m and n are arbitrary unit vectors in the plane. The 
computation indicated in equation (30) can be tedious, but ex­
perience has shown that a simplifying assumption leads to a 
reliable estimate of c which is much easier to compute. One 
assumes that the maximum wave speed is that of a dilatational 
wave in the direction of one of the principal stretches. Then 

c = max(c! ,c2) = max a 1 dhf 1 dh! 
- ) • 

(31) 
Po dFn ^ Po 9-̂ 22 

The case of one or both of the partial derivatives in equation 
(31) being negative corresponds to an unstable material, since 
such a material would possess an imaginary wave speed in 
some direction. If for some zone in some time step one of the 
derivatives is zero or negative, the zone's effect on the stable 
time step may be ignored, since in practice the zone always 
reverts to a materially stable condition within a small number 
of time steps anyway. 

The use of pseudotemperature does not affect the trunca­
tion error of the difference formulas (1) and (5), since the 
value of J used in equations (15) and (16) is consistent with 
these formulas. Since only the large-time limit of the dynamic 
relaxation is of interest, any effect of pseudotemperature on 
the error in the time integration scheme is unimportant except 
as it affects numerical stability, an issue which has been dealt 
with above. 

4 Sample Problems 

This section presents results of application of the 
pseudotemperature method to two problems in incompressible 
finite elasticity. The first problem, the closure of a wedge-
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Fig. 4.1 Gap closure problem: (a) Reference configuration; (b) Deform­
ed configuration 

shaped gap in a circular disk, demonstrates the capability of 
the method to predict singular solutions. The second problem 
is that of a rubber cylindrical rod being squeezed between two 
rigid walls, which demonstrates the method when contact 
boundary conditions are used. 

4.1 Gap Closure Problem. An unstressed circular disk of 
radius r0 contains a wedge-shaped gap, as shown in Fig. 4.1. 
Using a polar coordinate system with 6 = 0 on the horizontal 
axis, the gap is oriented so that the disk occupies the interval 
- 7 / 2 < 6 < 7/2 where 7 is a constant, 0 < 7 < 2ir. 

The disk is composed of a neo-Hookean material, an in­
compressible hyperelastic solid whose Piola stress response 
function may be written 

(32) h ( F ) = ^ ( F - F - r ) , d e t F = l 

where JX is a positive constant. The corresponding Cauchy 
stress tensor is T = /n(FF r — 1) — PI . 

Let (p, (j>, f) be the polar coordinates of the image of a parti­
cle initially at (/, 6, z). Assume plane strain, f = z. The 
boundary conditions are such that the gap is welded shut and 
the outer circular boundary is traction-free. This problem 
belongs to a class of problems involving wedge-shaped regions 
investigated by Singh and Pipkin (1965) and separately by 
Klingbeil and Shield (1966). Its tractability stems from the fact 
that the constraint of incompressibility completely determines 
the deformation. The requirement of incompressibility implies 
that only one deformation with polar symmetry is possible: 

p= (7/2TT)1/2/-, 0 = 2TT0/7. (33) 

Since the deformation is now determined, the stress field is 

numerical 
exact 

t— P 

Fig. 4.2 Comparison of CHIMP results and exact values for normal 
Cauchy stress components and pressure in gap closure problem 

also determined through (32) except for the scalar field P. 
Because of polar symmetry and the isotropy of the material, 
the Cauchy shear stress components r P * ' ' ?« > and 'of all 
vanish, and the nonvanishing components are independent of 
4>. Therefore, the scalar field P may be found by integrating 
the Eulerian from the equilibrium equation in the deformed 
configuration. After applying the traction boundary condition 
at the outer edge, one finds that the nonzero components of 
the Cauchy stress fields are given by 

/ 2 T 7 \ p 
,(p)=M V ~ J l o g — ' 

\ 7 27T / p0 

-<T-i)(^i)-, ( p ) = (34) 

•Po r f f(p)=,(l-£)+ ,(-^-£)logAo<p, 
where p0 = (y/2ir)W2r0. 

CHIMP was used to model this problem for the case 7 = 
47i73, r0 = 1, ji = 1. The mesh for this problem used 13 rows 
of constant radius and 12 columns of constant angle. Ex­
ploiting symmetry, a mesh modeling only one quadrant was 
used, with the x2 axis becoming a lubricated wall. The edge of 
gap was modeled as another lubricated wall, with its angle a 
ramp function of time. The ramp took about 100 time steps to 
reach the fully closed position. 

The compressible Piola stress response function used for the 
pseudotemperature method was 

h*(F)=/*[F + ( 7 2 - 2 ) F - r l , / = d e t F > 0 (35) 

The resulting Cauchy stress tensor is T = ft ( ( fT r — 1)/J + 
(J - 1//)1). To evaluate c as discussed at the end of the 
previous section, the deformation gradient tensor is written as 

[F] = 
0^1 

0 
(36) 

in which the coordinate frame has the xx axis parallel to the 
direction of maximum stretch. (It is not necessary to find this 
direction.) The general form (36) continues to hold when a 
small dilatational wave in the xl or the x2 direction is super-
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Fig. 4.3 Rubber cylinder compression problem: (a) Undeformed- (b) 
Deformed 

posed on the large homogeneous deformation, but in the case 
of a wave X; or X2 is time-dependent. Equations (35) and (36) 
imply 

<711=/rr1(F)=At(X1+X1X|-2/X1). (37) 

Thus 

C ' = - J — 4 ? L = -N/—(l+M+^/A,). (38) 
N Po oX, ^ p0 

c2 is found from equation (38) with all the subscripts 1 and 2 
interchanged. Then c = max (c,, c2). The principal stretches 
X, and X2 are found from the relations 

/=X 1 X 2 andTr(FF r )=X? + ^ . (39) 

The left-hand sides of (39) are easily computed from F in any 
basis, since they are invariants. 

The pseudotemperature parameters were a = 0.9 and K = 
0.5. The entire simulation was run for 700 time steps. Figure 
4.2 compares the numerical results against the exact solution 
derived above for TPP, T W , and pressure as a function of p. 

4.2 Compression of a Rubber Cylinder Between Rigid 
Walls. A circular cylindrical rod composed of a neo-Hookean 

material is compressed between two rigid lubricated walls. The 
final distance between the walls is the radius of the cylinder. 
The CHIMP mesh for this problem employed 12 radial lines 
and 13 circular lines (see Fig. 4.3 (a)). The walls were initially 
spaced at the diameter of the cylinder and brought together 
over a period of 300 time steps. The pseudotemperature 
parameters were a = 0.9 and K = 0.5. The entire simulation 
was run for 1000 time steps. Figure 4.3 (ft) shows the deform­
ed mesh. The analogous problem for walls with a "rough" 
surface, which prevents motion of the boundary of the 
cylinder after contact with the wall is initially made, has also 
been modeled successfully. 

5 Summary 

Pseudotemperature has proven to be a useful means of im­
posing the constraint of incompressibility when computing 
large elastic deformations using a dynamic relaxation method. 
It has the advantage of requiring minimum disruption to the 
architecture of a computer code designed for compressible 
materials. It also has the property of enforcing incom­
pressibility with greater and greater accuracy as a calculation 
progresses. The above discussion of stability shows that 
suitable values of the scalars a and K may always be chosen, 
provided viscous damping is present. 

Future work will include application of this approach to 
other constraints, such as the presence of inextensible fibers. 
Attempts are also being made to extend these ideas to fully 
dynamic calculations. 
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Plane Strain Dislocations in Linear 
Elastic Diffusive Solids 
Solutions are obtained for the stress and pore pressure due to sudden introduction of 
plane strain dislocations in a linear elastic, fluid-infiltrated, Biot, solid. Previous 
solutions have required that the pore fluid pressure and its gradient be continuous. 
Consequently, the antisymmetry (symmetry) ofthe pore pressure p about y = Ore-
quires that this plane be permeable (p = 0) for a shear dislocation and impermeable 
(dp/dy = 0) for an opening dislocation. Here Fourier and Laplace transforms are 
used to obtain the stress and pore pressure due to sudden introduction of a shear 
dislocation on an impermeable plane and an opening dislocation on a permeable 
plane. The pore pressure is discontinuous on y = 0 for the shear dislocation and its 
gradient is discontinuous on y = 0 for the opening dislocation. The time-
dependence of the traction induced on y = 0 is identical for shear and opening 
dislocations on an impermeable plane, but differs significantly from that for 
dislocations on a permeable plane. More specifically, the traction on an im­
permeable plane does not decay monotonically from its short-time (undrained) 
value as it does on a permeable plane; instead, it first increases to apeak in excess of 
the short-time value by about 20 percent of the difference between the short and 
long time values. Differences also occur in the distribution of stresses and pore 
pressure depending on whether the dislocations are emplaced on permeable or im­
permeable planes. 

Introduction 

The presence of an infiltrating fluid that can diffuse in 
response to an inhomogeneous mean stress field can introduce 
time-dependence into the response of an otherwise linear-
elastic solid. Although a linear theory is obviously an approx­
imation to actual behavior, this theory is rich enough to pro­
vide insight into the nature of coupling between deformation 
and diffusion and guidance into more complicated nonlinear 
problems. Moreover, there is often insufficient data to war­
rant the construction of a more elaborate theory. 

The equations describing the response of a linear elastic, 
diffusive solid were first formulated by Biot (1941a) within the 
context of a fluid-saturated porous elastic solid. More recent­
ly, Rice and Cleary (1976) reformulated these equations in a 
way that is often more convenient. Solutions to these equa­
tions have been widely used in consolidation theory (e.g. Biot, 
1941b; Biot and Clingan, 1941) and, more recently, in study­
ing the role of coupling between deformation and diffusion of 
ground water on earth faulting (see Rudnicki, 1985, for a 
review). The equations have also been applied to biological 
materials (e.g., Kuei, 1977; Mow and Lai, 1980). Indeed, the 
formulation is sufficiently general to describe the linearized 
response of any solid containing a diffusing species that can be 
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characterized by a relation between two scalar variables, for 
example, pressure and fractional volume change in the case of 
groundwater. The formal analogy of these equations to com­
pletely coupled thermoelasticity has also been noted (Biot, 
1956; Rice and Cleary, 1976; Rice 1979). 

This paper considers the problem of plane strain (edge) 
dislocations in a linear elastic diffusive solid. Booker (1974), 
using the stress function formulation of McNamee and Gibson 
(1960a,b) and integral transforms, obtained the solution for a 
shear (gliding edge) dislocation in the special case that both 
solid and fluid constituents are incompressible. Rice and 
Cleary (1976), using a complex variable formulation, derived 
the solution for arbitrarily compressible constituents. These 
solutions correspond to the case in which the glide plane of the 
dislocation (the plane containing the dislocation line and the 
Burger's vector) is permeable to the diffusing species. 
Although neither author emphasizes this feature, it results 
because the mean stress and pore pressure are antisymmetric 
about the glide plane. If the pore pressure is continuous, then 
it must be zero on the glide plane. Another possibility, 
however, is that glide plane is impermeable to the diffusing 
species. Now the pore pressure can be discontinuous on this 
plane. 

The stresses and displacements for an opening (climbing 
edge) dislocation can also be obtained from the results of Rice 
and Cleary (1976) although they do not explicitly display this 
solution. In this case the boundary condition on the pore fluid 
pressure corresponds to no flow across the plane containing 
the Burger's vector and the dislocation line. Again, however, 

Journal of Applied Mechanics SEPTEMBER 1987, Vol. 54 / 545 

Copyright © 1987 by ASME
Downloaded 03 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



there is another possibility: no change in pore fluid pressure 
on this plane. Now, the symmetry of the mean-stress and pore 
pressure requires that the gradient of the pore fluid pressure be 
discontinuous. 

In this paper, Fourier and Laplace transforms are used to 
derive the stresses and pore fluid pressure due to sudden in­
troduction of a plane strain shear dislocation on an im­
permeable plane and of a plane strain opening dislocation on a 
permeable plane. These solutions are compared and con­
trasted with those obtained by Rice and Cleary (1976). 
Although applications of these solutions are not explored 
here, Rudnicki (1986) has discussed the implications of the 
shear dislocation solutions for slip on an impermeable fault in 
the earth's crust. The dislocation solutions provide only crude 
models of sliding or opening cracks, but solutions for more 
realistic geometries can be constructed by superposition or by 
implementing the fundamental dislocation solutions in a 
numerical procedure. 

This paper first concisely describes the governing equations 
and obtains the solution for the doubly transformed stresses 
and pore pressure. Then the boundary conditions for the dif­
ferent solutions are presented. The inversion of the transform­
ed solution for the shear dislocation is discussed in detail, but 
inversion of the opening dislocation is similar and, conse­
quently, is only outlined. Finally, the interrelations of these 
solutions with those obtained by Rice and Cleary (1976) are 
discussed. 

Governing Equations 

The governing equations for linear elastic, fluid-infiltrated 
solids were first derived by Biot (1941a), but the description 
here follows a convenient rearrangement of these equations by 
Rice and Cleary (1976). In this theory, the presence of the dif­
fusing species is incorporated via two variables in addition to 
the usual ones of linear elasticity. Here, these are taken to be 
the pore fluid pressure p and the mass content of diffusing 
species per unit volume of porous solid m. For plane strain 
deformation in the xy plane (no displacement in the z direc­
tion) the displacements in the x and y directions, ux and uy, do 
not depend on z. The nonzero strains are 

1 
-(diia/dxp + dup/dxj (1) 

where (a, /3) = (x, y). These strains and the alteration of m 
from an ambient value m0 are related to the total stresses oxx, 
axy, and oyy and to the pore fluid pressure/? as follows: 

2Geafi =aa(i-v( axx + ayy)8al3 + [3(e„ - v) /B (1 + vu )]p 8a/j (2) 

m — mn 

?>Po(vu-v) [axx + ayy + 3p/B (1 + vu) ] (3) 
2GB(\ + vu) 

In equations (2) and (3) G is the shear modulus; v and vu are 
Poisson's ratios governing drained (long-time) and undrained 
(short-time) response, respectively; B is Skempton's coeffi­
cient, the ratio of an increment of pore fluid pressure to an in­
crement of mean normal compression during undrained 
response; p0 is the density of the homogeneous diffusing 
species; and <5a|3 is the Kronecker delta (5a/3 = 1, if a = /3 and 
bali = 0, otherwise). 

For deformation that is slow enough so that any alterations 
in pore fluid pressure are equilibrated by mass diffusion, the 
response is said to be drained and, since p = 0 in this case, 
equation (2) reduces to the usual elasticity relation. Deforma­
tion that is too rapid to allow time for diffusion is said to be 
undrained. In this case, m = mot and solving for/7 in equation 
(3) and substituting in equation (2) again yields the form of the 
usual elasticity relation with vu replacing v. 

The final constitutive equation is Darcy's law which, in the 
absence of body forces, states that the mass flow rate in the a 

direction per unit area, qa, is proportional to the gradient of 
pore fluid pressure: 

qa=-PoKdp/dxa (4) 

Here K is a permeability often expressed as k//j. where k has the 
units of area and /J. is the fluid viscosity. 

For plane strain deformation, the governing field equations 
can be written as follows in terms of the stresses aag and pore 
pressure p: 

daxx/dx+d<jXy/dy = 0 (5) 

daxy /dx + ddyy /dy = 0 (6) 

V2(oxx + Oyy + 2rip)=0 (7) 

(cV2 - d/dt) [axx + ayy + (2r,/ix)p] = 0 (8) 

where V2 ( . . . ) = [(d2/dx2) + (d2/dy2)] (. . .), c is a dif-
fusivity, fi = (vu — v)/(l - v) 

and 

r, = 3(vu-v)/2B(\+vu)(\-v). 

Equations (5) and (6) express equilibrium of total stresses in 
the absence of body forces and equation (7) expresses com­
patibility of strains. The diffusion equation (8) is the result of 
combining Darcy's law (4) with an equation of fluid mass con­
servation and using equation (7). Comparing equation (8) with 
(3) reveals that the quantity in square brackets in equation (8) 
is proportional to the alteration of fluid mass content. Hence, 
as emphasized by Rice and Cleary (1976), the fluid mass con­
tent m satisfies a homogeneous diffusion equation although 
the pore fluid pressure, in general, does not. Rice and Cleary 
(1976) have given a full discussion of these equations and have 
tabulated values of material parameters inferred from 
laboratory tests on rocks (also see Rudnicki, 1985) and Rice 
(1979b) and Rice and Rudnicki (1979) have given some 
estimates of v and vu for conditions near faults in the earth's 
crust. 

The equations (5)-(8), subject to boundary conditions to be 
discussed in succeeding subsections, will be solved using the 
Fourier transform on x and the Laplace transform on t. The 
Laplace transform of a function/(x, /) is defined by 

J GO 

exp(-st)f(x,t)dt 
o 

(9) 

and the inversion is denoted by 

1 
f(x,t)=L-1[f(x,s)}=-—\ f(x,s)exp(.st)ds (10) 

27Tt J Br 
where t = ( - 1)1/2 and Br denotes the Bromwich contour. The 
Fourier transform is defined by 

{
oo 

f(x,s) exp( - IKX) dx 
— oo 

(11) 

with inversion 

f(x,s)=F-<[f(K,s)]=—- f(K,s)exp(uoc)dK (12) 
ZTT J - O O 

Applying the Fourier and Laplace transforms to equations 
(5)-(8) yields the following results: 

- , d°xy n 
t K arr H — = 0 

dy 
dOyy 

~dj 

( - K2 +-^r) (*« + »,, + 2v P) = o dy 

(13) 

(14) 

(15) 
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-jT- n2(K)\[oxx + °yy+(2i)/v-)p] = 0 (16) 

where «2(K) = K2 + s/c. These equations are identical to those 
obtained by Rice and Simons (1976) except that —LKV/C in 
their expression for n2(k) is replaced by s/c. Consequently, 
the solution of these equations can be obtained directly from 
their results and is as follows: 

-*—(dxx + byy)=A e-
mM" + Be-"^y (17) 

7)p=-nA e~",My-B e-"^ (18) 

-^-(<ryy-axx) = [C+m(K)y A]e~»'^ 

[K2 + /^2(K)]e-"('()•,' (19) 

s/c 
axy = - [IK /n"1 (K)C+ « y A]e~mM}' 

+ 2im(K)e-"(K)>l (20) 
s/c 

where A, B, and C are functions of K and 5 to be determined, 
and OT2(K) = K2. Note that the doubly transformed solution 
for the fluid mass content per unit volume m is proportional to 
B e~"My. To insure convergence of the inversion integrals my 
> 0, W(K) and TZ(K) are subject to the following restrictions: 

Re[/«(K)]>0 (21) 

Re[«(/c)]>0 (22) 

where Re[. . .] stands for "the real part of [. . . ] . " 
The functions A, B, and C can be determined from the 

boundary conditions which are discussed in the next 
subsection. 

Boundary Conditions 

The introduction of a shear (gliding edge) dislocation at the 
origin corresponds to cutting the negative x axis, displacing 
the top to the right and the bottom to the left by the same 
amount, then bonding the cut elastic plane back together. The 
resulting discontinuity in the x displacement is described as 
follows: 

ux(x,y = 0+,t)-ux(x,y = 0-,t) 

= [2*(1-vu)bx/G]H(-x)H{t) (23) 

where H(. . .) denotes the unit step function and the notation 
y = 0 * indicates that ux is to be evaluated as the x axis is ap­
proached from above or below. The magnitude of the discon­
tinuity is measured by bx and the factor 2ir(l - vu)/G has 
been introduced with a view to simplifying later expressions. 
Because the displacements are antisymmetric with respect to 
the plane y = 0, the problem can be formulated in the upper 
half-plane, y > 0, with equation (23) rewritten as 

ux(x,0+,t) = Ml-vu)bx/G]H(-x)H(t) (24) 

Because of antisymmetry and continuity of total tractions on y 
= 0, the normal stress on this plane ayy is zero: 

ayy(x,0+,t)=0 (25) 

If the pore fluid pressure p is continuous, then antisym­
metry requires that it be zero on the plane y = 0: 

p ( x , 0 + , 0 = 0 (26) 

This is the problem for which the solution has been given by 
Rice and Cleary (1976) (and earlier by Booker, 1974, for in­
compressible constituents corresponding to B = 1 and vu = 
0.5). Because dp/dy is not zero on y = 0 in this case, flow 
across y = 0 occurs according to equation (4). Another 
possibility is, however, that the plane y = 0 is impermeable to 
the diffusing species. As discussed by Rudnicki (1986), this 
can occur for an earth fault because clay gouge or finely 
ground material is present in the fault zone. In this case no 
flow can occur across y = 0 and the boundary condition en­
forcing this constraint is the following: 

dp 
-^-(x,0+,t)=0 (27) 

dy 

Because the solution to the field equations is written in 
terms of stresses, it is also convenient to express the boundary 
condition (24) in terms of the stresses. Differentiating (24) 
with respect to x yields 

- ^ ( x , 0 + ,t) = - [TT(1 - vu)bx/G}b(x)H(t) (28) 
ox 

where b{x) is the Dirac delta function. Because exx = dux/dx, 
equation (28) can be substituted into equation (2) and the 
result, after using equation (25), is 

-2T(1 -n)bx8(x)H(t) =oxx(x,0,t) +2r) p(x,0,t) (29) 

where /x and -q are defined following equation (8). If the plane 
y = 0 is permeable and equation (26) is satisfied, the second 
term vanishes. In this case, the change in fluid mass content on 
y = 0 is proportional to o^ (x, 0, r) . Because m satisfies the 
homogeneous diffusion equation, the solution is that for a 
fluid mass dipole (Carslaw and Jaeger, 1959) given by Rice 
and Cleary (1976). If the fault plane is impermeable and equa­
tion (27) is appropriate, the resulting boundary condition on 
m is not so simple and this is a source of the additional com­
plexity in this solution by comparison with that for the 
permeable plane. 

The boundary condition for an opening (climbing edge) 
dislocation corresponds to introducing a discontinuity in the y 
displacement on the negative x axis. This problem can again be 
formulated in the upper half-plane, y > 0, by noting that the 
displacements are now symmetric about y = 0. The boundary 
conditions can be written as follows: 

uy (x,0+ J) = [TT(1 - vu)by/G\H( -x)H(t) (30) 

axy(x,0+,t)=0 (31) 

where, again, the constant factor multiplying by has been in­
troduced to simplify later expressions. 

If the derivative of the pore pressure in the y direction is 
continuous, then the symmetry of the problem requires that it 
be zero on y = 0. Now, however, an alternative boundary 
condition is equation (26). In this case the fluid mass flux is 
discontinuous on y = 0. This boundary condition models a 
thin high permeability layer in which the easy flow of fluid 
maintains the pore fluid pressure at its ambient value. This 
boundary condition may also be appropriate when opening is 
accompanied by injection of fluid mass. 

In the next section the solution for the shear dislocation 
with an impermeable boundary at y = 0 (equation (27)) will be 
completed. The following section treats the opening disloca­
tion with a permeable boundary at y = 0 (equation (26)). 
Because the conversion of the boundary condition (30) to a 
condition on the stresses is accomplished more easily in terms 
of the transformed quantities, this task is deferred to this later 
section. 

Shear Dislocation on an Impermeable Boundary 

The boundary conditions for the shear dislocation are equa-
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tions (25), (29), and, for an impermeable boundary at y = 0, 
equation (27). Taking the Fourier and Laplace transforms of 
these equations, then substituting equations (17)-(20) yields 
three equations for the functions A, B, and C. Solving these 
equations and substituting these expressions into equations 
(17)-(20) yields the doubly transformed stresses and pore fluid 
pressure. The expressions for the mean stress and pore 
pressure are as follows: 

d=(-bx-K/s){e~mMy-fi[m(K)/n(K)\e-'u-'')''] (32) 

ij p= (bxir/s)ij.{e-mM>'-[w(K)/«(/c)]e-"<'()-,') (33) 

where a = (1/2) {axx + ayy). It will be convenient to combine 
equations (19) and (20) into the complex form: 

1 
T = — (ayy-axx)+taxy (34) 

The result for the double transform of T, after substituting the 
expressions for A, B, and C, is as follows: 
f= (bxir/s)[l + K/m(K)][l -m(K)y]e-"'M^ 

- (bxn-rrc/s2)[m(K)/n(K)]{[K + n(K)]2e~"^ 

-2K2[l + K/m(K)]e-'"My} (35) 

The Laplace transform variable s appears only in n(n) and 
as a simple divisor. Terms without n(n) can be inverted im­
mediately by noting that s~l is the transform of the unit step 
function. These terms give the instantaneous undrained 
response and it can be anticipated that the spatial dependence, 
given by the inversion of the Fourier transforms in those 
terms, is identical to that of the usual elasticity solution. This 
can be verified by doing the following inverse transforms: 

F-\{e-mMy}=y/w2 ( 3 6 ) 

F-l[[l + K/m(K)][l-m(K)y]} = oc{x-iy~)2/iuA (37) 

where r2 = x2 + y2. 
The expression for the mean normal stress (32) and pore fluid 
pressure (33) can be written using equation (36) as follows: 

cj=-bxl(y/r2)-ixl(x,y,t)} (38) 

W = libxUy/r2)-Hxj>,t)) (39) 

where the Laplace transform of I is given by 

S CO 

[m(K)/n(K)]exp[uoc-n(K)y]dn (40) 

and equations (38) and (39) are understood to apply for t > 0. 
The restrictions on w(/c) and « ( K ) (equations (21), (22)) can 
be used to convert equation (40) to the following integral over 
positive values of K: 

i oo 

K(K2 +s/c)-W2cos(KX)exp[-y(K
2 +s/c)l/2]dK (41) 

0 

where the expression for «(/c) has been used. Substitution of 
equation (37) into (35) and use of equations (21), (22) leads to 
an expression for T: 

T = bxbx/(X+iy)2
]-,bx{L1^P--^rI*-I«+l} 

(42) 

where the Laplace transforms of I* and I* are given by 

I*(x,y,s) = (2c/s)I(x,y,s) (43) 

and 

P(x,y,s) = (2c/s2)\ Ki(K2+s/c)-U2Qxx>[iK(x+iy)]dK (44) 
Jo 

The inversion of I(x, y, t) is described in the Appendix. The 
result can be written compactly as 

I(x,y,t) = -lm[W(x,y,t)/z] (45) 
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where z = x + y , Im [. . .] denotes "the imaginary part of 
[. . . ] " and W(x, y, t) is defined by 

W(x,y,t) = erfc[y/(4ct)]/2] +exp(- r2/4ct)erf[i x/(4ct)W2] 

(46) 

In equation (46) erf(£) is the error function defined by equa­
tion (7.1.2) of Abramowitz and Stegun (1964) (hereafter ab­
breviated AS): 

erf(£) = (2/ir1/2) ( exp( - a2)da (47) 
Jo 

where £ can be complex and the complementary error function 
is given by 

erfc(£) = l - e r f ( £ ) (48) 

The task remaining is the inversion of the integrals P and I*. 
Because of equation (43), I* is given by 

I*(x,y,t)=2c\i'onx,y,X)dX (49) 

Substituting equation (45) into (49) yields an expression for /*: 

/* (x,y,t) =(8cty/r2)i2erfc[y/(4ct)W2] 

-[2x2(4ctyn/r2}itxic\y/{4cty/2\ 

+ 21x1 { (l-£2)1/2erfc[£/7(4c01/2]c?£ (50) 
Jy/r 

where /"erfc(z) are repeated integrals of the complementary 
error function [AS, Section 7.2]. 

The details of the inversion of equation (44) for 7* are 
described in the Appendix and the result is 

I*(x,y,t) = -2(4ct/Tr)i/2z-2~t[4ctz-i 

+ 2/z]w[z/(4ct)W2] (51) 

where (AS, 7.1.3) 

w ( r ) = e x p ( - r 2 ) e r f c ( - t f ) (52) 

Substituting equations (45), (50), and (51) into equations 
(38), (39), and (42) and carrying out the differentiations in 
equation (42) yield the following expressions for the stresses 
and pore fluid pressure due to sudden introduction of a shear 
dislocation on an impermeable plane: 

a = bx\m{{\-liW(x,y,t)]/z] (53) 

r,p=-^bxIm{[l-W(x,y,t)]/z} (54) 

T = ixbx/z
2-ixbjrtctz-3lw[z/4ct)1/2]- W(x,y,t)} 

+ 2(4ct/Tr)W2z~2[l-exp(-y2/4ct)]+z-2Im[zW(x,y,t)] 

+ 2iz-lw[z/4ct)l/2]\ (55) 

The first term in each expression gives the instantaneous 
response at t = 0. These terms are identical to the usual 
elasticity expressions with the undrained value of Poisson's 
ratio, vu. For t — <», these expressions again reduce to those 
of classical elasticity with the drained value of Poisson's ratio. 

Opening Dislocation on a Permeable Plane 

The solution for an opening dislocation with a permeable 
boundary (p = 0) at y = 0 can be obtained in a manner similar 
to that of the last section and, hence, will be described concise­
ly. As before, the solution to the governing equations (5)-(8) is 
given by equations (17)-(20) subject to equations (21) and 
(22), and the functions A, B, and C are to be determined by 
the boundary conditions (26), (30), and (31). Because the 
boundary condition (30) is not expressed in terms of stresses 
and pore pressure some manipulations are, however, required. 
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Differentiating equation (30) with respect to x and using equa­
tion (31) with equations (1) and (2) yields 

-^(xfi,t) = U(\-vu)by/G]b{x)H(t) (56) 

Doubly transforming gives 

dur 

dy 
•(K,0,S)=-K{\-Vu)by/GS (57) 

This condition can be converted to one on stress and pore 
pressure by using equation (1) in (2) with a = /3 = x, differen­
tiating with respect to y, and doubly transforming. The result 
is 

dur davx davv dp 
2GiK—^ = --^(\~v)-v—^ + 2n(\-v)~^- (58) 

dy dy dy dy 

Recognizing that equilibrium (6) and (31) require dayy/dy to 
vanish on y = 0 and substituting from equation (57) yields the 
desired condition: 

2TT 1Kb, (1 - IX)/S = -^(K,0,S) + 2T) — — ( K , 0 , S ) (59) 
dy dy 

The solutions for A, B, and C in equations (17)-(20) can be 
determined by doubly transforming (26), (31), and (59), then 
substituting equations (17)-(20). Solving the resulting three 
equations for A, B, and C, substituting into equations 
(17)-(20) and manipulating in the manner of the solution for 
the shear dislocation yields: 

a = by{(x/r2)-^K(x,y,t)} (60) 

r,p= -nby{(x/r2)-K(x,y,t)] 

-- by(iy/r2) -fxby \K(x,y,t) -K*(x,y,t) 

d2K* d2K* 

dxdy dy2 

(61) 

(62) 

where the Laplace transforms of K, K', andK* are as follows: 

S CO 

exp[-(K2+s/c)l/2y]sm(KX)dK (63) 
0 

K\x,y,t) = (2ic/s2)\ K(K2 

Jo 

+ s/c)'/2 exp [IK (x + iy) ] dn 

K*{x,y,t) = (c/s)K(x,y,t) 

(64) 

(65) 

Inversion of these expressions proceeds along the same lines as 
inversion of the corresponding integrals in the shear disloca­
tion solution. The results are as follows: 

K(x,y,t) = Re(W(x,y,t)/z] 

K* (x,y,t) = let(x/r2) {erfcLy/(4cO U2\ 

-2i2erfc\y/(4ct)l/2]} 

-y sgn(x) f (1 - u2yntxic\ur/(4ctyn]du (67) 
Jy/r 

K'(x,y,t) = 4ct z-iw[z/4ct)U2]-2i(4ct/ir)z~2 (68) 

where the notation is the same as that used earlier. The final 
expressions for the stress and pore pressure are obtained by 
substituting equations (66)-(68) into equations (60)-(62) and 
carrying out the differentiations in equation (62): 

a = byRe{[l-iJ, W(x,y,t)]/z) (69) 

7lp=-^byRe{[\~W(x,y,t)]/z} (70) 

T = iby(y/z2)-libyl4ctz~HW(X,y,t)-w{z/(4ct)y2)] 

+ 2i(4ct/Tr)W2z-2[\-exp(-y2/4ct)] 

-z2Re[z W{x,y,t)}) 

(71) 

These expressions reduce to the usual ones from ordinary 
elasticity in the limits / — 0 (undrained response) and t — <» 
(drained response). In the latter limit, p = 0 and the drained 
Poisson's ratio v enters; in the former m = m0 and the un­
drained Poisson's ratio c„ enters. 

Discussion 

The similarity between the solutions for the shear disloca­
tion (53)-(55) and the opening dislocation (69)-(71) suggests 
that they can be combined advantageously in a form 
analogous to that of complex variable elasticity. To this end, 
define the complex Burger's vector as 

b = bx + iby (72) 

Then the two solutions can be written compactly as follows: 

a = \m\bz~l\\-nW{x,y,t)}} (73) 

W=-Hi™[bz-I[l-W(xj,t)\) (74) 

T = iZ~2Re(bz)~tJ.{Lb4ctz-l[w(z/{4ct)l/2)-W{x,y,t)] 

+ 2b(4ct/T)W2z-2[l -exp(~y2/4ct)] + z-2lm[bz W(x,y,t)] 

+ 2ibxw\z/(4ct)U2]} (75) 

where b = bx — iby. For comparison, the solution for a shear 
dislocation on a permeable boundary and an opening disloca­
tion on an impermeable boundary (Rice and Cleary, 1976) can 
be written in the same form: 

ff=Imj^~1[l-/iexp(-/-2/4cO]} (76) 

•qp= -tilmlbz''[l-exp(-r2/4ct)]} (77) 

T = a~2Re(bz) -ii[ib4ctz''i[\ -exp(-r2/4ct)] 

+ z-2Im[frz"exp(-r74cO]j (78) 

(Rice and Cleary, 1976, display only the solution for the shear 
dislocation in polar coordinates, but the solution for the open­
ing dislocation is extracted from their results for the complex 
stress functions). 

It is of interest to compare the stresses induced by the 
dislocations on y = 0 for the various cases. For the shear 
dislocation on the impermeable plane and the opening disloca­
tion on the permeable plane the tractions on y = 0 are as 
follows: 

ayy + iaxy = (tbx/x) (1 + n(4ct/x2)[l -e-
xllM\ - 2p. e-*2 / 4« ) 

+ (by/x) 11 -ix(4ct/x2)[\ -e~*2 / 4 c ' ]) (79) 

For comparison the tractions obtained from the Rice and 
Cleary (1976) solution are 

(66) 0yy + wxy = (ibx/x) [ 1 -^4ct /x 2 )[ l -e^*2'^']} 

+ (by/x) {1 + fi(Act/x2)ll -e"*2/4c'] -2[i e ^ 2 / 4 c ' J (80) 

Note that the spatial dependence of the tractions is the same 
for the opening dislocation and for the shear dislocation if y 
= 0 is permeable or if / = 0 is impermeable. The time 
dependence of the tractions does, however, depend 
significantly on whether y = 0 is permeable or impermeable. 
In both cases, the traction decays from a short time limit, cor­
responding to the usual elasticity expression based on the un­
drained value of Poisson's ratio, to a long time limit that is 
smaller by the factor 1 - fi = (1 - vu)/(\ - v). The time 
dependence at intermediate times is shown in Fig. 1, which 
plots 

oyy(xfi,t)-oyy(x,0,c°) 

oyy(x,0,0)-<jyy(x,0,°°) 
against 4C//AT2 for the opening dislocation on permeable and 
impermeable boundaries. As shown, the induced stress for the 
permeable boundary decays monotonically from the short-
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.impermeable 

Fig. 1 Time-dependence of the normal traction ayy on y = 0 ahead (x > 
0) of an opening dislocation at the origin. Results are shown for y = 0 
permeable and impermeable to the diffusing species. The plot for the 
shear traction axy ahead of a shear dislocation would be identical. 

P(x,0,t) 

opening 

Fig. 2 Nondimensional pore pressure induced on an impermeable 
plane y = 0 by shear and opening dislocations at the origin. The plot is 
for a fixed time not equal to zero. The pore pressure for the shear 
dislocation is shown for y 
those shown. 

0 + ; values for y = 0 are the negative of 

time undrained value to the long-time drained value. In con­
trast, the stress on the impermeable boundary first rises to a 
maximum that exceeds the undrained value by approximately 
20 percent of the difference between the undrained and drain­
ed values. This maximum occurs at Act/x1 - 0.3. A plot of a 
on y = 0 for the shear dislocation would be identical to Fig. 1. 

As discussed by Rudnicki (1986), the increase of the shear 
stress predicted for the impermeable fault suggests that the ef­
fect of coupling between diffusion and deformation is initially 
destabilizing for sudden seismically emplaced slip. Also the 
differences in the time scale of shear stress decay for 
permeable and impermeable faults suggest differences in the 
effects of coupling on the reloading of faults, which has been 
proposed as a mechanism for aftershocks, and on processes 
preceding earthquakes. 

Figure 2 shows the pore pressure in nondimensional form 
rip(ctir)W2/n 1*1 induced ony = 0 by a shear dislocation and 
an opening dislocation on an impermeable plane. For the 
shear dislocation, the pore pressure is antisymmetric about y 
= 0. Consequently, the pore pressure is discontinuous on 7 = 
0 and the values on y = 0 _ are the negative of those shown in 

1 
-4.0 

o p e n i n g , / 

1 1 
-2.0 

/ 0 . 8 

\ . 0.4 

1 
0 

-0.4 

-0.8 

-

2ctl)7T1'2 dp 
(X,0,t) 

^ I b l 3y 

\ s h e a r 

I I i 
2 .0 y 

x / ( 4 c t ) / 2 

I > 
4.0 

Fig. 3 Nondimensional gradient of pore fluid pressure (proportional to 
the negative of the fluid mass flux) on a permeable plane y = 0 due to 
shear and opening dislocations at the origin. The plot is for a fixed time 
not equal to zero. Values shown for the opening dislocation are for y = 
0 + ; those for y = 0~ are the negative of those shown. 

Fig. 2. For the opening dislocation, the pore pressure is sym­
metric about y = 0 and, consequently, continuous on y = 0. 

Figure 3 plots the gradient of pore pressure in nondimen­
sional form (2ctr\TrU2/n\b\)dp/by on y = 0 induced by 
dislocations on a permeable plane. This quantity is propor­
tional to the negative of the fluid mass flux across y = 0(4). As 
noted earlier, dp/dy is antisymmetric about y = 0 for the 
opening dislocation and, hence, is discontinuous on y = 0. As 
shown in Fig. 3, dp/dy is negative for x > 0 and positive for x 
< 0. Consequently, there is a net gain of fluid mass on y = 0 
for x < 0 and a net loss on for x > 0. For the shear disloca­
tion, dp/dy on y = 0 is positive and symmetric about x = 0. 
Hence, fluid flows from the upper half-plane to the lower. The 
nature of the solutions and differences and similarities among 
them are further illustrated in Figs. 4-9. These figures plot 
contours of the pore pressure, mean stress, and the magnitude 
of T in nondimensional form for the various solutions. These 
plots are all for a fixed time not equal to zero. Contours for 
the solutions due to Rice and Cleary (1976), that is, the shear 
dislocation on a permeable plane and the opening dislocation 
on an impermeable plane, are shown dashed. 

Figures 4 and 5 plot contours of the nondimensional pore 
pressure r\p{Act)xn / \i. Id I in the upper half plane. Figure 4 
shows the contours for the shear dislocation (b = bx) on 
permeable (dashed lines) and impermeable planes. The values 
in the lower half-plane are the negative of those shown. The 
contours coincide for large y, but differ near y = 0 because of 
the different boundary conditions there. As shown, the con­
tours for the shear dislocations on an impermeable plane meet 
y = 0 at right angles as required by the boundary condition. 
Also, note that the maximum pore pressure change for the im­
permeable plane occurs at the origin whereas that for the 
permeable plane occurs at a finite value of y that increases 
with increasing time. Figure 5 shows the contours of non-
dimensional pore pressure for the opening dislocation on 
permeable and impermeable (dashed lines) planes. The pore 
pressure induced by an opening dislocation on an im­
permeable plane is identical to that for the shear dislocation 
on a permeable plane rotated 90 deg counterclockwise. As in 
the ordinary elasticity solution for shear and opening disloca­
tions this feature applies to the entire stress and pore pressure 
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y/(4ct)1/z //Uct)^ 

Fig. 4 Contours of nondimensional pore pressure ij p(4cf)"'/jt Ibl in­
duced in y > 0 by a shear dislocation at the origin for the plane y = 0 im­
permeable and permeable (dashed) 

x/(4ct) / ; 

Fig. 5 Same as Fig. 4 for an opening dislocation. Dashed lines indicate 
the solution when y = 0 is impermeable. 

-1.0 -0.5 a 5 x / ( 4 c t ) ' * l 0 

:/(4ct)/! 

Fig. 7 Same as Fig. 6 for an opening dislocation. Dashed lines indicate 
the solution when y = 0 is impermeable. 

1.0 , v 2.0 
x/(4ct/2 

Fig. 8 Contours of nondimensional shear ITI (4cr)1,2/lbl induced in y 
> 0 by a shear dislocation at the origin for the plane y = 0 impermeable 
and permeable (dashed) 

-1.0 
x/(4ct)1/2 

Fig. 9 Same as Fig. 8 for an opening dislocation. Dashed lines indicate 
the solution when y = 0 is impermeable. 

fields: those for the opening dislocation on an impermeable 
plane can be obtained from the shear dislocation on a 
permeable plane by 90 deg counterclockwise rotation. As is 
evident from Figs. 4 and 5 the solutions with discontinuous 
pore pressure or fluid mass flux on y — 0 do not possess this 
property. 

Contours of the mean stress, in the nondimensional form 
a(4ct)1/2/1 b I are shown in Fig. 6 for a shear dislocation (bx = 
1.0, by = 0) and in Fig. 7 for an opening dislocation (bx = 0, 
by = 1.0) on permeable and impermeable planes. Figures 8 
and 9 show contours of the magnitude of the shear stress in the 
nondimensional form ITI(4ct)1/2/1b\ for shear (Fig. 8) and 
opening (Fig. 9) dislocations. In each plot, the two solutions 
shown approach the undrained solution (t = 0) far from the 

Fig. 6 Contours of nondimensional mean stress ^ c f ^ / l o l induced o r i S i n a " d « « drained solution (/ -• oo) near the origin. The 
in y > 0 by a shear dislocation at the origin for the plane y = 0 im- approach to these limits need not, however, be the same for 
permeable and permeable (dashed) the two solutions. This is the cause of the different positions 
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of the contours near the origin in Fig. 6 and for large values of 
y in Fig. 9. 
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A P P E N D I X 

This appendix describes some details of the inversion of the 
integrals I(x, y, t) and P(x, y, t). The Laplace transforms of/ 
and 7* are given by equations (41) and (44), respectively. 

First consider the inversion of I(x, y, t). Interchanging the 
order of the Laplace and Fourier inversions yields 

f00 , (exp[~(K2+s/c)y2yU , 

I(x,y,t) = ]o »«»(,*)£-[ S(K2+S/Cyn j * (Al) 
Formulae (29.2.14) and (29.3.84) of Abramowitz and Stegun 
(1964) (hereafter abbreviated AS) yield the following result 

^nfyi=(^)-eXP[-^-,v4c,] 
042) 

Formula (29.2.6) of AS can then be used to express the 
Laplace transform in equation (-41) as the following integral: 

_^exp[-(,K2+s/c)[/2y] H: (c/7r\)1/2exp[ 
I S(K2+S/C)1/2 

-K2c\-y2/4c\]d\ (A3) 

The integration can be accomplished by the change of variable 
X = |S2 and the use of AS (7.4.33). The result is 

rexp[-(K2+.y/c)1 / 2yh , . . , . W 1 L I stf+s/c)" ri2K) lexp(-^)(1 

+ erf [K(c0 1 / 2 -^ / (4c0 1 / 2 ] 

- e'rerfC[K (ct)W2 +y/(4ct)l/2]} (-44) 
Substituting into equation 041), writing COS(KA:) in exponential 
form, changing variables, and using AS (7.4.36) then yields 
the final result, given by equation (45). 

The inversion of 7* is lengthier, but proceeds along the same 
lines. Again interchange the order of the inversions. The 
Laplace transform can be inverted by using equation (A3) with 
y = 0 and (29.2.6) of AS. The result is 

L~l I (C/S2)/(K2+S/C)U1} = [ctK-1 -(2/c3)-1]erf[K(c01/2] 

+ K~2 (ct/ir)W2exp(- K2ct) 

Now, 7* can be written as follows: 

(-45) 

I*(x,y,t) = - Ulct —Y+ l) [ exp(tKz)erf[K(ct)1/2]Gfo 

(A6) 

+ i(4ct/ir)W2 exp(-K2ct + iKz)dK\ 
dx Jo J 

where z = x + iy. The remaining integrals can be done using 
(7.4.17) and (7.4.2) of AS: 

1 exp(- K2t + iKz)dK 
Jo 

= (7r/4c01 / 2exp(-z2 /4c/)erfc[-iz/(4c01 / 2] (-47) 

\ exp(iKZ) erf [K (ct)' /21 da 
Jo 

= tz- 1 exp(-z 2 /4c / )er fc[ - tz / (4c0 l / 2 ] (-48) 

The final expression for P is given by equation (51). 
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The Stability of a Dislocation 
Threading a Strained Layer on a 
Substrate 
The continuum theory of elastic dislocations is applied to estimate the critical 
thickness of a strained layer bonded to a substrate for a given mismatch strain. The 
formation of strained epitaxial layers is of interest due to their special electronic or 
optical properties, and critical thickness is understood to be the smallest thickness at 
which interface dislocations conform "spontaneously." The criterion invoked here 
is based on the work done by the layer stress in driving a threading dislocation to lay 
down a misfit dislocation along the layer-substrate interface, and it is applied in a 
way that leads to a result that is independent of the deflected shape of the threading 
dislocation. The general form of the dependence of critical layer thickness on 
mismatch strain is similar to that based on equilibrium dislocation analysis. 

1 Introduction 

Unique performance characteristics of electronic devices 
may be obtained by fabricating a composite semiconductor 
consisting of a thin layer or layers epitaxially grown onto a 
substrate. Because the materials are selected for reasons other 
than perfect match of their lattice spacing, some lattice 
mismatch must be accommodated at the layer-substrate inter­
face. In simplest terms, the mismatch can be accommodated in 
either of two ways. One possibility is that the layer and 
substrate each retain their natural stress free crystalline struc­
ture except for sites within a few lattice spacings of the inter­
face where an array of misfit dislocations exists to permit 
bonding. The other possibility is that the layer grows with a 
homogeneous strain of the magnitude necessary to bring the 
layer structure into perfect register with the substrate. The lat­
ter option is preferable in some applications in order to avoid 
undesirable electronic or other functional properties of the in­
terface with misfit dislocations. Thus, the understanding of 
crystalline defects in strained coherent layers is of 
technological significance, as well as fundamental interest. 

The existence of a critical layer thickness for epitaxial 
growth of a coherent layer on a substrate is well-established. 
That is, if the natural misfit between the substrate material 
and the layer material is sufficiently small, the first atomic 
layers to be deposited will be strained to match the lattice spac­
ing of the substrate. As the layer becomes thicker, however, a 
point is reached at which alignment between the layer and the 
substrate is lost, presumably due to misfit dislocations in­
troduced at the interface. The existence of the critical layer 
thickness was first proposed by Frank and van der Merwe 
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(1949) on the basis of their analysis of a one-dimensional 
mechanical model and it was subsequently confirmed 
experimentally. 

Theoretical studies of interface dislocations in strained 
epitaxial layers based on continuum mechanics have followed 
one of two types of conceptual approaches. These will be 
called simply the energy approach and the mechanistic ap­
proach. It should be noted at the outset that the two points of 
view are not independent nor are they in conflict. Indeed, a 
purpose of this paper is to discuss the physical phenomenon in 
a way that provides some unification of the two points of 
view. 

The main idea in the energy approach is to consider the total 
(mechanical) potential energy of two possible configurations 
of the layer-substrate system, typically one with misfit disloca­
tions and one without. Energy is usually expressed as "areal 
energy density" or average energy per unit area of interface. 
In the absence of misfit dislocations, the areal energy density 
is exactly the elastic strain energy stored in the layer due to 
homogeneous strain per unit area of interface. The com­
parison state is typically a configuration with one or more long 
straight dislocations lying at the interface. The configurational 
energy of the dislocations due to their proximity to the trac­
tion free surface of the layer, and possibly due to each other, is 
estimated and "averaged" over the interface. It is then argued 
on the basis of the minimum potential energy principle that 
the preferred configuration between the two is the one with the 
lower potential energy. The critical layer thickness is defined 
as that thickness at which the homogeneously strained layer 
configuration gives way to the configuration with misfit 
dislocations as the lower energy state. In this approach, there 
is no concern for the way in which the physical system 
transforms from one configuration to the other, or even if the 
required transformation is possible. 

On the other hand, the main idea in the mechanistic ap­
proach is to identify a particular dislocation configuration and 
to calculate the driving force on the dislocation due to both 
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Fig. 1 Configuration of the layer-substrate system, showing a disloca­
tion on a glide plane inclined at an angle « to the surface normal that is 
bowed out due to the layer strain 

strain in the layer and image effects due to boundaries. For a 
given mismatch strain, the driving force depends on the layer 
thickness. The critical layer thickness is that thickness at which 
the driving force becomes large enough to lay down a line of 
misfit dislocation along the interface. The dislocation lines are 
typically curved in the postulated mechanistic models. Conse­
quently, the stress field is a full three-dimensional field and the 
configurational forces on a dislocation can only be estimated 
on the basis of approximations. 

The phenomenon may be approached on the basis of a 
framework other than continuum dislocation theory, of 
course. A notable example is the recent analysis reported by 
Dodson and Taylor (1986) of a discrete or atomistic model of 
strained layer epitaxy involving mismatched silicon-like 
materials. Through application of a Monte Carlo technique 
and a stability criterion, they estimated the critical layer 
thickness for a coherently strained structure. For small 
thicknesses, they reported nonmonotonic dependence of 
critical thickness on mismatch strain. 

The purpose here is to re-examine the matter from the con­
tinuum dislocation point of view. The points to be made are (0 
a work criterion for formation of interface dislocations is pro­
posed that does not depend on the detailed shape of the bowed 
dislocation in the layer, and (ii) the resulting criterion is 
similar in general form to the more familiar equilibrium ap­
proach summarized by Matthews (1975). In several recent ar­
ticles on the critical thickness phenomenon, the results of 
analysis leading to the dependence of critical thickness on 
mismatch strain were compared to an expression given by 
Matthews and Blakeslee (1974); see, for example, People and 
Bean (1985), and Dodson and Taylor (1986). However, the 
analysis of Matthews and Blakeslee was based on a strained 
layer superlattice, whereas the critical thickness expression 
cited by these later authors applies for an individual layer in 
the superlattice. As noted by Matthews and Blakeslee (1974, p. 
124), the critical thickness for a layer in a superlattice (with 
layers of equal thickness) is four times the critical thickness for 
a single layer growing on a substrate. A factor of two arises 
from the fact that the mismatch strain between adjacent layers 
is shared equally, and a second factor of two arises because the 
dislocations must be bowed from both interfaces in the 
superlattice whereas they must be bowed only from the inter­
face for a single layer. 

2 A Representative Model 

The formation of a misfit dislocation is considered here 
within the framework of the elastic continuum theory of 
dislocations. Strains are small enough so that the material 
response is adequately described by Hooke's law. A rec­
tangular coordinate system *,, x2, x3 is introduced. The 
substrate is an elastic half space with Young's modulus Es and 
Poisson's ratio vs occupying x3 <0 . The substrate is assumed 
to contain a dislocation. As a specific case, suppose that the 
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Fig. 2 Schematic of bowed dislocation configurations for increasing 
layer thickness 

glide plane of the dislocation contains the *, axis and it is in­
clined to the xt, x3 plane at an angle a measured positive with 
respect to rotation about the xx axis (see Fig. 1). Far from the 
substrate surface, the dislocation line is straight and in the x2, 
x2 plane, but it has some curvature near the free surface, in 
general. For the time being, suppose that the Burgers displace­
ment vector has components (0, - b sin a, b cos a) where b is 
the magnitude of the Burgers vector. Thus, far from the 
substrate surface, the dislocation is a pure screw dislocation. 
The substrate is stress free, except for the stress field induced 
by the dislocation. 

Suppose that a strained layer with Young's modulus E and 
Poisson's ratio v begins to grow on the surface of the 
substrate. For points on the interface far from where the 
dislocation line meets the interface, the layer strain is a 
uniform isotropic extension in the plane of the interface. 
Denote the extensional strain required for coherency by e0. 
This imposed strain induces a stress field with components 

E 
an=a22=- eOJ <T3 3=0. (1) 

1 — v 

Near where the dislocation meets the interface, the layer grows 
so as to extend the substrate dislocation into the layer. The 
layer thickness is assumed to be spatially uniform (see Fig. 1). 

As the thickness of the layer increases, the shear traction on 
the glide plane in the layer due to the internal stress induces a 
configuration glide force on the dislocation. In general, a 
necessary condition for this to be so is that the inner product 
of the Burgers vector with the shear traction on the glide plane 
is nonzero. If it is positive (negative) the dislocation tends to 
advance (recede) along the glide plane. If it is zero, the disloca­
tion is unaffected by the shear traction. 

Consider the shape of the dislocation line in the glide plane, 
as shown schematically in Fig. 2 for several layer thicknesses. 
Even for a very thin layer (thickness /*,), the dislocation will 
deflect due to the layer stress further than it did due to the free 
surface alone. In the substrate, however, there is no driving 
force other than the force due to the curvature of the disloca­
tion line in the layer, and the force due to the curvature tends 
to straighten the dislocation line. The substrate produces a 
retarding effect on the dislocation in the layer. As the layer 
becomes thicker (thickness h2), the dislocation line deflects 
further to the right. It does so because, with h2>hu it can 
achieve a larger deflection without significantly increasing the 
curvature of the dislocation line at any point. While the 
dislocation is of pure screw type deep in the substrate, it is of 
mixed screw and edge type along the curved portion. 

As the thickness is increased further to h3, the deflection 
becomes large enough without the energetically unfavorable 
high curvature anywhere along its length so that it is tangent to 
the interface (at point E in Fig. 2). At point E, the dislocation 
is of pure edge type. The traction due to the stress in the layer 
holds it against the interface. Because there is no such stress in 
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Fig. 3 Conceptual process for extending the length of misfit disloca­
tion on the interface by a length X 

the substrate, however, the edge dislocation has no tendency 
to glide into the substrate. As the thickness is increased fur­
ther, the edge segment along the interface is expected to 
become longer. Eventually, the thickness will become large 
enough so that the curved portion of the dislocation line (JPQ 
in Fig. 2) in the layer can translate self-similarly, leaving a seg­
ment of misfit edge dislocation in its wake. The thickness at 
which this becomes possible is the critical thickness hc, and a 
simple argument on a way to calculate hc is given next. The ac­
tual calculation is carried out in Section 3. 

Suppose the layer thickness is just large enough to advance 
the dislocation line along the layer, leaving a line of misfit 
edge dislocation behind. With reference to Fig. 3, consider the 
process of advancing the point P a distance X to the right 
through self-similar translation of the segment PQ. Concep­
tually, the final state can be achieved by the following steps. 
First, a slab of thickness X is cut out from the body far ahead 
of the point Q where the layer strain is essentially uniform. 
The faces of the slab are parallel to the plane x{ = 0. The body 
is then cut along the plane AA' and the cut is opened uni­
formly to a gap distance of X, thereby closing the gap far 
ahead of the dislocation without introducing dicontinuities. 
The uniform slab that has been cut out first is then dislocated 
to match the condition of the material in the interval EP and it 
is inserted into the remaining gap in that interval. The final 
state is just the state that would result from advancing PQ to 
the right a distance X. However, the process of introducing 
slabs provides a basis for stating a condition on whether or not 
the dislocation produces a long segment of interface misfit 
dislocation at all. 

The process of dislocating the slab that was cut out far 
ahead of the dislocation so that it fits into the interval EP re­
quires that a certain amount of work be done on the slab. This 
work is the work of formation of a through-the-thickness glide 
edge dislocation on a plane inclined at an angle a ot the x3 

direction with the dislocation line at a distance h from the sur­
face of the layer. Evidently, if this work is negative the 
dislocation will advance spontaneously along the glide plane, 
laying down a misfit dislocation in its path. If the work is 
positive, on the other hand, the dislocation will recede on its 
glide plane. The case when the work is zero is the critical case. 
Because the layer thickness is the only variable system 
parameter, the criterion of zero net work in forming the edge 
dislocation yields a condition for the critical layer thickness. 

3 Calculation of the Critical Thickness 

Let Es =E and vs = v for the time being. If the elastic moduli 
of the layer and substrate are indeed similar, then the effect of 
the free surface will be far greater than the effect of the inter­
face on the dislocation. Suppose that the strained layer carries 
a self equilibrating isotropic tensile stress a0. Then the work to 
be computed is the work required to introduce the plane strain 
edge dislocation with Burgers displacement b shown in Fig. 4. 
The dislocation is introduced by first cutting the layer along 
the glide plane and applying tractions on the faces of the cut to 
hold the two faces together without slip. The normal traction 
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Fig. 4 Configuration on which the calculation of work of formation of 
the dislocation leading to equations (2) and (7) is based 

and shear traction are uniform over the faces and are of 
magnitude a0 cos2 a and a0 sin a cos a, respectively. Next, ad­
ditional tractions are applied to the faces of the cut that pro­
duce no normal offset of the faces, but that produce a unifrom 
shear offset of the faces equal to b. In the process, the normal 
tractions on the faces of the cut do no net work, the additional 
shear tractions do positive work on the body, and the tractions 
due to the initial strain in the layer do negative Work. 

The second of the two nonzero work contributions is 
calculated first. The uniform shear traction — a0 sin a cos a 
acts through the displacement b over the slip plane length h sec 
a. Thus, the work is 

flayer = - O ^ S i n a (2) 

per unit thickness of the slab. 
The work of the additional shear traction in forming the 

dislocation is computed next. Suppose that a dislocation with 
Burgers displacement b' is introduced on the glide plane as 
shown in Fig. 4 in an otherwise stress free half plane, and that 
the resulting shear stress on the glide plane (shown dashed in 
Fig. 4) is 

—uTQ/h,v) , 0<£<hseca (3) 
h 

where /* =£72(1 + v) is the elastic shear modulus. The form of 
the stress distribution follows from dimensional considera­
tions, linearity of the problem, and the fact that h is the only 
characteristic length in the model. Then the work that must be 
done by the additional shear traction on the faces of the cut to 
produce the offset b is 

rhsfxa-r0 p6 £ ' 
wm=\a \o—pm/h,v)db'dli 

- J _ T -2-io%u? + o%uT)r=ror0d6 

lib2 t^ax-ro/h (•* 1 
= ~ 2 J o TlV'Mv- J _r~Y (of u - + o3«r ) r - , / 0 <» 

(4) 

where r0 is the formal cut-off radius for the dislocation core. 
The second integral in equation (4) is the contribution due to 
introduction of the cut-off radius. It is computed by replacing 
the core of the dislocation with a cylindrical hole of radius r0. 
The surface of the cylindrical hole is subjected to the ap­
propriate tractions for formation of the dislocation with the 
cut at d — ir. These tractions are, in fact, the tractions for an 
edge dislocation in an infinite medium along with the cor­
responding displacements. The contribution of the second in­
tegral in equation (4) to the total work is thus independent of 
the presence of the free boundary. The nondimensional func­
tion T(T),V) is given by Freund and Barnett (1976) as 

T(i,v)=. ' , 
27r(l - v) 

5 

— L _ + =z5 (5) 
/ seca-T) (7)2 + sec2a + 2ijsecacos2a)3 \ 

where the parameters c„ are given by 
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Fig. 5 Plot of calculated critical thickness versus mismatch strain for 
formation of a mismatch interface dislocation in edge orientation, with 
i'= 0.3, « = 30 deg, 45 deg, 60 deg, and r0 = b. The dashed curve is ob­
tained from equation (13) with a = 30 deg, and the dotted curve is ob­
tained from equation (14). 
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Fig. 6 Plot of calculated critical thickness versus mismatch strain for 
formation of a mismatch interface dislocation in mixed screw and edge 
orientation, with v = 0.3, 0 = 30 deg, a = 30 deg, 45 deg, 60 deg and r0 = b. 
The dashed curve is obtained from equation (12) with a = 30 deg. 

c0 = 1, C] = — 1 + 6cos2a + 2cos22a 

c2 = 6 + 2cos2a + 6cos2a, c3 = 6cos2a + 4cos32a 

c4= - 3 - 2 c o s 2 a + 6cos22a, e5 = 1-2cos22a. 

Evaluation of the integral in equation (4) leads to 

W« 
tib2 

4TT(1 - v) v)i \ rn J 2 
cos2a -

d - 2 v ) 

4 ( 1 - . ) -1-

(6) 

(7) 

The first integral in equation (4) was evaluated numerically, 
and the simple analytic expression in equation (7) was evident 
from the result. This analytic expression was subsequently 
verified independently by means of a symbolic manipulation 
computer program. The second integral may be evaluated in 
terms of elementary functions, and its contribution is only the 
last term in equation (7). The contribution of this integral is 
discussed in a more general context by Gavazza and Barnett 
(1976). The configurational energy of the dislocation (the 
potential for force on the dislocation as a function of position) 
is discussed by Hirth and Lothe (1982) who note that the in­
dependence of the force of a is a feature of a more general 
result on dislocation image forces. In the present case, the 
total work of formation of the dislocation is of interest so that 
the contributions that are independent of h but dependent on 
a must be retained, even though they have no influence on the 
configurational force. 

The condition that the total work W]KyeT + W d̂iS| is zero pro­
vides an equation for the critical layer thickness hc, namely, 

l \ r„ / 2 4(1 - v) ) 8w(l + v)hcsmaL~"\ r0 J 2 4(1 - v) ) '"' 

For any given set of system parameters, this nonlinear equa­
tion may be solved for the critical layer thickness in the non-
dimensional form hc/b. The result of calculations carried out 
with e = 0.3, rB/b=l, and a = 30 deg, 45 deg or 60 deg are 
shown in Fig. 5. This figure shows graphs of hc/b necessary to 
satisfy equation (8) as a function of misfit strain e0 for the 
three values of a considered. 

This analysis can be modified in a straightforward way in 
order to account for restrictions on the Burgers vector im­
posed by the crystallography. For a face centered cubic crystal 
structure with the interface being the [001] direction, for ex­
ample, a candidate slip system for introduction of interface 
dislocations is slip on the (111) plane in the [110] direction or 
the [101] direction. In this case, the inclination of the glide 
plane to the interface is specified by a = 30 deg. Furthermore, 
the interface misfit dislocation that is formed has both edge 

and screw components. The edge and screw components of the 
Burgers vector are then be= ±bcos /3 and bs= ±b sin /3, 
respectively, where (3 = 30 deg. The algebraic signs are deter­
mined by the sign of the mismatch strain and geometrical 
factors. 

In this case, the work per unit length done by the stress in 
the film during formation of a misfit dislocation is again given 
by equation (2), except that the total Burgers displacement b is 
replaced by be. The film stress does no work as displacements 
in the screw direction occur. Thus, 

W,„ - Onbvhsma. ' layer u0ueiiziiiix. \y) 

Work is done by tractions on the glide plane as the dislocation 
is formed, however, and the result equivalent to equation (7) 
above is 

^ , = ^ - ( l n ( - ^ - ) - ^ - c o s 2 a 
4TT(1 - v) 

4(1 - v) J 4ir V r0 / 
(10) 

layer 

As before, the critical condition for spontaneous formation 
of a line of misfit dislocation is W]a„„ + WAUX = 0 which takes 
the form 

Z?cos/3 

87r(l + v)hcsina 
r /2h.\ 1 (1-2*0 ") 

- n ( — - ) c o s 2 a — — 
I \ r J 2 4(1 - v) J 

6(1 - p)sin/3tan/3 (Ih 
•In e) 8ir(l + jO«csina 

for the case at hand. The equivalent result obtained by Mat­
thews (1975, p. 585) on the basis of dislocation equilibrium 
arguments is 

6(1 - csin2(3) -K£H=e0 ™ 87r(l + v)hcsma 

in the present notation. The coefficient of the logarithmic 
term in equation (12) differs from that in equation (11) only by 
a factor cos/3 in the denominator. The critical thickness im­
plied by equation (11) is shown in Fig. 6 for three values of a. 
In addition, the variation implied by equation (12) is plotted 
for a = /3 = 30 deg. 

4 Some Observations 

The qualitative dependence of the critical layer thickness on 
misfit strain is as expected. The variation is quite similar to 
corresponding results obtained earlier by other methods. In-
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deed, the equation for the critical layer thickness deduced here 
by the stability arguments is similar to the corresponding 
result obtained by Matthews (1975) on the basis of equilibrium 
methods. For the notation used here, his expression analogous 
to equation (8) above is 

\ , fln(A.) + 1 l = e „ . ( i 3 ) 
8TT(1 H- v)hcsina I \ r0 / ) ° 

The more commonly cited special case of this expression is 

MTT^Mt) + 1]=e- (14) 

One essential difference between the present result and the 
result of the equilibrium calculation is in the nonlogarithmic 
term on the right of equation (7). This term is unimportant for 
relatively thick layers, but it is of the same order of magnitude 
as the logarithmic term for thin layers. Of course, the con­
tinuum dislocation theory is of limited applicability for very 
thin layers. If the force equilibrium criterion and the minimum 
energy criterion could both be applied on the basis of exact 
mathematical solutions of the elasticity boundary value prob­
lems, then the results would be identical. In the absence of 
such exact solutions, the stability approach has the advantage 
that the result does not depend on the actual deflected shape 
of the dislocations, but only on their ability to lay down a line 
of misfit dislocation along the interface. Furthermore, the 
development of the model on the basis of stability of a disloca­
tion introduced from the substrate is not an essential feature 
of the result. As noted by others, for example, the stability of 
any dislocation loop expanding in the layer can be analyzed in 
the same way. 

The results reported here differ significantly from the 
results of a theoretical study described by People and Bean 
(1985). They applied a certain energy criterion to the physical 
system in order to obtain a mathematical estimate of the 
critical layer thickness. They predict a dependence of hc/b on 
the misfit strain e0 that is far stronger than suggested by equa­
tion (8) or by the corresponding result due to Matthews and 
Blakeslee (1974). Their representation of the Matthews and 
Blakeslee result is incorrect, as has already been noted (People 
and Bean, 1986). Furthermore, their energy criterion has no 
apparent basis in the minimum potential energy principle of 
mechanics. The energy criterion that is introduced does not 
compare two actual or realizable energy states in order to 
determine the preferred state on the basis of the minimum 
principle. Instead, the two states considered are (/) the energy 
density of the uniformly strained layer and (//) the energy of a 
dislocated but otherwise unstressed state. This comparison 
does not include the important interaction of the pre-existing 
stress field due to the layer strain with the forming dislocation. 
The work of this stress as dislocations are formed is, in fact, 
an essential element in the difference in energies of the two 
states. 

In a recent article, Dodson and Taylor (1986) report a study 
based on the application of Monte Carlo methods to an 

atomistic model of a coherently strained layer. The model was 
intended to simulate the GeSi/Si structures. By invoking a 
stability criterion for determining the critical layer thickness, 
they showed that the dependence of the critical thickness on 
mismatch strain is very similar in form to the dependence 
found by the dislocation equilibrium or that given in equation 
(8) above for critical thicknesses greater than about 5 
angstroms and mismatch strains less than about 4 percent. 

A comparison between the critical thickness prediction 
based on this kind of analysis and experimental observations 
has been discussed by Matthews (1975). For metal films, the 
agreement is quite good. For other materials, including 
semiconductor materials, however, interface coherency per­
sists up to thicknesses that exceed the predicted critical 
thickness by as much as an order of magnitude. The reasons 
for this discrepancy are not clear. In covalently bonded 
materials such as silicon or germanium, the resistance to 
dislocation glide may be sufficiently great so as to preclude the 
dislocation distortions presumed in the above analysis until 
the layer becomes much thicker than suggested by equation 
(8). On the other hand, the density of threading dislocations is 
often too low to account for the amount of strain relaxation 
observed upon loss of coherence. Consequently, a dislocation 
nucleation process may be required in modelling. In either 
case, the effects mentioned would tend to increase the estimate 
of critical thickness. 
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The Effect of Shear Deformation 
on Post-Buckling Behavior of 
Laminated Beams 
A geometrical nonlinear theory of composite laminated beams is derived with the ef­
fect of transverse shear deformation taken into account. The theory is based on a 
high-order kinematic model, with the nonlinear differential equations solved by 
Newton's method and a special finite-difference scheme. A parametric study of the 
shear effect involving several kinematic approaches was carried out for isotropic and 
anisotropic beams. 

I Introduction 

Most of the previous research on composite structures is 
confined to linear problems and largely based on the classical 
thin plate theory which disregards the transversed shear defor­
mation effect. The classical laminated beam theory, based on 
the Kirchhoff hypothesis (see Reissner and Stavski, 1961) has 
been shown to be quite adequate for thin laminates with a high 
span-to-thickness ratio. Due to the low transverse shear 
modulus relative to the inplane modulus of elasticity, the ef­
fect of shear deformation should be taken into account even 
for moderate span-to-thickness ratios. In some "linear" 
research works (e.g., Whitney and Pagano, 1970) the shear 
deformation effect is allowed for by means of the Mindlin 
kinematic model (Mindlin, 1951). Others like Chen and Sun 
(1985), Sirakumaran and Chia (1985), and Reddy and Chao 
(1985), extend the same Mindlin model to goemetrically 
nonlinear cases. High order models for the linear case, incor­
porating higher powers of the thickness, were developed by 
Nelson and Lorch (1974), Reissner (1975), and Lo et al. 
(1977). Reddy (1984a) used a modified higher-order model 
with the same number of unknowns as the Mindlin model, 
assuming no shear-strain coupling between yn and yxz; more 
recently Phan and Reddy (1985), Reddy (1984b), and Putcha 
and Reddy (1986) applied the model in the nonlinear context, 
but his analysis concerned bending rather than postbuckling 
behavior. A completely different approach was adapted by 
Stein and Jagley (1985), who added trigonometric terms to the 
first terms of the power series. 

The present work uses a higher order kinematic model in the 
post buckling context, with the shear deformation effect taken 
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into account. The model is so constructed as to allow a variety 
of alternatives. The equilibrium equations and approximate 
boundary conditions are derived by applying the variational 
principle on the potential energy. The solution procedure is 
based on reduction of the nonlinear differential equations to a 
linear sequence, by a modification of Newton's method, and 
conversion to an algebraic one by a special finite-difference 
scheme eliminating the "locking" phenomenon which may oc­
cur in cases where the shear deformation effect is insignifi­
cant. A parametric study of the shear deformation effect and 
the accuracy of the kinematic model was carried out by apply­
ing the procedure to isotropic and anisotropic beams. 

II Governing Equations 

Kinematics. Consider a composite beam consisting of 
homogeneous orthotropic layers, of arbitrary orientation, 
with total thickness h. Let (x, z) be a rectangular coordinate 
system in the axial and thickness directions, respectively. The 
displacement field is assumed to be a cubic function of z: 

u(x,z)=u°(x)+^(x)z + 82^(x)z2 + 83<j>(x)z3 

w(x,z)=w°{x) (1) 

where u and w are the displacement functions in the x and z 
directions, respectively; u° is the displacement of the reference 
surface z = 0 (not necessarily the midplane); \js{x) is the rota­
tion about the normal to the z = 0 plane; £ and <£ are additional 
functions of x which violate the assumption of planeness of 
the cross section and enable the transverse shear strain to be a 
parabolic function of the thickness coordinate; the parameter 
82 and 53 are introduced for the purpose of investigating 
various alternatives. For example, with 52 = 53 = 0 we have 
the Mindlin (1951) model, which assumes that predeformation 
planes remain plane; here the transverse shear strain is as­
sumed constant over the thickness, and a shear correction fac­
tor has to be used. Similarly, the model of Nelson and Lorch 
(1974) is obtained by setting 52 = 1, 53 = 0, that of Reissner 
(1975) 82 = 0, <53 = 1, and that of Lo et al. (1977) 82 = 53 = 
1. It should be noted that with 53 = 1 the shear strain is a 
parabolic function over the thickness and no correction factor 
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is needed. There are no constraints on the shear stress (as in 
Reddy, 1984) at the beam top and bottom; the shear stress is 
expected to vanish automatically in application of the varia­
tional principle on the potential energy. 

The kinematic relations can be written as: 

where 

^xx £ xx ~*~ " xx% ~^ -** xx% ~*~ " xx% 

"1 xz y xz "*" xz*1 xz^ 

(2) 
I XZ I XZ ' XZ^ XZ^ 

where e°xx and y°xz denote the strain of the reference surface, 
K'xx and K'xz (i = 1, 2, 3, j = 1, 2) are the changes of cur­
vature under deformation. 

The Von-Karman strain of the reference surface and the 
change of curvature, associated with the displacement field 
(equations (1)) and imperfection function Dw(x), can be writ­
ten as: 

e°xx = u°x + ' / 2 « ) 2 + w%£>vviX 

Y W + W ° X 

K\x = t,x 

Klx=^,x 

Klx=W,x 
Kxz=282£ 

^ = 353« (3) 

( ) x denote the derivitive with respect to x. 

Constitutive Equations. Under the classical laminate 
theory (i.e., for a single anisotropic equivalent layer) the force 
strain relations can be written as: 

Qii = £ 1 1 / ( 1 - vnv2l) 

Ql2 = Qu"2l 

Qi2=E12/0--vnv2l) 

Equilibrium Equations. The equilibrium equations and 
the appropriate boundary conditions are derived by applying 
the following variational principle: 

5ir = TT= j ^ [Nxx8exx+MXX8KXX+M2
XX8K2

XX+M3
XX5K3

XX 

+ k(Qxz8y°xz + MxzbKxz + M^SK^)}dx 

- \ (nxx(x)du + q(x)8w + m(x)5\l/)dx=0 

(8) 

N ~) 
1 yxx 

M\x 

Mix 

M3^^ 

'Qxz" 
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-M2*-

A\\ fin Cn Dn 

fin Cn DnEn 

cu A i -En ^11 

Du En Fu Gu 

A 44 B44 C44 

H44 ^ 4 4 ^ 4 4 

C 4 4 D44 E44 

Kxx 

&xx 

K?„ 

ry°x^ 

(4) 

KXz (5) 

where 

(Nxx,M
lxx,MlxMx) = \A Sxx(\,z,z2,z3)dA 

{Qxz M\z ,Mlz ) = \AS„d ,z,z2)dA 
(6) 

Sy is the Kirchhoff stress tensor in the undeformed system. 
A a, Bu, etc. (/= 1, 4) are the elasticity coefficients defined by 

(/!,!,.Bi,,C,1,Z)i1,.E',1,Fi1,G1i) 

= b\ TQu(l,z,z2,z3,z\z5,z6)dz 
Jhg 

rhT _ (7) 
( / l44,5 4 4,C 4 4,£)44 ) £ '44) = 6 <244(1 ,Z,Z2 ,Z3 ,Z*)dz 

Jhg 

b is the beam width, Qu and Q44 are the elastic stiffnesses 
transformed to the x directions. For a single layer with a 
orientation with respect to the x axis: 

S11 =QnCOS4a + 2(Q12 + 2G12)sin2acos2a + <222
sm4Q! 

Q44 = G13cos2Q! + G23sin2a 

where nxx, q and m are the external axial, transverse, and mo­
ment loading, k is the shear correction factor assigned to k = 1 
when <53 = 1. 

Substituting equations (1), (4), and (5) in equation (8), in­
tegrating the latter by parts, we obtain the equilibrium 
equations: 

TV = — n 
1 YXX,X llXX 

[Nxx (w°x + DwJ] iX + kQXZiX =-q 

Ml
xx,x-kQxz=-m (9) 

h^^-lkM^) = 0 

5^IW3
XXtX-3kM2

xz) = 0 

with the following boundary conditions: 

u = u* or NXX=N* 

w = w* or Nxx(wx + DwiX) + kQxz = Q* 

^ = i/<* or M ^ = M ^ * (10) 

</> = </>* or M3
xx=Mxx

i 

where ( )* denotes the given displacement and/or forces at the 
boundaries. 

Il l Solution Procedure 

A modification of Newton's method (Thurston, 1965), ap­
plicable to differential equations, is employed for reducing the 
nonlinear equilibrium equations (equations (9)), and the boun­
dary conditions (equations (10)), to a linear sequence. Under 
this approach, the iteration equations are derived by applying 
to an approximate solution (initially taken as linear) a small 
correction obtained through solution of the linearized dif­
ferential equations. 

Taking the displacements and their derivatives with respect 
to the x coordinate as unknown dependent variables,1 the 
unknown vector reads: 

{z]T= {u,w,\jj,i,4>,u,w,^,i„4>} (11) 

where ( ) denotes the first derivative of ( ) with respect to x. 
By this means, the sequence is reduced to first order but the 
number of equations increases to ten. 

In order to eliminate the "locking" phenomenon (see In­
troduction) a special "half-station" finite-difference scheme is 
adopted. This scheme consists of two interlaced distinct nets 
as shown in Fig. 1. All equations (equations (9)) 

This choice was made because of the solution scheme, which is based on a 
finite-difference procedure. 
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Fig. 1 Interlaced nets and corresponding unknowns 

I.bo 

1.25 

I.OU 

0.75 

21 41 61 81 IOI I2I / I6I 

P • 3 NODES BEAM ELEMENT] 

r ° 4 NODES BEAM ELEMENT J 

' i l l _1 1 1 1 1 

I99 

DW=80Sin(S) 

_J= f 

0.I 0.4 0.5 0.2 0.3 

W / L 

Fig. 2 Load-deflection convergence of w at midpoint (52 = S3 = 0) 

are written between the mesh points—except the second equa­
tion, which is written at the point itself, thereby achieving a 
high degree of accuracy even with relatively sparse nets. Dif­
ferentiation at the boundaries is derived with the aid of fic­
titious points on either exterior side of the beam. 

The differential equations are converted into an algebraic 
sequence which can be written in matrix form as follows: 

Equilibrium equation: 

CJZJ_ ! + BJZJ + AjZJ+ i=Gj j=l,2,...,N 

Boundary conditions at the first point: 

RlZ0+RlZx+RZZ2=R$ 

Boundary conditions at the last point: 

° B + 1 ^ N - I + ^ N+ 1 Ztf + R N+ 1ZN + i — RN+I 

(12) 

(13) 

(14) 

where JVis the number of finite-difference points, Z0 and Z„+ , 
are the unknown vectors at the fictitious end points. Equa­
tions (12) and (14) are an aglebraic sequence which is solved by 
a modification of Potter's method (Sheinman and Simitses, 
1984). 

IV Numerical Results and Discussion 

For the procedure outlined above, a general computer pro­
gram NABS (Nonliner Analysis of Beams with Shear Defor­
mation) was written, covering nonlinear behavior of any 
laminated composite beam under arbitrary external loading 
and boundary conditions, as well as any geometrical initial im­
perfection. This program is especially suitable for parametric 
study of the effect of shear deformation and for investigating 
the accuracy of the given kinematic approach. Two examples 
(worked out on a VAX-750 digital computer) were used for il­
lustrating the above methodology; (a) an isotropic beam and 
(b) an anisotropic carbon/epoxy laminated beam. 

(a) Isotropic Beam. This example is reproduced from 

Table 1 VAX-750 CPU-time as function of number of mesh 
points 

No. of points 

CPU time 
(sec) 

Max No. of 
iterations 

21 

4 

5 

41 

8 

6 

61 

12 

6 

81 

17 

8 

101 

23 

12 

121 

42 

15 

161 

46 

19 

199 

54 

24 

4 Node ele. 

240 

40 

1.00 

(3) , (4 ) 

(1) Sz = 0 8 3 = 0 

(2) 8 2 = l S3 =0 

(3) S2 =0 

(4) Sj, = I 83 = I 

0.2 

W / L 

0.3 

Fig. 3 Load-deflection curves for isotropic beam with different shear 
moduli 

Fig. 4 Load-deflection curves for isotropic beam with different shear 
correction factors (fc) 

Sheinman (1982) and demonstrates convergence procedure as 
well as the accuracy of the various kinematic approaches. The 
data for the example are: Length L = 4 m; cross section area 
A = 0.0032 m2; moment of inertia / = 170.7.10~8 m4; 
modulus of elasticity is E = 2.1-10" N/m 2 ; the initial im­
perfection is taken as Dw(x) = 80 s'm(irx/L) with 80/h = 0.1. 

In Fig. 2, the convergence of the solution with respect to the 
number of finite-difference mesh points, is shown for the 
kinematic approach of Mindlin's model (<52 = 53 = 0), with 
shear modulus G = 0.81* 10" N/m2 and shear correction fac­
tor k = 5/6. From this figure it is clear that the convergence is 
a function of the load level. Up to P/PE = 0.85, which is still 
within the linear region, convergence is achieved with 21 
points; the higher the load-level, the larger the number of 
points needed for convergence. For very high levels, at which 
the lateral nondimensional midpoint displacement exceeds 
0.15, 200 points are needed. This example was run also with 20 
isoparametric 3 and 4-node beam elements using the ADINA 
code (Bathe, 1981). Convergence here also depends on the 
load level; the 3-node element is up to about P/PE= 1, and 
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Fig. 5 Load-deflection curves for different stacking combinations, L/h 
= 200 

Fig. 7 Effect on Uh ratio on midpoint deflection w for carbon/epoxy 
(0/90/0/90) laminated beam subject to load level (pL2/(3r

2C11) = 0.3, 
under different kinematic approaches 
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Fig. 6 Effect of kinematic approach on midpoint deflection w for car­
bon/epoxy laminated (0/90/0/90) beam 
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Fig. 8 Longitudinal stress at x = 112 for {pLzA/(nzCu) = 0.32 

the 4-node element up to P/PE = 1.14 (see Fig. 2); at the level 
above 1.14 the 4-node element fails to converge with 40 itera­
tions. The ADINA results are in good agreement with ours, 
but the CPU computer time is much longer (see Table 1). 

In Fig. 3 load-deflection curves for different given shear 
moduli are-plotted; it is seen that at low moduli there are 
significant differences between the various kinematic ap­
proaches, and an accurate approach is called for. Load-
deflection curves for different shear correction factors are 
plotted in Fig. 4. It should be noted that while there is no need 
for correction {k = 1), under the kinematic approach <53 = 1 
(since the shear stress vanishes at the top and bottom of the 
beam) correction is necessary with the Mindlin model (5l = 53 

= 0); the most accurate factor is seen to be k = 5/6. 

(b) Anisotropic Carbon/Epoxy Beam. The data for this 
example are: 4-ply laminate with #ply = 0.000125 m; htota] = 
0.0005 m;En = 1.4-1011 N/m2 ; E22 = 0.1.10" N/m2 ; G12 

= 0.1.1010N/m2 , vn = 0.34 and it assumed that: G13 = G23 

= 0.2«1010 N/m2 . The initial imperfection is again Dw(x) = 
<50 sin (wx/L) with d0/h = 0.1, and width of b = 0.01 m. In 
Fig. 5, load-deflection curves are plotted for L/htotal = 200 at 
different stacking combinations. The isotropic curve was ob­
tained for E22 = En = 1.4.10" N/m2 . The fact that inden-
tical results were obtained for the Kirchhoff-Love (G = 00), 
Mindlin (52 = 53 = 0) and Lo [10] (52 = 53 = 1) approaches 
at this span-to-thickness ratio, indicates that the effects of 
shear deformation is insignificant for this ratio. The effect of 
shear deformation and the accuracy of the kinematic ap­
proach as a function of L/h ratio were checked, for the stack-

10. 0.00 10.0 20.0 

S x z / ( 7 7 - 2 C | | / L 2 A ) 

Fig. 9 Shear stress at x = 0 for (pL2^/(ir2C11) = 0.32 

ing combination 0/90/0/90, and Fig. 6 shows that while the 
effect is still small for L/h = 30, it is very large for L/h = 5; 
the entire range of L/h ratios is covered in Fig. 7, with the con­
clusion that for this stacking combination, the effect of shear 
deformation is significant up to L/h < 15 (for isotropic 
materials, up to 5). 

Significant differences were also seen between kinematic ap­
proaches, widening as the load level increases. In Fig. 8 and 9, 
the longitudinal stress at x = L/2, and shear stress at x = 0, 
respectively, are plotted for load level 0.32 for L/h — 50 and 
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L/h = 5. The calculated shear stress at the top and bottom of 
the beam is not zero as in Fig. 9, but still very small compared 
with the maximum stress. 

V Conclusion 

A nonlinear higher-order shear deformation theory and a 
solution procedure are presented for beams of arbitrary rec­
tangular cross section. The nonlinear equations are written in 
a special form, whereby different kinematic approches can be 
considered. The differential equations are reduced to a linear 
sequence by a modification of Newton's method and con­
verted into an algebraic sequence by applying a special finite-
difference scheme, in which the "locking" phenomenon is 
eliminated. 

The theory and solution procedure are general and suitable 
for investigating the effect of shear deformation. The pro­
cedure was applied for an isotropic and an anisotropic beam 
with a view to comparing the kinematic approaches. Of the 
principal findings, the following should be emphasized: 

1. The convergence of the solution with respect to the 
number of finite-difference points, depends on the load level. 
The higher the latter, the larger the number of points needed. 

2. Application of a regular central finite-difference scheme 
showed that the special scheme actually eliminates the "lock­
ing" phenomenon. 

3. For the isotropic case with a low-order kinematic model, 
the shear correction factor of k = 5/6 yields the most accurate 
results. 

4. The shear deformation is affected by the length-to-
thickness ratio, both in the laminated and in an isotropic 
beam. For a laminated beam, where E/G ratio is relatively 
high, the L/h ratio at which the shear deformation is signifi­
cant increases. For low L/h ratios, a higher-order kinematic 
model is necessary for accurate results. 

5. With a more accurate kinematic model, the beam is 
characterized by higher flexibility. 
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Viscoplastic Buckling of Silicon 
Ribbon 
Silicon ribbon grown by the dendritic web process passes through a rapidly changing 
thermal profile in the growth direction. This rapidly changing profile induces 
stresses which cause buckling. Based on a viscoplastic material response function 
(Haasen-Sumino model), the creep buckling behavior of the silicon ribbon is in­
vestigated. The lateral deflection speeds describing the viscoplastic buckling 
behavior are calculated. It is found that the deflections of some modes increase with 
time while others die out. The role of the residual stresses in viscoplastic buckling is 
examined. 

1 Introduction 

Silicon ribbon is being considered for use in terrestrial 
photovoltaic applications (Ciszek, 1985). There is con­
siderable interest in increasing the (area) rate of productivity 
of sheet silicon in order to reduce the cost of photovoltaic 
power. One promising method for doing this is known as the 
dendritic web ribbon growing process. However, the thermal 
stresses caused by the combination of the rapidly changing 
thermal profile and wide ribbon induces buckling. This buck­
ling is actually the major limitation to growing wider silicon 
ribbon (thin plate) in all existing industrial processes. 

The thermal elastic buckling analysis of an initially flat 
silicon ribbon has been previously discussed (Dillon and De 
Angelis, 1984; Duncan et al., 1982; Seidensticker and 
Hopkins, 1980; Seidensticker and Schruben, 1984). The 
dislocation density in the solidified silicon ribbon is very low 
(i.e., below 105 cm - 2 ) so that the yield stress is also small. The 
thermal stresses generated from the rapidly changing thermal 
profile are, therefore, appreciably higher than the local yield 
stress, and then viscoplastic flow occurs. Industrially grown 
ribbon product frequently has permanent lateral ripples 
(Seidensticker and Hopkins, 1980; Seidensticker and 
Schruben, 1984), especially when growth of wide ribbon is at­
tempted. This permanent deflection must be the result of the 
viscoplastic flow. Deviations from flatness clearly cause dif­
ficulty in later steps in the manufacturing sequence involved in 
changing ribbon into useable photovoltaic cells. The analysis 
of buckling of a thermal viscoplastic (i.e., silicon) cantilevered 
plate is carried out here in order to more accurately evaluate 
the importance of the viscoplastic effect in the web growing 
process and to provide guidance on how to grow flatter ribbon 
by preventing buckling. 
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Since the temperature in the ribbon changes rapidly and 
nonuniformly from the melting point to room temperature 
during the growth process, a nonuniform stress field and an 
inhomogeneous strain rate field are generated. The 
viscoplastic material has inplane residual stresses which can­
not be considered in the elastic plate. These residual stresses 
can themselves cause buckling. 

This paper is the adaptation of the methodology contained 
in Tsai (1985), and Tsai and Dillon (1987), to the more com­
plex thermal profile associated with a specific industrial 
process. The second spatial derivative of the temperature 
distribution for this profile (and all others known to us) is 
much greater than the generic cases previously investigated. 
This results in higher stresses near the solid-melt interface and, 
therefore, increases the potential for viscoplastic effects to be 
larger. 

A three-dimensional constitutive model of silicon material is 
given in Section 2. The governing equations and the boundary 
condition for viscoplastic buckling of the thin plate are 
discussed in Section 3. Solution procedures and numerical 
results are contained in Section 4. A discussion is given in Sec­
tion 5, while Section 6 summarizes the results. 

2 The Viscoplastic Material Model (Haasen-Sumino 
Model) 

Haasen (1962, 1967) in Germany, and Sumino et al. (1978, 
1979) in Japan developed an accurate one-dimensional 
material response function for silicon. This model matches the 
stress-strain and dislocation density-strain data obtained dur­
ing one-dimensional tensile tests of silicon over a wide 
temperature range. It is found that the viscoplastic behavior of 
silicon is temperature sensitive and that data at different 
temperatures are correlated by the term, exp ('—Q/kT'), 
where Q, k are material constants and 7" is the absolute 
temperature (Tsai, 1985; Dillon et al., 1986). 

A three-dimensional response is assumed by generalizing the 
Haasen-Sumino one-dimensional material model and assum­
ing that silicon is isotropic in both its elastic and plastic 
responses (Tsai, 1985; Dillon et al., 1986). Therefore, we 
assume that the material model for silicon is such that (Dillon 
et al., 1986) 
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1 + v 
°V — ^ r °kk&u + aT&u + «?•'. (1) 

where 

qhfSu, (2) 
and where 7* is the temperature (°C), v is Poisson's ratio, a is 
the coefficient of thermal expansion, and e,y, d,y, 5,-,- and ef/ are 
the components of the total strain rate, stress rate, Kronecker 
delta function, and plastic strain rate tensor, respectively. In 
equation (1), E is the Young's modulus, Sy are the com­
ponents of the deviatoric stress tensor which are 5,y = a^ — 
okk5ij/3, and the viscosity/is (Dillon et al., 1986) 

bk0Nme~Q'kT' {Jj2-I>JWm)"' 
/ = -

V7, 
(3) 

where Nm is the mobile dislocation density; J2 is the second in­
variant of the deviatoric stress tensor defined by J2 = SySu/2. 
Haasen and Sumino demonstrated the need to consider the 
changes in the dislocation density in order to model silicon 
behavior. This is especially true at low values of Nm. The rate 
of generation of the dislocation density is (Dillon et al., 1986) 

N„, = cj>Kk0Nme~WkT' (V72 -LhfN;„r+\ (4) 

where efj = Nm = 0 if V72 -D~Wm < 0. 
The values of 6(3.8 X 10"'° m), A"(3.4 X 10~4 m/Newton), 
k0 (8.58 x 10~4 m3-2/s-NewtonL1), m (1.1), D (7.84 
Newton/m) and A (1.0) are material constants and <t> is a 
"shape factor" which is taken to be 0.1 for thin silicon sheets 
(Dillon et al., 1987). The value of Q and k are taken to be 2.17 
eV and 8.617 x 10~5 eV/K here, and the Young's modulus 
for silicon is £ ( 7") = 1.7" - 2.771 x 104 x (T')2 Pascals 
(Hartzell, 1984). We assume that this model is applicable all 
the way to the melting temperature (1412°C) although it has 
only been experimentally verified as being valid to 1200°C. 
This implies that the dislocation mechanisms do not change in 
the temperature range between 1200°C and J 4 1 2 ° C . The use 
of equation (4) couples the thermal stress field and the disloca­
tion density. As recently discussed in Dillon et al. (1986), one 
cannot neglect changes in Nm in photovoltaic materials. In 
turn this results in a more complex "rate effect" in the 
material response. 

3 Analysis 

The lateral deflection (buckling shape) grows with time due 
to the effect of viscoplasticity. We are only interested in buck­
ling as the plate starts to deflect and do not treat any 
"postbuckling" problem here. The analysis is applicable to 
very thin plates and is limited to the development of threshold 
buckling predictions. The material properties are assumed to 
be those represented by equations (l)-(4) where the 
"viscoplastic flow" of silicon is spatially inhomogeneous due 
to the spatial variations of the temperature and the dislocation 
density. Based on the ideas in Tvergaard's work (1979) on the 
creep buckling of simply supported plates subjected to a con­
stant inplane stress in one direction, the governing equation 
for the thermal creep buckling of a plate of the Haasen-
Sumino material was derived in detail in Tsai (1985), Tsai and 
Dillon (1987), and is summarized in Appendix B to be 
De , • 
—e- v*we = ax 

h x-

2 /£ / 

d2we d2we 

dx2 ' " ^ dxdy 

d2we d2we 

dx2 ' ~axy dxdy 

d2We 

l f f - df 

d2We 

(5) 

where D„ = 
Eh3 

12(1 -v1)' 

the x axis is taken to be along the growth direction and the y 

Temperature 

Fig. 1 Dimension of the ribbon and the schematic temperature varia­
tion along the growth direction (x) of the ribbon 

axis is in the width direction of the ribbon as shown in Fig. 1. 
The parameter we is the elastic part of the lateral deflection, 
°xx> axy> and oyy are the inplane stresses which are entirely due 
to the thermal field and are obtained from the analysis of the 
prebuckling state as described in (Dillon et al., 1986), while h 
is the ribbon thickness. This equation involves only the elastic 
deflection we as the dependent variable as a matter of conven­
ience. However, this does not mean that the plate is being con­
sidered as an elastic one. 

In deriving equation (5) it was assumed that / i s independent 
of the thickness coordinate. In addition to this, the usual 
assumptions of thin plate theory are used. The last group of 
terms in equation (5) represent the major effect of the 
viscoplastic material while the cr,-,- are also different than the 
elastic ones. We consider E(x) to depend on space as obtained 
from combining the expression given above for E(T') and the 
thermal profile. We do not include spatial derivatives of E(x), 
because earlier numerical work where they were retained, gave 
results similar to those obtained from equation (5). 

The industrial process being modeled uses a take-up reel of 
large diameter to hold the finished ribbon. All other edges of 
the ribbon are free, except for surface tension at the solid-melt 
interface which we neglect. 

The problem to be solved is, therefore, the thermal 
viscoplastic buckling (time dependent growth of an initially 
deformed) cantilever plate that is governed by equation (5). 

The inplane stresses are due to the spatial variation of the 
temperature field and, therefore, are always self-equilibrated. 
They are evaluated from the equations given in detail in Dillon 
et al. (1987) and listed in Appendix A. The boundary condi­
tions for the inplane stresses considered in Tsai and Dillon 
(1987) are different than those used here. The relations be­
tween the moments, shearing force and derivatives of we are 
precisely the same as those of elastic plate theory as can be 
seen in Appendix B. 

The inplane stresses that exist near the solid-melt interface 
are very close to the elastic ones in numerical value in that 
region (near x = 0) and are large and are due to the low 
number of the dislocations. However, due to the material be­
ing viscoplastic, a axx residual stress field of significant 
magnitude exists farther away from the solid-melt interface. 
Since the stresses are self-equilibrated, this potentially changes 
the nature of the buckling from the purely elastic case. 

The solution of equation (5) is assumed separable in the 
form 

we(x,y,t)=g(t)W(x,y), (6) 

where W(x, y) is the deflected shape of the plate and g(t) is 
its amplitude at time t. By substituting equation (6) into equa­
tion (5) and then using the separation of variables approach, 
we obtain equations for the time dependence of g and the 
spatial dependence of the deflection shape W. They are 

g(t)-<pg(t)=0 (7) 

and 
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d2W 

- + av 

dh 
- ) • 
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dxdy ' ~yy dy2 

where <p is the separation parameter. The solution of the time 
dependent equation (7) is (Tsai, 1985; Tsai and Dillon, 1987) 

g(t)=g°e* (9) 

where g° is the magnitude of the increment in the deflection of 
the plate due to the thermal stresses being applied to an elastic 
material. 

The inelastic behavior results in viscoplastic buckling which 
is governed by the same spatial equation as classical elastic 
thin plates, but where the inplane stresses are replaced by (1 + 
2fE/3<p)Ojj as shown in equation (8). For the special case 
where a „ and ayy are constant, the temperature is uniform,/is 
constant and the plate simply supported, equation (8) is read­
ily solved for <p (Tsai and Dillon, 1987; Trevgaard, 1979). In 
the present context f(x, y) is a complex function of space, the 
term 2fE/3<p can vary in magnitude from 106 to 10"16 in the 
same problem. Hence the term (1 + 2fE/3<p) changes sign 
several times which then has obvious implications for 
buckling. 

As will be developed below, higher modes are needed to 
capture the significant physical phenomena. Due to the com­
plex nature of the spatial variation of the term (1 + 
2fE/3<p)au mentioned above, it is unlikely that shapes W{x, 
y) can be found which are consistent with <p being constant. 
Hence a Galerkin procedure is first used on equation (8) in 
order to evaluate <p, where the W(x, y) that is used is an 
assumed deflection shape. 

The shape functions Wm (x, y) used here are the mth mode 
shapes of the buckled elastic cantilevered plate that are 
associated with 

D,v*W=holi 

d2W 

3X:dX: 
(10) 

The mth eigen-parameter in equation (10) is the thickness h2„, 
and Wm are the corresponding eigenvectors of this equation. 
A particular Wm (x, y) is substituted into equation (8) and the 
result multiplied by W,„. These products are then integrated 
over the entire plate. The result is rearranged as 

0.0 

0.000 -20 0.875 1.750 
Y 

Fig. 4 The ff„y stress (MPa) induced in a 3.5 cm x 12 cm ribbon by the 
profile given in equation (13), the end x = 12 cm is subjected to the 
residual stress boundary conditions; initial dislocation density = 13 

h2 
11 in 

SI 
<p-. (11) h2-h2

m S2 ' 

where h,„ is the critical thickness of the mth "pseudo" elastic 
mode from equation (10) and h is the actual plate thickness, 
and 

Sl = iff f1 0 

o Jo 
-C7*Wm)Wmdxdy, (12A) 

(12b) S2=\" \ E(v*Wm)Wmdxdy, 
Jo Jo 

For numerical work described below, h is taken as \.\hx. 

4 Numerical Results 

The thermal profile for the web growth process is approx­
imately expressed as (Seidensticker, 1984) 
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Table 1 Typical results tor residual stress boundary conditions with 
ribbon length = 12 cm 

initial dislocation 
_2 

density (cm ) 

critical , , 
• u L • ji-i. (era) 

ribbon width 

maximum a 
XX 

(MPa) 

maximum a 
yy 

(MPa) 

max. residual 

o (MPa) 
XX 

com. 

ten. 

com. 

ten . 

com. 

ten. 

final dislocation 
_2 

density (cm ) 

13 

3.5 

-20.7 

8.66 

-22.5 

8. 12 

-11.5 

4.48 

2310 

6 

3.9 

-23.8 

9.88 

-22.0 

8.99 

-12/8 

4.03 

2730 

1 

4.6 

-27.5 

11.7 

-21.5 

10.5 

-13.2 

2.91 

3150 

Table 2 Creep buckling results for a 3.5 cm x 12 cm ribbon (residual 
stress boundary conditions) 

mode 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

critical thickness (mm) 

0.233 

0. 181 

0. 155 

0. 141 

0.130 

0. 125 

0. 110 

0. 105 

0. 102 

0.0957 

0.0944 

0.0834 

(0 (sec ) 

-0.694 

-0.00280 

-0.00821 

-0.00000629 

0.00225 

-0.0000399 

-0.0134 

-0.0000565 

0.0316 

-0.00350 

0.000193 

0.00335 

T(x) = 1600e" r + 85e 5XCOS(TTX) + 75sin(xx:) 

- 2 7 3 , if 0 < x < 4 ; 

TT(X— 4) 
T(x) = 1600e-°-0827x + 85e-5<;cos0rx) -35sin — - - — -

6 

-273 , if 4 < x < 1 0 ; 

r(A:)=-39.545x+822.229, if 10<x<20.1; 

T(x)=21, if x>20.1 , (13) 

where x (cm) is the position along a ribbon as measured from 
the solid-melt interface, x = 0. The temperature T(0) = 1412 
°C is the melting point of silicon. Although the industrial pro­
file also varies along the y direction, its variation is small so 
that only the x dependent thermal profile is considered here. 
The temperature distribution in the ribbon given by equation 
(13) is shown as the solid curve in Fig. 2. 

The inplane stresses used in the buckling analysis are ob­
tained from a prebuckling analysis. Typical oxx and ayy stress 
distributions obtained from solving the equations in Appendix 
A are illustrated in Figs. 3 and 4 for a 12 cm long and 3.5 cm 
wide ribbon with an initial dislocation density of 13 cm - 2 . 
This plate is subjected to the thermal profile of equation (13) 
and the residual stress boundary condition at x = 12 cm. The 
stresses existing at x = 12 cm are the residual stresses for this 
case. As can be seen from Figs. 3 and 4, the axx stresses are 
large while the value of ayy are nearly zero along x = 12 cm. 

0.33 

-0.33 

1.75 

Fig. 5 The first buckling mode shape induced in a 3.5 cm x 12 cm rib­
bon by the profile given in equation (13), the end x = 12 cm is subjected 
to the residual stress boundary conditions; initial dislocation density = 
13 c m - 2 ; the critical thickness = 0.233 mm 

0.7 5 

Fig. 6 The second buckling mode shape induced in a 3.5 cm x 12 cm 
ribbon by the profile given in equation (13), the end x = 12 cm is sub­
jected to the residual stress boundary conditions; initial dislocation 
density = 13 c m - 2 ; the critical thickness = 0.181 mm 

Typical inplane stress and final dislocation density values ob­
tained from using the residual stress boundary conditions for 
differential initial dislocation densities and ribbon widths are 
listed in Table 1. 

Equation (10) is solved by the finite element method, using a 
sixteen degree-of-freedom Hermitian-conforming rectangular 
element. The general procedure was discussed in (Tsai, 1985), 
where a computer code was developed for a ribbon divided in­
to 20 X 20 elements for the calculations associated with buck­
ling. Once the thickness and the corresponding deflection 
shape Wm are obtained from the solution of equation (10), the 
value of <p can be calculated from equation (11). 

For a 12 cm long and 3.5 cm wide ribbon subjected to the 
thermal profile of equation (13) and the initial dislocation den-
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Table 3 Creep buckling results for a 3.9 cm x 12 cm ribbon (residual 
stress boundary conditions) 

mode 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

critical thickness (mm) 

0.255 

0. 235 

0. 167 

0. 155 

0.139 

0.138 

0.123 

0.112 

0.111 

0. 100 

0.0995 

0.0863 

- 1 , 
ip (sec ) 

-0.0357 

-0.00971 

-0.00406 

-0.0000235 

0.00398 

-0.000185 

-0.00375 

-0.00634 

0.00000473 

0.0000590 

-0.00236 

0.000155 

Table 4 Creep buckling results for a 4.6 cm x 12 cm ribbon (residual 
stress boundary conditions) 

mode 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

critical thickness (mm) 

0.279 

0.259 

0. 185 

0.173 

0.158 

0.1484 

0.1483 

0.120 

0.119 

0. 107 

0. 106 

0.0984 

ip (sec ) 

-0.000813 

-0.00317 

-0.00689 

-0.0000116 

0.0108 

-0.00776 

-0.00042 

0.00193 

0.0000863 

0.000624 

-0.00122 

0.000663 

sity of 13 cm~2, thickness results and the associated value of <p 
are given in Table 2 for several modes. The thickness of the 
first mode (twisting) is 0.233 mm, which is seen to have a 
negative value of (p. Its mode shape is shown in Fig. 5. The 
second mode (bending) also has a negative value of <p. Its 
shape is shown in Fig. 6. The ninth mode (bending and curl­
ing) has the maximum positive value of <p which makes this 
mode the most likely one to be seen in the experimental situa­
tion. Its shape is shown in Fig. 7. The thickness of the first 
mode is 0.328 mm when the ribbon length increases to 18 cm, 
and the associated thickness is 0.201 mm when the length 
decreases to 9 cm. Other results for the cases of 3.9 cm and 4.6 
cm wide ribbons are listed in Tables 3 and 4. 

In the calculations described above the spatial shape func­
tions used to calculate <p, via the Galerkin procedure, were the 
mode shapes of the "pseudo" elastic problem, equation (10). 

To obtain better estimates of the deflection, we now specify 
we as 

we = g°ei"W*(x,y), 

where <p is known from the previous step. Substitution of this 
deflection into equation (5) again produces equation (8) but 
with a "known" value for <p. New mode shapes are then 
calculated from equation (8). In turn these new mode shapes 

0. 1 9 -

-0.21 

1.75 

Fig. 7 The ninth buckling mode shape induced in a 3.5 cm x 12 cm rib­
bon by the profile given in equation (13), the end x = 12 cm is subjected 
to the residual boundary conditions; initial dislocation density = 13 
c m - 2 ; the critical thickness for this mode = 0.102 mm 

0.33 

0.00 

1.75 

Fig. 8 The third "improved" buckling mode shape induced in a 3.5 cm 
x 12 cm ribbon by the profile given in equation (13) with <p = 0.00319. 
Other conditions are as in Fig. 6. 

W*m can be used as "improved" shape functions in equation 
(12) to yield improved values of <p. 

Many of the improved mode shapes W*m (x, y) obtained 
from equation (8) are identical to those obtained from equa­
tion (10). However it is found that all modes are not identical. 
In particular if <p is small the term (1 + 2fE/3<p) appreciably 
differs from unity and makes the new modes important. 
Typical of the "correction" to the deflected shapes is that 
shown in Fig. 8 in which the region near x = 0 is drastically 
bent with respect to that shown in Fig. 6. Clearly this reflects 
the viscoplastic nature of the material. If <p is large, most of 
the improved modes obtained from equation (8) are the same 
as those of equation (10). 

What we are doing is a typical creep buckling analysis in 
which an initially deflected plate continues to deflect in time. 
We presume that the initial deflection is in a mode shape and 
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Table 5 Creep buckling results tor a 4.6 cm x 12 cm ribbon (traction 
tree boundary conditions) 

mode 

1 

2 

3 

4 

5 

6 

7 

8 

9 

critical thickness (mm) 

0. 289 

0. 235 

0. 174 

0. 162 

0. 158 

0. 143 

0. 132 

0. 107 

0. 092 

ip (sec ) 

-0.0145 

0.00342 

-0.00724 

-0.00000218 

0.00492 

-0.000115 

-0.00252 

0.000679 

0.00160 

then the magnitude of the w grows with time. Due to /be ing 
assumed to be independent of w, we find the deflections grow 
as g°e*>'. Since most of the interest is in the fastest growing 
modes, and this implies large <p, the improved modes are 
primarily of academic interest. 

5 Discussions 

The main effect of the residual stresses can be illustrated by 
considering a plate with different boundary conditions for the 
inplane stresses at x = L. The results for such a plate having 
the traction free boundary condition at x = L, but otherwise 
of the same geometry as in Table 4, are given in Table 5. The 
thickness needed to prevent elastic buckling is not much dif­
ferent in the two cases. However, the values of <p, and hence 
which modes will grow, are considerably different. 

In order to further study the contribution of the residual 
stresses themselves to the buckling, we considered two 
hypothetical plates in which the inplane stresses are the 
residual stresses throughout the entire length of the plate (i.e., 
inplane stresses are uniform in the x direction). The residual 
stresses developed by the profile of equation (13) are shown in 
Fig. 9. For a plate with 18 cm in length and 3.5 cm in width, 
we calculated a critical thickness equal to 0.457 mm. This is 
greater than the 0.328 mm calculated for the same geometry 
but the stress field is similar to that shown in Figs. 3 and 4. If 
the residual stresses are multiplied by minus one, thus putting 
tension on the outside of the plate, the critical thickness 
decreases to 0.138 mm. This illustrates that a thermal profile 
which generates tensile residual axx stresses on the outside of 
the plate has a great advantage in preventing buckling over 
one with edge compression. 

Consider now a second profile which has been used in a 
thermal modeling effort for improving the web growing 
process by changing the furnace design (Seidensticker, 1986). 
This profile results in small tensile residual stresses axx on the 
edges. This new profile is 

:Tnew(x)=60e-8-30&lr-85*+1352, (14) 

Equation (14) is shown as a dashed curve in Fig. 2. For this 
profile and the case of a 12 cm long and 3.5 cm wide ribbon, 
the residual stresses a^ variation along the ribbon width is 
shown in Fig. 9 (curve with diamonds). The profile of equa­
tion (14) results in a much smaller magnitude of the residual 
stresses than those (see the curve with stars in Fig. 9) obtained 
from equation (13). The critical thickness is found to be 0.045 
mm when only these new residual stresses are applied 
throughout the entire ribbon. This new profile probably 
represents a nearly optimum One in so far as residual stresses 
are concerned. 

The value of <p controls the speed of the lateral deflection of 

-1.75 0.00 1.75 
Y (cm) 

Fig. 9 Residual <rxx stress distribution along the width direction (y) for 
a 3.5 cm x 12 cm ribbon with initial dislocation density = 13 c m - 2 

subjected to the profile of equation (13) (curve with stars) and equation 
(14) (curve with diamonds) 

plates. When the value of <p is equal to infinity, elastic buck­
ling occurs. When <p is positive, the amplitude of the buckling 
shape will grow with time. Larger values of <p will cause the 
lateral deflection of plates to grow faster. When <p is negative, 
the amplitude of the imperfection in the plate will decrease 
with time. 

This ambivalence about whether a specific mode will grow 
or damp out (go back to flat) is probably due to the stresses 
being self-equilibrated. It certainly is extremely sensitive to the 
specific inplane stress distribution that is used to calculate <p. 
To the authors knowledge this is a new type behavior. 

The results in Tables 2-4 show that the value of <p is small 
even though we used h = l.lAj. Based on equation (12), a 
greater ribbon thickness h will further reduce the value of <p, 
and hence the buckling speed. That is, the threshold for the 
lateral deflection of silicon ribbon can be moved to higher 
stress (i.e., wider ribbon) by growing ribbon thicker than h}. 

Once the value of <p is reduced so that the growth behavior 
can be neglected, the buckling of the final product of thin rib­
bon seems to be primarily due to the residual stresses existing 
in regions of the ribbon where there are small plastic strain 
rates. There are many ways to decrease the critical ribbon 
thickness by adjusting the thermal profile. A profile which 
reduces the magnitude of the residual stresses is one way. 
Selecting one that causes tensile residual stresses to occur on 
the edge region and compression near the center is a second 
way. Of course, there are other ways (for example, putting 
reinforcements on the outer edges) than adjusting the thermal 
profile that can also reduce the critical thickness. 

6 Summary 

The inplane stresses obtained from using the residual stress 
boundary conditions in the prebuckling state are used to 
calculate buckled shapes and their lateral deflection speeds. 
The lateral deflection speed can either be positive or negative. 
Hence the lowest mode may not be the one that is likely to be 
observed in an experiment. 

Ribbon that is moderately thicker than the eigen-thickness 
can reduce the buckling speed. However, the use of 
viscoplasticity in the inplane stress calculation cannot be 
neglected because it is responsible for the residual stresses as 
well as some modes growing in time. 

A thermal profile which generates smaller tensile residual 
stresses on the edge regions and smaller compression on the 
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center regions can be used to produce ribbon that is 
significantly thinner than one which has large compression on 
the outside edges. 

Residual stresses are important in evaluating buckling of 
silicon ribbon when the ribbon is long. 
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A P P E N D I X A 

The inplane stresses ay are obtained as the solution of the 
equilibrium equations expressed as 

d2<j„ 9 V 
= 0 

dx2 dy2 

and the compatability equation in the form 

04-1) 

where 

V2(axx + ayy + a E T)=E FP 

d2 PL 2 PL 

(A-2) 

(A-3) 
dy2 dx2 dxdy 

and JVgiven by equation (4). The plastic "strains" in equation 
(.4-3) are 

JV 
J o 

du 

where the e]fL are given by equation (2) in terms of the inplane 
stresses. 

During the growth of the silicon ribbon, the solid-melt inter­
face {x = 0) and two outer edges (y = ±C) are assumed free 
of tractions and moments in all directions. Since the value of 
d2 T/dx2 in growing ribbon usually drops to zero after a short 
distance (say L*) from the solid-melt interface, the ribbon 
grows under the steady-state when the length of growing rib­
bon is larger than L*. This implies that the stresses in the 
region beyond x = L* are constant so that the stress gradients 
in the x direction are zero in this region. The use of zero stress 
gradients along x - L* permits the residual in-plane stresses 
to be calculated in the prebuckling analysis. When the in-plane 
stresses axx, axy, and ayy are being calculated, the boundary 
conditions mentioned above are called the residual stress 
boundary condition. These stresses along x = L* are the 
residual stresses. The axy and ayy stresses are found to be very 
small when compared to axx (Dillon et al., 1986). 

Hence the boundary conditions are 

cXx(0,y) = o-xy (0,y) = 0 = ayy (x, ±C)= axy (x, ±C) 

and the residual stress ones 

daij/dxj(L*,y)=Q. 04-4) 

This system is expressed in their finite difference equivalent 
and the results solved iteratively for axx and ayy on the digital 
computer. In the right-hand side of equation 04-2) the func­
tion FP is evaluated using the stresses obtained in the previous 
iteration. The shearing stresses are obtained from one of the 
equilibrium equations or by "fitting" a stress function to the 
data on axx and ayy and then differentiating the result to ob­
tain axy. 

A P P E N D I X B 

The transverse displacement w(x, y) at a generic point in 
the plate is written as 

• w° + we + wv (B-l) 

where w" is the deflection at zero stresses, we is the increment 
in displacement when the stresses ay are applied considering 
the material to be elastic, and wvp is that part of w due to the 
stresses ay when considering silicon to be viscoplastic (i.e., 
without elasticity). The strains are written as 

(B-l) - (Of + eo> 
dXjdXj 

using the usual assumptions of small deflection plate theory; 
therefore, the strains are written as 

In equation (5-2) the eff and eff are independent of z. The 
moment intensities are given by the basic definition 

r' >A/2 

Mr, = \ Z audz 
-h/2 

J i / 

Hence we have 

Mrr = -Dp 

'd2we 

Hx2 -+v -
d2we 

dy2 

(B-2) 

(B-4) 

and also 
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M„=-D„ 
d2w 

dx2 2dy2 
(B-5) 

where Dvp = h3/l2f. 
If we assume v = Vi, equations (B-4) and (B-5) imply 

d2wvp 2fE d2we 

dx2 dx2 (5-6) 

and corresponding expressions for d2wvp/dy2 and d2wvp/ 
dxdy. This procedure is analogous to Trevguard (1979). 

The general equilibrium equation for a plate subjected only 
to inplane stresses a^ is 

d2MiJ/dxidxJ = - haiJd
2(w° + we + wvp) /dxfixj (B-l) 

Using the expressions of the type given by equation (5-4) in 
the left-hand side of equation (B-l), one obtains 

De V we = ho^2 (W + we + w vp) ZdXjdXj (B-8) 

Equation (B-S) is then differentiated with respect to time and 
w° thereby eliminated, except from the associated initial 
conditions. 

Using the relations of the type (B-6), one eliminates wvp in 
favor of we and thereby obtains equations (5) of the text. 
Relations similar to equation (B-4) can also be used to express 
the boundary conditions in terms of we, precisely as in elastic 
plate theory. 

Thus the problem to be solved is equation (5) with 

Mxx(o,y) =Myy(x,±C) =Mxy(o,y) •• 

Mxy(x,±C)--

-o 

= o = Qx(o,y)=Qy(x,±C) 

We do not know the initial deflected shape so that we watch 
any one of the "pseudo" elastic mode shapes grow in time. 
That is 

we(x,y,o)=g°Wm(x,y). 
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Nonlinear Forced Response of 
Infinitely Long Circular Cylindrical 
Shells 
A combination of the Galerkin procedure and the method of multiple scales is used 
to analyze the nonlinear forced response of infinitely long circular cylindrical shells 
(or circular rings) in the presence of internal (autoparametric) resonances. If wf 

and af denote the frequency and amplitude of a flexural mode and cob and ab denote 
the frequency and amplitude of the breathing mode, the steady-state response is 
found to exhibit a saturation phenomenon when cob = 2cof if the shell is excited by a 
harmonic load having a frequency Q near ab. As the amplitude f of the excitation in­
creases from zero, ab increases linearly with f until a threshold value fc of f is 
reached. Beyond fc, ab remains constant and the extra energy spills over into the 
flexural resonant mode whose amplitude grows nonlinearly. Results of numerical in­
vestigations, guided by the perturbation analysis, show that the long-time response 
exhibits a Hopf bifurcation, yielding amplitude and phase-modulated motions. The 
amplitudes and phases experience a cascade of period-doubling bifurcations ending 
up with chaos. The bifurcation values are finely tuned. 

1 Introduction 

Recently, the problem of the nonlinear vibration of shells 
has received considerable attention. The sources of the 
nonlinearities in the governing equations may be geometric, 
inertial, material, or any combination. These nonlinearities 
appear in the governing partial-differential equations and may 
appear in the boundary conditions. However, most of the ex­
isting studies of other than composite shells deal with 
geometric nonlinearities. 

The methods of solution of the nonlinear partial differential 
equations governing shell motion can be broadly classified in­
to three approaches: purely numerical methods, perturbation 
methods, and a combination of the Galerkin procedure with 
either perturbation or numerical methods. 

The last is the most commonly used approach. It consists of 
expanding the dependent variables in terms of a linear com­
bination of shape functions with time-varying coefficients. 
These temporal coefficients are treated as generalized coor­
dinates. The Galerkin procedure is used to derive a set of 
nonlinear ordinary-differential equations. These equations are 
solved using numerical or perturbation techniques. Examples 
of this approach include the work of Atluri (1972), who 
employed the method of multiple scales, and the works of 
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Fig. 1 Polar coordinates of a point of the shell which was initially at P 
and at P* at time f* 

Reissner (1955), Chen and Babcock (1975), and Hui (1983), 
who employed the Lindstedt-Poincare technique. 

Since the problem is governed by partial-differential equa­
tions, the response, in general, consists of many modes. In 
fact, using the Galerkin procedure one obtains an infinite set 
of nonlinear coupled equations describing the time variation 
of the amplitudes of the infinitely many modes. All existing 
studies truncate the infinite set of equations to a finite number 
and many of them keep only one mode. 

The first studies of modal interactions in the response of 
shells were initiated by Mclvor (1962, 1966), Goodier and 
Mclvor (1964), Mclvor and Sonstegard (1966), and Mclvor 
and Lovell (1968). They analyzed the response of infinitely 
long cylindrical and spherical shells to radial and nearly radial 
impulses, taking into account the coupling of breathing and 
flexural modes when their frequencies are in the ratio of two-
to-one. By considering the linearized equation of the breathing 
mode, they obtained a Mathieu-type equation for the flexural 
vibrations and used it to study the stability of the shell. Other 
examples of modal interaction studies include the works of 
Bieniek et al. (1966), who used Donell's equations to obtain a 
Mathieu-type equation to study the stability of the axisym-
metric modes, Atluri (1972), who used the method of multiple 
scales to analyze free oscillations of shells in the absence of in-

Journal of Applied Mechanics SEPTEMBER 1987, Vol. 54/571 

Copyright © 1987 by ASME
Downloaded 03 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Fig. 2 An edge of an element of the deformed and undeformed shell 

ternal resonances, Mente (1973), who numerically solved a set 
of n nonlinear equations arising from the Galerkin procedure, 
and Chen (1972) and Chen and Babcock (1975), who used the 
Lindstedt-Poincare technique to study the interaction of a 
flexural mode with its companion mode (i.e., one to one 
resonance) for a simply-supported cylindrical shell. 

In the present paper, we analyze the nonlinear response of 
an infinitely long cylindrical shell (or a ring) to a harmonic ex­
citation when the frequency of the breathing mode is approx­
imately twice the frequency of a flexural mode. We use the 
method of multiple scales to fully account for the nonlinear in­
teraction, including the influence of the flexural mode on the 
breathing mode. We demonstrate the saturation phenomenon. 
This phenomenon was found by Nayfeh et al. (1973) in the 
response of internally-resonant ships. We also show the ex­
istence of a Hopf bifurcation and numerically demonstrate the 
occurrence of chaotic motion. Systems with two-to-one inter­
nal resonances were studied by Mettler and Weidenhammer 
(1962), Miles (1984, 1985), Sethna (1965), Nayfeh et al. (1973), 
Mook et al. (1974), Yamamoto and Yasuda (1977), Hatwal et 
al. (1982), Haddow et al. (1984), among others. 

2 Equations of Motion 

Following Mclvor (1962) and Goodier and Mclvor (1964), 
we consider the case of plane strain in which the strain parallel 
to the generators of the shell is everywhere zero. Thus, the 
deformation of the shell is identical in every plane perpen­
dicular to the shell axis, and the shell can be considered as be­
ing in plane motion (or simply as an elastic ring). In such a 
plane, we consider a point P on the undeformed shell midsur-
face with the polar coordinate (a, ff), which after a time t* 
moves to P* with the polar coordinates r and </>, as shown in 
Fig. 1. Figure 2 shows an edge of an element of unit width of 
the shell in both the deformed and undeformed configura­
tions. Let the coordinates of an element of the undeformed 
midsurface be {a, 6) and (a, 6 + dd) and those of the deformed 
element be (r, 4>) and (r + 5r, 4> + &4>)- Then, the extensional 
strain is given by 

e ^ ^ ' ^ P t - V H f i f y - l (1) 
ds 

where the prime denotes the partial derivative with respect to 
6. Thus 

ds* = add(l + e„) (2). 

It follows from differential geometry that the curvature is 
given by 

K=[0 ' ( r 2 </> ' 2 -rr" +2r'2) + <j>"r'r][r'2+r2<t>'2]~1/2 (3) 

The usual assumptions of thin shell theory are used here. 
Straight lines normal to the midsurface before deformation 
stay straight and normal to the midsurface after deformation, 

Fig. 3 Deformed shell element 

implying that the shear deformations are negligible. The 
thickness h of the shell is unchanged, and the normal stress is 
negligible. The ratio (h2/a2), where a is the initial radius of the 
shell, is small. Using the above assumptions and assuming 
plane strain, we find from Fig. 3 that 

e + = e 0 - « ( l + e 0 ) ( K - - i - ) ( l + - ^ + - | r + . . . ) (4) 

We introduce the dimensionless displacement w and time t 
defined by 

where t* is the dimensional time, c2 = E/p{\ — v1), E is 
Young's modulus, v is Poisson's ratio, and p is the density of 
the shell per unit width. Moreover, we let 

+ = 4>-0 (6) 

Using Hamilton's principle and calculus of variation, we ob­
tain the equations of motion 

w + a2(w'v + 2w" +w)-\j/' +w=w" (I/-' -w)~\j/2 

1 a(l-v2) 
+ ^'2-2w^' + w'iP" w ' 2 + — -P(\+\P' -w)(l) 

2 Eh 

and 

. a(\ - v2) 
\I/ — tp" +w' =w'w" -2w'\b' +2w\I/-\ w'P (8) 

in agreement with those obtained by Mclvor (1962) and 
Goodier and Mclvor (1964). These equations have the same 
mathematical form as those of a ring. The ring equations can 
be obtained from equations (7) and (8) by replacing a{\ -
v2)/Eh by ah2/(\2EAk2), where A and k are, respectively, the 
area and radius of gyration of the cross section of the ring. 
Simmonds (1979) showed that the cubic nonlinearities in an 
elastic ring have a significant effect on the behavior of low 
modes of vibration. The present study will consider higher 
flexural modes and thus cubic nonlinearities can be ignored. 

3 Inextensional Oscillations 

Goodier and Mclvor restricted their analysis to impulses 
with durations much less than the period of the uniform radial 
(i.e., breathing) mode of vibration. Such a restriction made it 
possible to convert the problem into that of free vibration. 
Under the assumption of inextensionality and by simplifying 
the expression for the kinetic energy through neglecting a (2vf) 
term, Mclvor (1962, 1966) and Goodier and Mclvor (1964) 
produced a numerical solution of the approximate equations 
of motion. In the present analysis, such assumptions concern­
ing the energy are not used. 

Since the shell is closed, w and ^ must be periodic in 6 with 
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period 2ir. Consequently, they can be expanded in Fourier 
series as 

W = VO(T)+ X) fo„(T)cosH0 + f„(T)sinrt0] 

and 

\l>= 2^ [c„(T)cosnd + d„(T)sm nd] 

(9a) 

(9b) 

The basic response of the shell is the radial (breathing), purely 
extensional mode r\0 (T), which is assumed to be perturbed by 
the inextensional modes. Thus, we follow Goodier and 
Mclvor (1964) and assume that the deviation from the 
breathing circular mode satisfies the inextensionality condi­
tion 

\p' — w = 0 

Hence, equations (9) become 

and 

--VO(T)+ X ) lVn(T)COS « 0 + f „ ( 7 ) s i n nd] 

yj/= z_j \ — cos nd-\—- sin nd 
h_, L n n J 

(10a) 

(10b) 

The first harmonic is omitted in equations (10) because it cor­
responds to a rigid body translation in the inextensional 
model. The damping is assumed to be given by the dissipation 
function 

Df = —Elhair\2Ml+ £ /.„ - ^ - ± i (r)2 + f2)l (1 
z L 9 n J 

i) 

so that the resulting damping is modal. The quantities ij0, ij„, 
and f„ can be considered as generalized coordinates resulting 
in the following equations of motion: 

°° V 1 

- — («2-2)(,3 + tf) 

Vn+^2nV„ + 2fi„v„ 

n2(n2-2) 

n2 + \ M " n2 + l 

= P0(t) 

VoVn 

(12) 

2 VoVn + higher-order terms = Pn(t) 

n2(n2-2) . 2 

n2 + \ 
(13) 

n2 + \ Votn- n2 + \ n0ln 

— — - i)0t„ + higher-order terms = Q,,(t) (14) 

where the P„ and Qn are generalized forces, the /j.m are damp­
ing coefficients, and 

2 n\n2-\)2
 2 

(15) 

The full form and details of the derivation of equations 
(12)-(14) are given by Nayfeh and Raouf (1986). The higher 
order terms are not listed because they do not appear in the 
second-order approximation presented in this paper. 

4 Perturbation Analysis 

In this section, the method of multiple scales (Nayfeh, 1973, 

1981) is used to derive an asymptotically valid closed-form 
solution for equations (12)-(14) in the case of a two-to-one in­
ternal (autoparametric) resonance between the breathing 
mode ij0 and a flexural mode -qs and £,. Thus, we consider the 
case u>0 ~ 2c<v Moreover, we consider the case of a harmonic 
excitation of the breathing mode near primary resonance; that 
is, weletP,, = S„ = Oand 

P0 = 2FcosQt (16) 

where 0 = co„. 
Following the method of multiple scales, we seek a uniform­

ly valid expansion of the variables in the form 

Vo(t;e)=er,ol(T0,Tl) + e2r,o2(T0<Tl) + . . . (17) 

Vn(t;e)=erlnl(T0<Tl) + e2
Vn2(T0,Tl)+. . . (18) 

^,(t;e)=etnl(T0,T1) + e2^2(T0,T1)+. . . (19) 

for n = 2, 3, 4, . . . , where e is a small dimensionless 
parameter that is used as a bookkeeping device, T0 = t is a 
fast scale, and Tx = et is a slow scale. Moreover, we order the 
amplitude of the excitation and the damping coefficients so 
that 

F-euJ and [i„-en„ (20) 

Substituting equations (17)-(20) into equations (12)-(14) and 
equating coefficients of like powers of e on both sides, we ob­
tain equations describing the 7]nm and fm„ (Raouf, 1985, 
Nayfeh and Raouf, 1986). The solution of the first-order pro­
blem can be expressed as 

(21) 

(22) 

(23) 

+ c.c. 
+ C.C. 

V =A0(Tl)e 

•nj =A„(Ti)e 

f , =B„(Tl)e " ° +c.c. 

where ex. stands for the complex conjugate of the preceding 
terms. The functions A0, An, and Bn are arbitrary at this 
order; they are determined by imposing the solvability condi­
tions at the next level of approximation. 

Next, equations (21)-(23) are substituted into the second-
order problem and detuning parameters a1 and a2 are defined 
as 

Q = «„ + eff. and 2w=u>n + eo-, (24) 

Then, eliminating the terms that produce secular terms from 
the inhomogeneous equations governing the 17 2 and f 2 , we 
obtain 

2A^ + 2lx0A0+4iAl(A
2 +B2)e°2T[ +ife'"'Ti = 0 (25) 

2/4; + 2nsAs + 4iA2A0Ase 

2B's + 2tisBs + Aik2A0Bse~ 

-ia2Tl 

- ' °2 ' l 

= 0 

where 

4co„A,= — (s2-2) + ^ u o J M 

1 

S2 + l 
Letting 

[ sV-2) -2 (co s
2 + cosa>0)] 

(26) 

(27) 

(28) 

(29) 

A0=—a„(Ti)e , Bs = —bs(Tt)e 

A s = \ as(Tx)^
(Tx) (30) 

in equations (25)-(27) and separating real and imaginary 
parts, we obtain 

a'0 + \i.0a0 + A,a2sin72 +A,Z?jSin73 - / s inY, =0 (31) 

fl; + ^ A - A 2 a o a s s i n 7 2 = 0 (32) 
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Fig. A A typical time history of the free-oscillation response 

6s' + / i A - - M < A s i n 7 3 = 0 (33) 

ao(3^ + A,o2cos72 + A 152 cos7 3+/cos7 1=0 (34) 

as/3; + A2«0«scoS72 = 0 (35) 

bsv; + A2aobscosy3=0 (36) 

where 

7i=ffi7 , i - /30 , y2 = (30-2ps-a2Tl 

and 73 = / 3 0 - 2 ^ - 0 - 2 ^ (37) 

In the following section, we discuss the undamped case of 
free oscillations, and in Section 6, we discuss the case of 
forced damped oscillations. 

5 Undamped Free Oscillations 

In this case, / = 0 and n„ = ns = 0. Under these condi­
tions, eliminating 72 and 73 from equations (31)-(36) yields 

A 2 a X + A i a X + A,6A ' = 0 (38) 
Integrating equation (38) yields 

(A2/A,)fl*+ «? + # = £ (39) 

where E is a constant of integration. Since all the terms on the 
left-hand side of equation (39) are positive, E must also be 
positive, which means that the motion described is a bounded 
one. When bs = 0, the solutions of equations (31)-(34) and 
(37) can be expressed in terms of Jacobi elliptic functions 
(Nayfeh and Mook, 1979). 

Next, we present numerical results for the case a2 = 2.0918 
x 1.0"4,(ft/a ~ 1/20), which leads to co0 = 1.0001 and o>6 = 
0.4993 so that w0 ~ 2co6. In this case, A, = 2.1259 and A2 = 
16.5203. Figure 4 shows the time-history of the amplitudes of 
the free-oscillation response obtained by integrating equations 
(31)-(37). It clearly shows the continual exchange of energy 
between the breathing and flexural modes. The maximum 
amplitude of the flexural mode is about a factor of 3 larger 
than the maximum amplitude of the breathing mode. 

6 Forced Damped Oscillations 

Fixed points and hence steady-state periodic solutions of 
equations (31)-(37) correspond to a'0 = a!. = b^ = 0 and 7/ = 
0. It follows from equations (37) that (i'0 = ax and &' = 1/; = 
Vi (oi - a2). Hence, steady-state periodic solutions have four 
possibilities. First, 

as = bs = 0 and a ^ / U j + o?)-* (40) 

which is essentially the linear solution. Second, as = 0 and bs 

* 0. Third, as * 0 and bs = 0. Fourth, as * 0 and bs ^ 0. 
The last solution includes the second and third solutions as 

/ 
/ 

/ / / / / ^s 
/ s^ 

t s^ 
/ s^ 

/ y^ 
/ yS 

/ y^ 
/ yS 

/ / 

/ - ^ 

a0 

i l i i f 

Fig. 5 Modal response amplitudes as functions of the amplitude of the 
excitation when V < 0 

special cases. Then, it follows from equations (32), (33), (35), 
and (36) that 

a0 = a* = A2"' [ ^ + — O, - a2)2] ' (41) 

tan72 = tanT3 = [2fis/(a2 - a,)] (42) 

Then, it follows from equations (31) and (34) that 

a2 + b\ = (A, A2) -» [ — a, (a, - <r2) - /i0/xs ± \fk\ 

-(^i^+-y-^(o r i - f f2)2) ] ) («) 

Equation (41) shows that the amplitude a0 of the directly ex­
cited breathing mode is independent of the amplitude/of the 
excitation. It depends only on the damping of the flexural 
modes and the detuning parameters <J, and a2. On the other 
hand, the amplitudes as and bs of the flexural mode are 
strongly dependent on the excitation amplitude / . 

To determine the stability of the steady-state periodic solu­
tions, we let 

Ao=~Y (Pi-'<?i)e 

As=^-{p2-ig2)e
h2Tl (44) 

B,~(Pi-iq3)e'nTl 

where 

"1 =^1 and P 2 = — (ffi-0-2) 

in equations (25)-(27), separate real and imaginary parts, and 
obtain 

Pi + vxqx + HoPi + 2A, (p2q2 +p3q3) = 0 

g{-ViPi+ ix0qx - A, (pi +p\ - q\ - q\) =f 

Pi + v2q2 + ixsp2 + A2(qxp2 - q^J = 0 

qi - "2P2 + Mi ~ A2(PiP2 + qxq2) = 0 

Pi + "2<?3 + VsPz + A2(<7i/?3 - Q i P \ ) = 0 

Qi~"2P3 + M2 -A2(piP3+qlq3) = 0 

(45) 

(46) 

(47) 

(48) 

(49) 

(50) 

Equations (45)-(50) are a generalization of those studied by 
Miles (1985) and Nayfeh (1987). The local stability of a fixed 
point with respect to a small perturbation proportional to exp 
(Xr,) is determined by the zeros of the characteristic equation 
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\ + H0 vx 2Axq2 

-"\ X + /t0 ~2Axp2 

-A2q2 A 2 p 2 X + fis+A2ql 

~A2p2 -A2q2 -v2-A2px 

-A2(?3 A ^ 0 

-AjjOj -A2 tf3 0 

2Axp2 

2Axq2 

X + ns-A2qx 

0 

0 

2A1<73 

- 2 A , p 3 

0 

0 

X+-^ + A29, 

- V J - A J P ! 

2Axpl 

2A1(?3 

0 

0 

" 2 - A 2 J D , 

\ + Hs~A2qx (51) 

To investigate the stability of the linear solution given by 
equations (40), we put p2 = p3 = q2 = <?3 = 0 in equation 
(51) and, after some algebraic manipulations, obtain 

[(X + ̂ ) 2 + ,?][(X + ̂ ) 2 + , | - A l ^ ] 2 = 0 

Hence, 

\=-fi0±ivu -tis±{A2
2a

2
0-vlYA, 

-PLS±(AW0-,%)* 

Consequently, the linear solution is stable if and only if 
.,2 

(52) 

(53) 

Ala2
0<v\ + ii% (54) 

which, in conjunction with equation (41), implies that the 
linear solution is stable if ao < a* and unstable if a0 > a* or 

/>b = <(ti + *?)*• 
To study the stability of the nonlinear solution given by 

equations (41)-(43) when bs = 0, we letp3 = q3 = 0 in equa­
tion (51), use equation (41), and obtain 
[(X + f 0 2 - ^ 2 n X 4 + 2(/x0+^)X3 + [rt;+ 4 / ^ + 1̂ 

+ 4A,A2a
2]X2 + [2^2

0 + 2^sv\ +4AlA2(li0 + /xs)«
2]X 

+ AAxA2a
2
s[AxA2a

2 + IX0IXS-VXV2]} =0 (55) 

Hence, either X = 0 or - 2/J.S or 

X4 + 2(/x0 +/xs)X
3 + [ix2

0 + 4p0iis + v\ + 4A,A2fl
2]X2 

+ [2/*s/4 + 2ii A + 4A[ A2(j*0 +ixs)a
2]\ 

+ 4AiA2a
2[AlA2a

2
s+ij.oiJ.s-j'lj'2} = 0 (56) 

The necessary and sufficient conditions that none of the roots 
of equation (56) have positive real parts are 

A1A2a2 + ^ o ^ - y 1 c 2 > 0 

4/*0^s (v-l + "i)(4;4 + 4/*0/*s + til + v\) + 8(n0 

+ iis)
2AiA2a

2(ix2
0 + 2p,0\xs + 2vx v2 + v\) > 0 

(57) 

(58) 

Condition (57), in conjunction with equation (43), implies that 
the solution corresponding to the positive sign is stable 
whereas the solution corresponding to the negative sign is 
unstable. The violation of condition (58) would imply the ex­
istence of a pair of complex-conjugate roots of equation (56) 
with a positive real part. When vxv2 > 0, condition (58) is 
satisfied for all values of n0, /is, a n d / . On the other hand, 
when vxv2 < 0, condition (58) may be violated, depending on 
the values of ix0, ix„, and / . 

Next, we present numerical results for the same case con­
sidered earlier o>0 = 2w6 with JX0 = 0.01 and ii6 = 0.01. 

In Fig. 5, we show a representative variation of the 
amplitudes of the breathing and 6th flexural modes for the 
case T < 0, where 

T = — OX(GX • o2) - ix0ixs 

If the shell is excited by a radial load of amplitude / and fre­
quency Q « co0, the linear solution shows that the steady-state 
amplitude a6 of the flexural mode is zero, whereas the steady-
state amplitude a0 of the breathing mode increases linearly 
with / . However, including the nonlinear terms shows that 
above a threshold value £2 of/, where 

H2 = a*^2
0 + a2

xy 

= Af' ((M5 + «I)[, /*6+" (ax -<r 2 ) 2 ]] (60) 

the linear solution is unstable, a0 remains constant (saturates), 
and the additional energy spills over into the flexural mode. If 
the excitation frequency is such that ax = a2, then the 
threshold value £2 of/becomes 

£2 = „ 6 A 2 -V 0 + tf,)'/2 (61) 
which can be very small, depending on the damping coeffi­
cients, n0 and \xb. Consequently, the linear solution is unstable 
and the shell responds nonlinearly even for small excitations. 

Next, we consider the case where ix0 = ns = 0.02, ax = 
- 0 . 1 , a n d a 2 = -0 .18 , then vx = - 0 . 1 , v2 = 0.04, and T < 
0. Hence, equation (43) has no real roots when / < £2 and it 
has one real root for a l l / > £2, where £2 = 2.761 x 10~4. 
When £2 < / < £3, where £3 = 1.2761 X 10"3 , both condi­
tions (57) and (58) are satisfied, and hence the finite-amplitude 
solution is stable. W h e n / > £3, condition (58) is violated, in­
dicating the existence of a Hopf bifurcation and hence the 

time 
Fig. 6 Hopf bifurcation conditions. Variation of the steady-state 
amplitudes of the breathing and flexural modes as a function of time 
when 1 = 0.1. 

(59) * 

time 
Fig. 7 Hopf bifurcation conditions. Time response history of the 
breathing mode response when f = 0.1. 
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Table 1 Summary of reponse with varying values of a, 

*1 

< - 0 . 0 7 5 
[-0.075, -0.031] 

[-0.03, -0.0297] 

[-0.0296, -0.02953] 

[-0.02950, 0] 
> 0 

Trajectory 

fixed point 
limit cycle/ 
period T 
limit cycle/ 
period 2T 
limit cycle/ 
period 4T 
chaos 
fixed point 

Phase 
Trajectory 

Fig. 9 

Fig. 10 

Fig. 11 

t ime 
Fig. 8 Hopf bifurcation conditions. Time response history of the flex-
ural mode response when / = 0.1. 

finite-amplitude solution is unstable. Consequently, the 
response is periodic and consists of only the breathing mode 
when/ < £2. When £2 < / — £ 3 . t n e response is also periodic 
having the same period as the excitation but it consists of a 
combination of the breathing mode and the 6th flexural mode. 
When / > £3, the response is also a combination of the 
breathing mode and the 6th flexural mode but in this case the 
amplitudes and phases are not constants. Consequently, the 
response is either an amplitude and phase-modulated motion 
or a period multiplying (the period is an integral multiple of 
the excitation period) motion or a chaotic motion. The critical 
value/ = £3 is a Hopf bifurcation point at which the real part 
of a complex-conjugate pair of the roots of equation (56) 
changes sign. 

Under the above stated conditions of complex-conjugate 
pair with positive real part, Fig. 6 shows variations of the 
long-time behavior of the amplitudes a0 and a6 of the 
breathing and flexural modes when / = 0.1, obtained by 
numerically integrating equations (45)-(50) using a 6th order 
Runge Kutta algorithm. Under the same conditions, equations 
(12)-(14) are integrated and the results are shown in Fig. 7 
(breathing mode) and in Fig. 8 (flexural mode). 

To illustrate the importance of the Hopf bifurcation, we fix 
the parameters of the system, vary ax, and numerically in­
tegrate equations (45)-(48). The results show the system to ex­
hibit a fixed-point response in the phase diagram before enter­
ing and after leaving the interval —0.75 < at < 0. In this in­
terval, the system exhibits a limit cycle behavior, then a 
cascade of period-doubling bifurcations starts to develop, 
leading to chaos. The system goes back to the fixed point 
behavior for al > 0. Table 1 summarizes the behavior of the 
system with reference to the phase trajectory describing every 
pattern of response. 

In Fig. 12, we show a representative variation of the 
amplitudes of the breathing and 6th flexural modes when T > 
0. In addition to the saturation phenomenon, Fig. 12 exhibits 
the jump phenomenon. When the excitation amplitude/lies in 
the interval [£,, £2], there are three possible steady-state solu­
tions. Two of these solutions are stable: the trivial solution 

I . ; J U 

1.25 

1.00 

0.75 

Oi=- 0.0730 

— 

\\ 

1 1 1 1 1 

0.00 0.50 1.00 1.50 

or 
Fig. 9 Projection of the trajectory of the modulation equations on the 
a0 - a6 , plane, where a0 = a0 ( f /A2 )_ 1 / z , and a6 = a6 (f/A1)~1/2, for 

M'A2)" 0.02, ff2(fA2)
/2 = 0.18, and <r1(fA2) - ya = - 0.073 

2.00 

1.50 

.00 

0.50 

-

^ 

1 1 I I 

cr; =-0.0299 

1 1 1 

0.50 1.00 1.50 2.00 

Fig. 10 Projection of the trajectory of the modulation equations on the 
a0 - a6 , plane, where a0 = a 0 (f7A2)~1/2, and a6 = a6 (flA^)~ 1/2, for 
M ' A 2 ) - % = 0.02, ff2(fA2)

_1/2 = 0.18, and u1(fA2)-1/2 = - 0.0299 

and the larger amplitude solution. The response that is at­
tained physically depends on the initial conditions. If the ex­
citation amplitude increases from zero, one observes only the 
breathing mode until/reaches £2. As/increases beyond £2, «6 
jumps up from zero to point C, producing a large wrinkling of 
the shell. As/increases further, a0 remains constant, whereas 
a6 increases slowly along the curve ECD. If/decreases from a 
value corresponding to point D, a6 decreases slowly along the 
curve DCE and a0 remains constant until point E is reached. 
As/decreases below £1; a6 jumps down to zero and a0 jumps 
down to point F. As/decreases further, a6 remains zero and 
a0 decreases linearly with / . 

If the amplitude of the excitation is set at a value in the in-
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CTJ =-0.02959 
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Fig. 11 Projection of the trajectory of the modulation equations on the 
a0 - a6, plane, where a„ = a0 (t!A2)~

 h, and a6 = ae 

M'A2)" 0.02, a2{fA2)~
 n = 0.18, and ai(fA2)~ 

( f f A ^ - ^ . f o r 

- 0.02959 

F > ^ \ : 

Fig. 12 Modal response amplitudes as functions of the amplitude of 
the excitation when r > 0 

terval [£,, £2] and the shell is initially undisturbed, the 
response corresponds to the linear solution, in which the shell 
is breathing without wrinkling. However, if the shell is 
disturbed, the shell may respond with the nonlinear solution, 
in which the amplitudes of the breathing and flexural modes 
increase dramatically, yielding a much larger response. 

The instability of the linear solution and the saturation 
phenomenon were first found analytically and verified 
numerically by Nayfeh et al. (1973) in the response of ships. 
Later these phenomena were observed experimentally in the 
response of a simple model consisting of two beams and two 
concentrated masses by Haddow et al. (1984) and in the 
nonlinear vibration laboratory at VPI & SU. 

Acknowledgment 
This work was supported by the National Science Founda­

tion under Grant No. MSM-852-1748. 

References 

Atluri, S., 1972, "A Perturbation Analysis of Non-Linear Free Flexural 
Vibrations of a Circular Cylindrical Shell," International Journal of Solids and 
Structures, Vol. 8, pp. 549-569. 

Bieniek, M. P., Fan, T. C , and Lackman, L. M., 1966, "Dynamic Stability 
of Cylindrical Shells," AIAA Journal, Vol. 4, pp. 495-500. 

Chen, J. C , 1972, "Nonlinear Vibration of Cylindrical Shells," Ph.D. 
Dissertation, California Institute of Technology, Pasadena, CA. 

Chen, J. C , and Babcock, C. D., 1975, "Nonlinear Vibration of Cylindrical 
Shells," AIAA Journal, Vol. 13, pp. 868-876. 

Goodier, J. N., and Mclvor, I. K., 1964, "The Elastic Cylindrical Shell under 
Nearly Uniform Radial Impulse," ASME JOURNAL OF APPLIED MECHANICS, 
Vol. 31, pp. 259-266. 

Haddow, A. G., Barr, A. D. S., Mook, D. T., 1984, "Theoretical and Ex­
perimental Study of Modal Interaction in a Two-Degree-of-Freedom Struc­
ture," Journal of Sound and Vibration, Vol. 97, pp. 451-473. 

Hatwal, H., Mallik, A. K., and Ghosh, A., 1982, "Non-Linear Vibrations of 
a Harmonically Excited Autoparametric System," Journal of Sound and Vibra­
tion, Vol. 81, pp. 153-164. 

Hui, D., 1983, "Large-Amplitude Vibrations of Geometrically Imperfect 
Shallow Spherical Shells with Structural Damping," AIAA Journal, Vol. 21, 
pp. 1736-1741. 

Mclvor, I. K., 1962, "Dynamic Stability and Nonlinear Oscillations of Cylin­
drical Shells (Plane Strain) Subjected to Impulsive Pressure," Ph.D. Disserta­
tion, Stanford University, Stanford, CA. 

Mclvor, I. K., 1966, "The Elastic Cylindrical Shell Under Radial Impulse," 
ASME JOURNAL OF APPLIED MECHANICS, Vol. 33, pp. 831-837. 

Mclvor, I. K., and Sonstegard, D. A., 1966, "Axisymmetric Response of a 
Closed Spherical Shell to a Nearly Uniform Radial Impulse," The Journal of 
the Acoustical Society of America, Vol. 40, pp. 1540-1547. 

Mclvor, I. K., and Lovell, E. G., 1968, "Dynamic Response of Finite-Length 
Cylindrical Shells to Nearly Uniform Radical Impulse," AIAA Journal, Vol. 6, 
pp. 2346-2351. 

Mente, L. J., 1973, "Dynamic Nonlinear Response of Cylindrical Shells to 
Asymmetric Pressure Loading," AIAA Journal, Vol. 11, pp. 793-800. 

Mettler, E., and Weidenhammer, F., 1962, "Zum Problem des Kinetischen 
Durchschlagens Schwach Gekriimmter Stabe," Ingenieur Archiv, Vol. 31, pp. 
421-432. 

Miles, J. W., 1984, "Resonantly Forced Motion of Two Quadrically Coupled 
Oscillators," Physica, Vol. 13D, pp. 247-260. 

Miles, J., 1985, "Parametric Excitation of an Internally Resonant Double 
Pendulum," Journal of Applied Mathematical Physics (ZAMP), Vol. 36, pp. 
337-345. 

Mook, D. T., Marshall, L. R„ and Nayfeh, A. H., 1974, 'Subharmonic and 
Superharmonic Resonances in the Pitch and Roll Modes of Ship Motions," 
Journal of Hydrodynamics, Vol. 8, pp. 32-40. 

Nayfeh, A. H., Mook, D. T., and Marshall, L. R., 1973, "Nonlinear Coupl­
ing of Pitch and Roll Modes in Ship Motion," Journal of Hydronautics, Vol. 7, 
pp. 145-152. 

Nayfeh, A. H., 1973. Perturbation Methods, Wiley-Interscience, New York. 
Nayfeh, A. H., and Mook, D. T., 1979, Nonlinear Oscillations, Wiley-

Interscience, New York, 
Nayfeh, A. H., 1981, Introduction to Perturbation Techniques, Wiley-

Interscience, New York. 
Nayfeh, A. H., and Zavodney, L. D., 1986, "The Response of Two-Degree-

of-Freedom System with Quadratic Nonlinearities to a Combination Parametric 
Resonance," Journal of Sound and Vibration, Vol. 107, pp. 329-350. 

Nayfeh, A. H., and Raouf, R. A., 1986, "Nonlinear Forced Response of Cir­
cular Cylindrical Shells," ASME Design and Analysis of Plates and Shells, Vol. 
105, pp. 145-155. 

Nayfeh, A. H., 1987, "Parametric Excitation of Two Internally Resonant 
Oscillators," Journal of Sound and Vibration, Vol. 119, in press. 

Raouf, R. A., 1985, "Nonlinear Forced Response of Circular Cylindrical 
Shells," M.S. Thesis, Virginia Polytechnic Institute and State University, 
Blacksburg, VA. 

Reissner, E., 1955, "On Axi-Symmetrical Vibrations of Shallow Spherical 
Shells," Quarterly of Applied Mathematics, Vol. 13, pp. 279-290. 

Sethna, P. R., 1965, "Vibrations of Dynamics Systems with Quadratic 
Nonlinearities," ASME JOURNAL OF APPLIED MECHANICS, Vol. 31, pp. 576-582. 

Simmonds, J. G., 1979, "Accurate Nonlinear Equations and a Perturbation 
Solution for the Free Vibrations of a Circular Elastic Ring," ASME JOURNAL OF 
APPLIED MECHANICS, Vol. 46, pp. 156-160. 

Yamamoto, T., and Yasuda, K., 1977, "On the Internal Resonance in a 
Nonlinear Two-Degree-of-Freedom System," Bulletin of the Japanese Society 
of Mechanical Engineers, Vol. 20, pp. 169-175. 

Journal of Applied Mechanics SEPTEMBER 1987, Vol. 54/577 

Downloaded 03 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



L A. Taber 
Department of Mechanical Engineering, 

University of Rochester, 
Rochester, NY 14627 

Large Elastic Deformation of Shear 
Deformabie Shells of Revolution: 
Theory and Analysis 
Large axisymmetric deformation of pressurized shells of revolution is studied. The 
governing equations include the effects of transverse normal strain and transverse 
shear deformation for shells composed of an incompressible, hyperelastic material. 
Asymptotic solutions to the equations are developed which are valid for moderately 
large strains. Application to Mooney-Rivlin clamped spherical caps reveals that, for 
large enough bending and stretching, the consequences of shear deformation in­
clude: (1) bending moments can decrease at the edge after the load passes a critical 
point; (2) even thick shells can behave as membranes; (3) transition points can oc­
cur in the shell which divide regions of shell-like behavior from regions of 
membrane-like behavior. 

Introduction 

Large elastic deformation of shells has gained renewed in­
terest in recent years. Although governing equations for large 
strain have been available since the 1950s, the extreme com­
plexity of these relations (e.g., Naghdi, 1972) has persuaded 
most researchers to focus on membrane solutions. Much re­
cent effort has, therefore, been devoted toward the develop­
ment of approximate equations that are more amenable to 
analysis (Libai and Simmonds, 1981; Taber, 1985; Simmonds, 
1986). Although further refinement of these relations, espe­
cially the boundary conditions, undoubtedly will occur in the 
future, the intent here is to gain insight into the fundamental 
behavior of elastic shells undergoing large bending and 
stretching. Thus, using these equations at their current stage 
of development, this paper examines some basic shell bending 
problems through asymptotic analysis. 

A pair of previous publications (Taber, 1987a,b) presented 
asymptotic expansions for large axisymmetric deformation of 
rubber-like circular plates and cylindrical shells. These and 
other recent papers (Libai and Simmonds, 1981; Keppel, 1984; 
Simmonds, 1986; Brodland, 1986) have relaxed the Kirchhoff 
hypothesis to allow for thickness changes but not transverse 
shear strains. Justification for such a theory is based in part on 
the work of John (1965), who has shown that, at least for 
small strains, transverse shear stresses are only O(atZL), 
where a is the norm of the stresses in the shell, / is the 
thickness, and L is the minimum "wavelength" of the defor­
mation pattern. However, if this conclusion can be extended 
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to large strains, then transverse shear deformation can become 
significant near edges and concentrated loads of even "thin" 
shells, where L can grow quite small. Indeed, a recent publica­
tion by Meroueh (1986) demonstrates this behavior for cylin­
drical deformation. Thus, the current work extends and 
generalizes that of Taber (1987a,b) to include the following 
features: (1) general axisymmetric geometry; (2) incompressi­
ble material properties characterized by a general strain energy 
density function; and (3) transverse shear deformation. 

The shell equations employed herein represent essentially a 
combination of the field equations for a shell of revolution 
developed by Reissner (1969, 1972) and the two-dimensional 
strain energy density function of Simmonds (1986). With the 
latter slightly modified to allow transverse shear strains, this 
Reissner-Simmonds (R-S) shell theory assumes that lines 
originally normal to the reference surface remain straight but 
not necessarily normal after deformation. The results of 
Meroueh (1986) indicate that this is not a bad assumption, 
even for very large bending. In addition, these lines can 
change in length to incorporate transverse normal strains. A 
key ingredient of this theory is the constitutive coupling be­
tween bending and stretching that occurs during large strain in 
isotropic shells (Libai and Simmonds, 1981; Taber, 1985), 
which is similar to that encountered in linear theories for un-
symmetrically layered laminates. In its current form, R-S shell 
theory is valid for large membrane and "moderately large" 
bending and shear strains, i.e., [y2, (tn)2] < < 1, with y and K 
being the largest transverse shear strain and curvature change 
measure, respectively. 

This paper first examines the effects of thickness changes on 
the governing equations of Reissner (1969, 1972) and then 
adds transverse shear effects to the strain energy density func­
tion of Simmonds (1986). Next, based on these R-S equations, 
expansions are developed for pressurized shells of revolution. 
And finally, results are presented for the special case of a 
clamped, spherical cap. As in the case of a cylinder (Taber, 

578/Vol. 54, SEPTEMBER 1987 Transactions of the ASME 

Copyright © 1987 by ASME
Downloaded 03 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Aj, = ds$ /ds^, Ag = dsg /ds6o, Az = dz/dz0 (2) 

Fig. 1 Geometry for shell element 

1987b), the results show the presence of a primary boundary 
layer, and bending and stretching components of a secondary 
boundary layer. Details of the primary layer, which was first 
identified in membranes by Bromberg and Stoker (1945), and 
of the bending portion of the secondary layer were studied for 
small strain by Reissner (1959). On the other hand, the secon­
dary stretching component develops as strains grow large 
(Taber, 1987a,b). 

Governing Equations 

Geomejry. The geometry of a shell element before and 
after deformation is shown in Fig. 1, in which subscript zero 
indicates values in the original configuration. While the 
undeformed reference surface S0 is taken as the middle surface 
of the shell, two definitions for the deformedreference surface 
S will be explored. First, as in Simmonds (1986), the position 
of S will be defined through a "dynamic (or static) consistency 
condition" (Theory I) 

z dz0 = 0 (1) 

where t is the undeformed shell thickness, and z0 and z are the 
undeformed and deformed transverse coordinates (Fig. 1). 
With this definition, the material composition of S is not 
necessarily the same as that of S0 and can change with the 
deformation. Second, as in Taber (1985), the reference surface 
will be assumed to be made up of the same material points, 
regardless of the deformation (Theory II). In general, S will 
not be located at the geometric midsurface. These differing 
criteria for locating the reference surface mainly affect the 
form of the constitutive relations, which are discussed in a 
later section. 

As a first approximation, transverse shear deformation 
enters in the manner of Reissner (1969), who employed an ex­
tension of Timoshenko beam theory. Accordingly, a line nor­
mal to S0 and at a meridional angle $ 0 relative to the axis of 
symmetry remains straight during deformation but rotates an 
additional amount y relative to S due to shear, forming an 
angle $ with the shell axis (Fig. 1). Furthermore, transverse 
normal strains are accounted for through the assumption that 
a point in the shell, originally a distance z0 from S0, moves to 
a distance z from S along this nonorthogonal line, where the 
(engineering) shear strain is T. 

For axisymmetric deformation, it is convenient to work in 
terms of the stretch ratios 

and, with the kinematic assumptions outlined above, the 
geometry of Fig. 1 gives the relations 

cos*0&# 0 =rf(/-0 + z0sin$0), sin$0Gfe4() =d(y0 -z 0cos$ 0 ) 
d% = (r0 + z0sini0)de (3a) 

cos($ - T) ds$ = d(r + zsin$), sin(* - T) dst = d (y — zcos$) 

dse= (r + zsm$)dd. (3b) 

After substitution of equations (3) into (2), the two forms for 
ds$ and ds4 provide a pair of equations to be solved for A$ 

a n d r , giving 

A*=A*cosr=-

r = A4sinr = -

Acf, ~r Zk$ 

1 + Zo^* 0 

y + z' 
1 + z0ki 

A „ = -
~Zk„ 

1 + Zokn 

(4) 

where the bars indicate modified strain measures and 

( ) '=</( )/(<fc*0),0=rf( )/dx. 

At the reference surface, the strain measures are 

X4=X#cos7 = r 'cos*+j ' ' s in*, \e=r/r0 

7 = X4,sin7 = / , 'sin$—^'cos* (5) 

and the undeformed and deformed curvature measures are 

fc*0=*o> Ar# = * ' ; k„0=sm$0/r0, kg=sm$/r0. (6) 

Outside of the appearance of z', equations (4) are equivalent 
to those of Reissner (1969, 1972), who neglected thickness 
changes. In addition, these relations do not include several 
higher-order terms as given by the more rigorous derivation of 
Simmonds (1986). 

To render the analysis more manageable, we now introduce 
two further assumptions. The first is the usual thin-shell ap­
proximation (tk$ ,tke ) < < 1 , and the second is T 2 < < 1 . 
Thus, to this point of the development, the analysis is valid for 
large bending and membrane strains but only moderately large 
transverse shear strains, and equations (4) can be written 

A j, ~ A$ ~ X$ + ZK$ , Ae» Xe + ZKS 

f » A » r « 7 » X * 7 (7) 

where 

,=A:4-XiXflA:4 ,=*„-X4X2»fc,. (8) 

are curvature change measures (Taber, 1985). Note also that 
the z' term of t has been dropped. Later, it will be shown 
that this term should not be included in a first approximation 
shear deformation theory. 

Equilibrium. With stress and moment resultants (Fig. 1) 
defined per unit undeformed length of the reference surface, 
vertical and horizontal force equilibrium and moment 
equilibrium yield1 (Reissner, 1969, 1972) 

(r0V)'+roPv = 0, (r0H)'-Ne+r0pH = 0 

{raMty -M e cos$ - r o (QX 0 - iV $ 7) = O. (9) 

Also, the geometry gives 

N$ = / /cos* + Fsin*, Q = i /sin* - Kcos$ (10) 

in terms of the vertical and horizontal force components V 

'The moment equilibrium equation ignores the contribution due to the mo­
ment about the normal to the reference surface, which was included by Reissner 
(1969) but shown by Simmonds (1986) to be of higher order. 
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and H, respectively. For a uniform internal pressure p, the 
vertical and horizontal surface loads per unit area of S0 are 

pv=-p\i,\„cos{$-y), pH=p\i\esm(^>-y) (11) 

and equation (9)! can be integrated to give 

V=pr2/2r0. (12) 

Constitutive Relations. For a shell composed of a 
hyperelastic material, the two-dimensional strain energy dens­
ity w is defined per unit area of S0. Via the principle of virtual 
work, Reissner (1972) determined that the constitutive rela­
tions can be written 

N*=-

M„=-

dw 

dve 

N.=-
dw 

"9X7 
Q=-

dw 

dy 

M.=-
dw 

dK„ 
(13) 

The appearance of X„ and y instead of X4 and 7 in these equa­
tions is due to the fact that, in general, NQ and Q are not 
parallel and perpendicular, respectively, to S (Fig. 1). 

Boundary Conditions. Recently, Gregory and Wan (1985) 
have shown that, at least for linear plate theory, the exact 
distribution of edge tractions across the plate thickness is more 
important than previously thought. Even the solution in the 
plate interior can be affected significantly. For shells, it may 
be that the curvature effects contain this behavior within the 
edge zones, but this requires further study, especially for large 
deformations. Since a detailed investigation of the boundary 
conditions is beyond the scope of the present paper, only ap­
proximate conditions consistent with the field equations will 
be used here. The principle of virtual work shows that the ap­
propriate boundary conditions are to specify M$ or <t>, and H 
or r, and Kor y at each shell edge (Reissner, 1969). 

Strain Energy Density Function 

The forms of the preceding equations are not significantly 
different from those of a small-strain shell theory. For large 
strain, the major additional complexity lies in the constitutive 
behavior contained in the two-dimensional strain energy den­
sity function w. As discussed by Reissner (1974) and Libai and 
Simmonds (1983), two methods can be used to determine w 
for a shell material. One way involves experiments on two-
dimensional samples of the material (direct method), and the 
other obtains w through transverse integration of the three-
dimensional energy density W (reduction method). Here, 
following the analysis and much of the notation of Simmonds 
(1986), we employ the reduction method to compute an ap­
proximate form for w consistent with the strain measures 
derived earlier. Specifically, w is developed as an asymptotic 
series in powers of the small parameter 

e = t/2L. (14) 

Three-Dimensional Relations. Upon introduction of the 
nondimensional quantities 

(z0*,z*) = (2/t)(z0,z), (KS,*/ ) = £(«*,«,), 

(T*,y*) = (T,y)/e W*=W/C, w* = w/Ct, (15) 

where L is the deformation wavelength and C is a material 
constant with units of a Young's modulus, equations (2)3 and 
(7) become 

A*=X4,+ez*/c$, Ae=\e + ez*Ke*, Az = dz*/dZo, 

T = ey*. (16) 

The current derivation is valid for any incompressible, elastic 
material that allows axisymmetric deformation without 

twisting—for example, a polar orthotropic material. 
However, this paper focuses later on isotropic shells for which 

W=W(IUI2), /3 = 1 (17) 

where W is the strain energy density per unit undeformed 
volume. The strain invariants are 

Ix — G§ + Ge + Gz, I2 = G$Gg + G<f,Gz + GgGz — GT, 

(18) 

where equations (16) give 
0 1 2 

G* = A% = \% + 2\iKlz*e + Ki2z*2e2 = G„, + G„e + G$e2 

Ge =A2
e=\2„ + 2\gKlz*e + Ke*

2z*2e2 = G„+G„e+Gee
2 

Gz=A2 = (3ZV9z0*)2, G r = r 2 = e 2 r * 2 . (19) 

Now, on enforcement of the incompressibility condition I3 = 
1, equation (18)3 can be solved for Gz, and then 

W= W(G*,Ge,Gr) 

and 

/ ( - G $ + Ge + l/Gj,G9 + G r / G $ , 

I2 = G^Ge + 1/G$ + 1/G„ + GrG9/G,j,. 

(20) 

(21) 

Reduction to Two Dimensions. Simmonds (1985) has 
shown that, for moderately large bending strains [(tn)1 < < 
1], the form of the two-dimensional strain energy function for 
a shell is the same as that for a flat plate. Therefore, the reduc­
tion to two dimensions is given by 

w* 1 f 
(22) 

Since G r < < 1 for moderate transverse shear strains, W can 
be expanded in the Taylor series *' 

W* ••[W*]ar=0 + [W*,Gr]GT=oGr + . (23) 

which is substituted into equation (22). The first term of the 
resulting integral, which was computed by Simmonds (1986), 
corresponds to a first-approximation shell theory that neglects 
shear deformation, and the second term provides a correction 
due to shear. 

In his approach, Simmonds (1986) sought an expansion 
about the membrane state given by €—0 through a series of the 
form 

A(Gi,Gt) = A + AllJI){Gt-G*) + Am){Gl-Ge) 

+ - 7 - [^(2,0)(G*- G„)2 + ^ ( 0 | 2 ) ( G r 

0 
G,)2 

+ 2A(1>1)(G»-G,XG,-G,)] + . . . (24) 

where 

'('«,«)' A~{A)t 
dG%dGg 

After substitution of equations (19) into (24), setting 
A = IW* ] G r = 0 and A = [ W*, G r ] G r = „ gives these terms as func­
tions of z* and e. Subsequent substitution into equations (22) 
and (23) then yields 

w* = (^*)Gr=0+[(X*4^(*,o) 

+vAwGr=oJ^z*cfeo]< 
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f[' (W{lfi) + 2\%W{2fi))Ki2 

+ ( ^ 0 ] 1 ) + 2 X ^ ( * 0 , 2 ) ) K ; 2 

o C i 
+ 4»7 l j l )X$XeK|K9*)Gr=o]_ l Z*2rfZo 

y*2~]e2-fO(e3) + 2 g - ' ( » " , O r ) c (25) 

where 

-^-5^r*2dzo*=7*2/g (26) 

has been introduced, with g being the reciprocal "form factor 
in shear." For linear shell theory, the transverse shear stress 
distribution is parabolic over the shell thickness, leading, in 
some derivations, to the value g— 1.2 (Reissner, 1952), which 
is used here. The determination of an accurate value for large 
strain is left to future study. 

Next, the incompressibility condition provides z in terms of 
Z0. As in Simmonds (1986), the asymptotic expansion 

Z*=zi0)* + ezm*+ . . . (27) 

is substituted into equations (18)3 and (19) with 73 = 1. 
Equating coefficients of like powers of e gives 

7 ( D * : - (3z0*
2 - q) (X*K9* + X„4) /6\\\$ (28) 

where q is introduced to distinguish between Theory I, which 
satisfies equation (1), and Theory II, which does not, i.e., 

1, Theory I 

0, Theory II. 

At this point, note that, if z' is kept in T as given by equation 
(4), then derivatives of the strains would appear in the expres­
sion for w. For a first-approximation shell theory (including 
shear deformation), we assume that stresses depend on only 
the local strains and, therefore, drop these terms. 

Finally, substitution of equations (27) and (28) into equa­
tion (25) and subsequent integration give, in terms of new non-
dimensional variables, 

w* = w0 + w , y*/g + p~2(w2k% + w3 ictKe + w4k
2
e) (29) 

where the w„(Xj,,Xe) are 

"o = (whG r=o> ^ = ( ^ * , G r ) G r = 0 

w2 = <x2/(\2\\\})[q Wfm + 2X| W?m]Gr _0 

- (1 - q ) (\\ Wlm + \i W?0J))]Gr=0 

wA = a2/(12X|X2)[? W^ + 2X2, W^2)]GT = 0 . (30) 

To facilitate the following asymptotic analysis, the new non-
dimensional quantities are defined as 

(**.*e) =a(Ki,Ke) 

a =pa/Ct, 13 =pa2/Ct2 (31) 

where a is a characteristic length such as a reference radius of 
curvature of the shell. For -y = 0 and q=i, equation (29) 
reduces to the expression given by Simmonds (1986), while 
7 = ̂  = 0 produces the relation given in Taber (1985). 

Specialization to a Mooney-Rivlin material is provided in 
Appendix A. 

Asymptotic Analysis 

Nondimensional Equations. The foregoing analysis is 
based on the nondimensional quantities 

(r*,r0*,x*,y*) = (r,r0,x,y)/a, 

04.K<r) = (K*,K8) =«(«*,/£(>) 

{Nt ,Ne* ,Q*,H*,V*) = (JV, ,Ne ,Q,H, V) /pa 

(M$ Me) = (Ms M9 )/Ct2, w* = w/Ct (32) 

along with a and /3 as defined in equation (31). In addition, we 
introduce the notation 

c0 = cos$0, 5,
0 = sin,l>

0, c = cos$, 5 = sin$ 

<£ = sina>, t/ = cosa> (33) 

where a> = <& — $ 0 is the rotation of a meridional face of the 
shell (Fig. 1). After substitution of equations (32) and (33) into 
equations (5), (6), and (8)-(13), removal of the stars yields the 
governing relations for a pressurized shell in the form 

/•' =\$c + ys, y' = X$s — yc, \e=r/r0 

«*=</''/?) + (l-X2
4,X(,*0'), Ke = (s-\$\2

es0)/r0 (34a) 

JV* = 
1 

a 

P 

dw 

9Xt 

dw 

N„=-
1 dw 

a d\e 

13 dw 

G=-
1 dw 

a $7 

Af„ = — , Me = 
OL O K $ a dKe 

V=r2/2r0, (r0H)'-Ne+r0\6(\^-yc)=0 

/^•[(/•oM*)' -cMt]-r0(Q\t - iV 4 T ) = 0 

s = ris0 + 4>c0, c = ric0-(j)S0, r?2 + 02 = l 

N* =Hc+ Vs, Q = Hs- Vc. 

(34*) 

(34c) 

(34(0 

Formal Expansions. The asymptotic analysis follows 
those in Taber (1987a,b), which ignore transverse shear strains 
in treating the special cases of circular plates and cylinders 
composed of neo-Hookean material. This work extends those 
analyses to general shells of revolution composed of a general 
incompressible, hyperelastic material and also adds the effect 
of transverse shear deformation. 

Briefly, each dependent variable is expanded in the form 

oo oa 

|05 U> W(*) .K»(*W*))= E Hp~'"eni 

X {̂ <m"> (x),&K%nn) (x),PKJmn) (X) } (35) 

where i* represents any dependent variable except K$ and KB. 
These expansions are valid for moderately large membrane 
strains, so that a = 0 ( l ) , and thus, for a thin shell, /3> > l 
(equation (31)). Similar expansions for small strain were given 
by Ranjan and Steele (1980) and Steele (1980) for cases 
without and with transverse shear deformation, respectively. 
Note that, while the approximation for w (equation (29)) 
limits the magnitude of the bending and shear strains, the 
asymptotic analysis limits the magnitude of the membrane 
strains so that all strains can be only moderately large. In 
equation (35), the « = 0 terms give the interior solution, and 
the exponential («>0) terms provide the edge-zone solution. 
For I3> 8, £ (x) is a real-valued decay function of O(l) (Taber, 
1987b), and so the ^<"'"» will be real. 

As shown by Taber (1987a,b), the main features of the solu­
tion are given by the n = 0, 1, and 2 terms in equation (35). 
After substitution into equations (29) and (34), like powers of 
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Fig. 2 Load-deflection curves for pressurized, spherical membrane 
caps 

••^Membrane 

90° - <D0 

Fig. 3 Meridional rotation profiles near edge of clamped hemispherical 
cap (/i = 0, a = 2) 

/3, fie^, etc. are equated, giving a first-approximation solution 
of the form 

^ = ^(00)+/3- l^<10)+eM^(01)+e2^(02)_ pg) 

Here, the (00) terms represent the solution of nonlinear mem­
brane theory, the (10) terms give the interior bending 
moments, and the (01) and (02) terms represent bending and 
membrane components, respectively, of the edge-zone solu­
tion. Details of the solution procedure are very similar to those 
expounded upon in Taber (1987a,b) and will not be repeated 
here. However, the terms necessary for the solution (36) are 
presented in Appendix B. For g = 0, this solution contains no 
shear deformation. 

Results for a Clamped Spherical Cap 

This section applies the preceding development to the 
special case of a pressurized spherical cap clamped around its 
edge. For this geometry, a = R, and the material is rubber-like 
with a Mooney-Rivlin strain energy density function 

W=C[(Il-3) + »[I2-3)] (37) 

where C and /z are material constants, and /, and I2 are given 
by equations (21). Most of the features discussed in Taber 
(1987a,b) for neo-Hookean (ju = 0) plates and cylinders 
without shear deformation (g = 0) also occur for spherical 
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90° - <D0 

Fig. 4 Bending moment (a) and membrane stress resultant (b) distribu­
tions near edge of clamped hemispherical cap (R/f = 20) 

geometry. This paper, therefore, focuses on the effects of 
shear deformation (g= 1.2) and the value of /x. 

While curves of load versus maximum deflection for mem­
branes (Fig. 2) differ little from those of shells, the local defor­
mation pattern near the edge depends strongly on bending and 
shear effects. For example, Fig. 3 shows the meridional rota­
tion Q = oi~ 7 of the reference surface near the clamped edges 
of a hemispherical membrane and shells of three different 
thicknesses. The primary boundary layer of Bromberg and 
Stoker (1945) appears but is not pronounced in the membrane 
solution. On the other hand, the boundary condition of zero 
rotation for g = 0 leads to the development of the readily ap­
parent bending component of the secondary boundary layer. 
Inclusion of transverse shear deformation (g= 1.2) relaxes the 
edge restraint considerably, letting the deformed shape ap­
proach that of a membrane, even for a thick shell with 
R/t= 10. In addition, the curves for R/t=50 indicate that 
L/t=*2, and so, although this shell fits the classical definition 
of a "thin shell," such a short wavelength leads to the signifi­
cant shear deformation effects in the edge zone. 

Bending moments and membrane stress resultants (Fig. 4) 
illustrate the bending and the stretching components, respec­
tively, of the secondary boundary layer. Note that the latter 
component is required to satisfy the equilibrium condition 
7V| =0.5 at the clamped edge of hemispherical shells (Taber, 
1987b). The force resultant distributions depend on the decay 
function, which is (see Appendices A and B) 

«(*) = ["[ ^ x r ^ > Gv-dx 
J *e L a (3+Af xr; x i + A D J 

(38a) 
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SHELL-LIKE TRANSITION MEMBRANE-LIKE 

N$ N<D Na, 

U -*—: U **—; Q •« 

Ndp N<D Nd, 

QXdp > N(j>7 QXcj) = N<j,7 QXcp < Ndyy 
M < j , < 0 M(D = 0 M ( j , > 0 
G > 0 G = 0 G < 0 

Fig. 5 Transition from shell-like to membrane-like behavior at edge of 
clamped, pressurized cylinder with shear deformation 

0.3-1 

III 9 = I-2 (Theory I 

Fig. 6 Bending moment at clamped edges of spherical caps (fi/f = 20 
,i = 0) 

near the edge x=xe of a Mooney-Rivlin shell, where 

G=i--y(o|)7vr)/xr)Q(oi) 

= 1 - g a X r W V 2 ( l + /xXr)2)- (386) 

These relations show that, at a given pressure for the case 
g = 0, membrane stretching narrows the secondary boundary 
layer. (The primary layer, which is contained in the interior 
solution, actually widens with increasing pressure (Reissiier, 
1959).) Increasing tt decreases the magnitude of this stretching 
and, therefore, widens this layer, but only a small amount for 
/x = 0.2. The behavior of a shell with shear deformation al­
lowed (g>0) is somewhat more complicated. The shear term 
G in equation (38) indicates that shear deformation mediates 
the effect of membrane stretching; £ decreases and the edge 
zone is wider than for g = 0. 

The physical basis behind this behavior is illustrated for a 
cylinder in Fig. 5. When g = 0, the zero rotation condition dic­
tates a negative M $ applied to the edge, with N$ having no ef­
fect on the moment. For g>0 and G>0 , however, Nt con­
tributes a moment that opposes the moment due to shear, 
thereby reducing M $ (see also equation (9)3). Figure 6 clearly 
shows this effect; for large deflections, shear deformation 
dramatically reduces the edge moment. Furthermore, for 
g=1.2, Mj, actually peaks at a critical deflection and begins to 
decrease. Eventually, a point is reached at which G = 0 at the 

shell edge, where now £' = M$ = 0 (equations (38) and (B4)), 
and the secondary boundary layer dissipates (see below). 

The condition G = 0 defines a "membrane equivalent state" 
of the shell in which the bending moment, but not the 
transverse shear stress, vanishes, i.e., the moment due to A/$ 
exactly balances that due to Q. In a pressurized cap, this con­
dition actually is met first at a point in the shell interior. Then, 
as the load increases, this transition point (G = £' =0), which 
divides the exponentially decreasing edge-zone solution (G>0, 
£' real) from an oscillatory solution (G<0, £' imaginary), 
moves toward the shell edge. 

At very large deflections, G < 0 throughout the shell, and 
the edge-zone solution becomes completely oscillatory in x. 
Now, the edge effects propagate into the interior of the shell, 
which behaves as a "thick-walled membrane." The interior 
bending stresses, which have been 0(/3~') as given by the in­
terior solution (Appendix B), now are O(l) and are given by 
what were edge-effect terms (exponential (01) terms in equa­
tion (36)). An in-depth study of this behavior is left to future 
research. 

Finally, Fig. 6 also shows the effects of reference surface 
location on the bending moment. When shear deformation is 
included, the difference in bending moments given by Theory 
I and Theory II is quite small, even for very large deflections. 
Thus, the choice of reference surface definition does not ap­
pear to be important for moderately large strains. 

Acknowledgment 

This work was supported by the National Science Founda­
tion under grant No. MSM-8611490. 

References 
Adkins, J. E., and Rivlin, R. S., 1952, "Large Elastic Deformations of 

Isotropic Materials IX. The Deformation of Thin Shells," Philosophical 
Transactions of the Royal Society of London, Vol. 244, Series A, pp. 505-531. 

Brodland, G. W., 1986, "Nonlinear Deformation of Uniformly Loaded Cir­
cular Plates," Solid Mechanics Archives, Vol. 11, pp. 219-256. 

Bromberg, E., and Stoker, J. J., 1945, "Non-linear Theory of Curved Elastic 
Sheets," Quarterly of Applied Mathematics, Vol. 3, pp. 246-265. 

Gregory, R. D., and Wan, F. Y. M., 1985, "On Plate Theories and Saint-
Venant's Principle," International Journal of Solids and Structures, Vol. 21, 
pp. 1005-1024. 

John, F., 1965, "Estimates for the Derivatives of the Stresses in a Thin Shell 
and Interior Shell Equations," Communications on Pure and Applied 
Mathematics, Vol. 18, pp. 235-267. 

Keppel, W. J., 1984, "Finite Axisymmetric Deformation of a Thin Shell of 
Revolution," Ph.D. Dissertation, University of Arizona. 

Libai, A., and Simmonds, J. G., 1981, "Large-Strain Constitutive Laws for 
the Cylindrical Deformation of Shells," International Journal of Non-Linear 
Mechanics, Vol. 16, pp. 91-103. 

Libai, A., and Simmonds, J. G., 1983, "Nonlinear Elastic Shell Theory," 
Advances in Applied Mechanics, Vol. 23, Hutchinson, J. W., and Wu, T. Y., 
eds., Academic Press, New York, pp. 271-371. 

Meroueh, K. A., 1986, "On a Formulation of a Nonlinear Theory of Plates 
and Shells with Applications," Computers and Structures, Vol. 24, pp. 
691-705. 

Naghdi, P. M., 1972, "The Theory of Plates and Shells," Encyclopedia of 
Physics, 2nd ed., Vol. VIa/2, Flugge, S., ed., Springer-Verlag, New York, pp. 
425-640. 

Ranjan, G. V., and Steele, C. R., 1980, "Nonlinear Corrections for Edge 
Bending of Shells," ASME JOURNAL OF APPLIED MECHANICS, Vol. 47, pp. 
861-865. 

Reissner, E., 1952, "Stress Strain Relations in the Theory of Thin Elastic 
Shells," Journal of Mathematics and Physics, Vol. 31, pp. 109-119. 

Reissner, E., 1959, "The Edge Effect in Symmetric Bending of Shallow Shells 
of Revolution," Communications on Pure and Applied Mathematics, Vol. 12, 
pp. 385-398. 

Reissner, E., 1969, "On Finite Symmetrical Deflections of Thin Shells of 
Revolution," ASME JOURNAL OF APPLIED MECHANICS, Vol. 36, pp. 267-270. 

Reissner, E., 1972, "On Finite Symmetrical Strain in Thin Shells of Revolu­
tion," ASME JOURNAL OF APPLIED MECHANICS, Vol. 39, pp. 1137-1138. 

Reissner, E., 1974, "Linear and Nonlinear Theory of Shells," Thin Shell 
Structures, Fung, Y. C , and Sechler, E. E., eds., Prentice-Hall, Englewood 
Cliffs, New Jersey. 

Simmonds, J. G., 1985, "The Strain Energy Density of Rubber-Like Shells," 
International Journal of Solids and Structures, Vol. 21, pp. 67-77. 

Simmonds, J. G., 1986, "The Strain Energy Density of Rubber-Like Shells of 

Journal of Applied Mechanics SEPTEMBER 1987, Vol. 54/583 

Downloaded 03 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Revolution Undergoing Torsionless, Axisymmetric Deformation (Axishells)," 
ASME JOURNAL OF APPLIED MECHANICS, Vol. 53, pp. 593-596. 

Steele, C. R., 1980, "Asymptotic Solutions Without Special Functions for 
Steep and Shallow Shells," Mechanics Today, Vol. 5, Nemat-Nasser, S., ed., 
Pergamon, New York, pp. 483-494, 

Taber, L. A., 1985, "On Approximate Large Strain Relations for a Shell of 
Revolution," International Journal of Non-Linear Mechanics, Vol. 20, pp. 
27-39. 

Taber, L. A., 1987a, "Asymptotic Expansions for Large Elastic Strain of a 
Circular Plate," International Journal of Solids and Structures, in press. 

Taber, L. A., 1987b, "On Boundary Layers in a Pressurized Mooney 
Cylinder," ASME JOURNAL OF APPLIED MECHANICS, Vol. 54, pp. 280-286. 

A P P E N D I X A 

For a Mooney-Rivlin material with W given by equation 
(37), the terms required for the approximation for w given by 
equations (29) and (30) are 

( ^ % r = o = X2* + A 2
9 +(X 4 X 9 ) - 2 -3 

+ H(\%\2
e + X r̂2 + \f2 - 3) 

(^(Wo r =o = (1 - W 2 ) ( l + A2) 

( ^ , u ) o r =o = (1 - X*-2X9-
4)(1 + M | ) 

(^?i,i,)Gr=o = (1 + MU9
4)/(X*X, )4 

(^?2,o))or=o = 2(1 + iM\i)/(\%\l) 

( ^(o,2))Gr =o = 2(1 + iiK%)I ( X i X | ) 

(mGr)Gr=0 = (l+iM\j)/\%. 041) 

A P P E N D I X B 

The terms for a first approximation solution (36) follow. 

Interior Solution. The first-order terms in (3 provide the 
system of equations 

400) = K|00) = ^(00) = M J00) = M (00) = 0 

r(oo)' = x f )c(°°), /°°>' = X f V 0 0 \ \P = /•<00»/r0, 

/ V f =a~l[dw0/d\i]0 = #W>c<™» + 0«V<x», 

NP = a-l[dwQ/d\e]0, 

Q(00) _ ^ (00) s (00) _ TX0O)c(0O) _ 0 > 000) _ r(00)2/2 r ( ) , 

(roHW)' -NP + /•oXr'Xl00'*'00' = 0, 
^(00) = , ( 0 0 ) ^ + ^(00)C ( ) ) c(00) = ^(00)C() _ ^(00) 5 ( ) ; 

!,«*» = (1-4,(00)2)1/2 ( 5 1 ) 

where w0 is given by equation (30) and 

These are the governing relations of nonlinear membrane 
theory (Adkins and Rivlin, 1952) and contain the primary 
boundary layer (Taber, 1987b). The terms involving the 
general strain energy density function w were obtained by 
observation of the solutions for specific forms of ve. 

The second-order /3 terms contribute 

MP = ar1[w3410> + 2w4410>]0 

410) = 0(00) ' /,,«») + ( 1 _ X4<W)2XJOO>$0'), 

(10) =(5<oo>-xr)xf,)2so)/'o 
Q(io) = ^(io)=o. (53) 

Edge-Zone Solution. The first-order eK terms give 

r<oi) =yoi) = x|pi) = x^pi) = 401) =Npi) =Npn = 001) =H(oi) = 0 

4oi) = r</)(oi)/^(oo)) yW) = gaQm/[2Wi}0t 

Q(oi)=/v|,oo)0(oi)/r;(oo)j M 4 0 1 » = 2 a - 1 [ w 2 ] 0 4 0 1 ) , 

M f ) = a - 1 [ w 3 ] 0 4 ° 1 ) , r)<01»= -</,(oo) ̂ (OD/^foo) > 

iS(oi)_c(oo)4,(oi)/^(oo)) c (o i )_ _,5(00)4,(01)/ (oo) (54) 

along with the decay function 

ti')2 = aGXPNP/[2w2]0 (55) 

where 

G=l-Y<01>Af°VXf ) )e (01)- (B6) 

With 4>(01) determined by the boundary conditions, these terms 
provide the bending component of the secondary boundary 
layer. The stretching component is given by the e2m terms 

rW) = 3,(02) = xro2) = 402) = Kro2) = f (02) = 0 

M $ <
02> = MP = Q<02> = 0O2> = //<02> = 0 

x j p > = - r d w 2 1 w2 (x 1 &-<*)** dw> \] 
L ax* \*G \ w, ax* /J w, 3X$ / J o 

40 1 ) 2 

[a2w0 /ax2
t ]0 

[ ] „ - [ ] 
(xi™».xT)-

(52) 

/Vy02) = _ (/V|00)/2^(00)2)4)(01)2 

L aK^dXg g d\e d\e Jo 

4,(02) = _(4,(00)/2r/(00)2)4)(01)2) ,(02) = _ 4,(01)2/2,(00) 

s(02)=_(5(00)/2,(00)2)4,(01)2 ) 

c(02) = _ (C(00)/2,(00)2)4 )(01)2 _ ( 5 7 ) 
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Calculation of Damping Matrices 
for Linearly Viscoelastic Structures 
A technique is presented for the systematic calculation of "damping" and 
"stiffness" matrices to represent the linearly viscoelastic properties of structures. 
The technique generates explicit expressions for these matrices in terms of the 
measurable viscoelastic properties of the components of the structure. 

Introduction 

Presented here is a systematic approach for the calculation 
of damping and stiffness matrices for the calculation of the 
small amplitude motion of linearly viscoelastic structures. The 
problem is described as follows. 

The governing equations for the small amplitude dynamics 
of viscoelastic structures, even linearly viscoelastic structures, 
are integro-differential equations in time. Not only are such 
equations difficult to solve analytically, but their numerical 
solution is computationally very expensive. On the other 
hand, the increasing use of plastics in advanced structures 
makes consideration of the viscoelastic properties of 
components increasingly important in structural modeling. 

It is because of the prohibitive difficulty of solving the 
integro-differential equations of viscoelastic dynamics that it 
is common to approximate those equations by simpler ones 
which are simply second order differential equations in time. 
The viscoelastic nature of the structure is accounted for by the 
inclusion of a "damping" term. 

Only for very restricted subsets of linear viscoelasticity have 
systematic methods been developed for the calculation of 
damping matrices that could be employed in corresponding 
second-order systems (Biot, 1955; Golla and Hughes, 1985; 
Bagley and Torvik, 1983). However, there has not been a 
general and systematic method for the calculation of the 
damping matrices from arbitrary linear viscoelastic models. 
One such method is suggested in this paper. 

The approach taken is to match the perturbation solution 
for a "slightly viscoelastic" structure to the perturbation 
solution for a corresponding "slightly damped" structure. 
Requiring the two perturbation results to agree results in 
expressions for the damping (and stiffness) matrices in terms 
of the viscoelastic properties. 
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Discretization of Linearly Viscoelastic Structures 

A linearly viscoelastic structure is one that is composed of 
linearly elastic and linearly viscoelastic materials. The stress 
response at a particle, X, of a linearly viscoelastic material is 

o„(tJO = j " tiJmn(T,X)em„[(t~T),X\dT (1) 

where ai} (t, X) is the ij component of the Cauchy stress at 
time t and particle X; e^it, X) is the ij component of the 
Cauchy strain at time t and particle X; and $iJm„ ( , X) is the 
ijmn component of the relaxation tensor at particle X; (It is a 
material property.) Above and in the rest of this paper, 
summation occurs over repeated indices. 

Gurtin and Sternberg (1962) enumerate conditions on both 
the relaxation tensor and the strain history that guarantee the 
convergence of the integral in equation (1). The constraint on 
strain history is that the strain be continuous over the interval 
[ - » , f l . 

Discretization 

The development in this section should be familiar to those 
who have worked through standard finite element derivations. 
It is presented here as the most concise method of introducing 
and defining quantities which are used in later portions of this 
paper. 

A structure B of particles X is considered. It is assumed that 
the configuration at any time, t can be specified satisfactorily 
by a linear combination of basis functions, {hnr(X)}, and a 
corresponding set of generalized displacements, jW| r). The 
physical displacements, yt(t, X), of particles X c B are 
linearly determined by the generalized displacements: 

yi(t,X)=hilr(X)wir(t) (2) 

where subscripts \r refer to the generalized coordinate and 
again, there is summation over repeated indices. 

The strain field is obtained from the above displacement 
field and is also expressed in terms of the generalized 
displacements: 

eu(t,X)=kmr(X)wr(t) (3) 

To assure convergence of all relevant integrals, only strain and 
displacement fields are considered here which are bounded 
(finite) throughout the body. 

In terms of the generalized displacements, the Lagrange 
equations of motion reduce to: 
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n*#i,(o=Gir(o w 
for each /•, where Qir is a generalized force associated with the 
rth degree of freedom defined by the virtual work equation 

bW=Qwbww (5) 

Pws=\B P{X)hiW(X)hns(X)dX; (6) 

and p(X) is mass density at X so that p(X)dX has units of 
mass. 

The virtual work done (internally) through the stresses 
within the material is 

bW'=-\ oyVM&eyVMdX (7) 
J B 

= [Jo Tirs(T)Wlr(t-T)dT^Wls (8) 

where 

r , „ ( r ) = \g ^mjT,X)kijlr(X)krmh(X)dX (9) 

(Note that the above virtual work consists of both recoverable 
and unrecoverable parts.) 

The generalized force originating from the stress response 
of the material in the structure and associated with this virtual 
work term is 

J oo 

rlrs(r)w[s(t-T)dT (10) 
o 

Substituting into the Lagrange equations of motion, 

Pln,*iAt) + \Q rWs(T)w]s(t-T)dT = Qfr(t) (11) 

where the right-hand term represents all other applied forces, 
including body forces and tractions applied at boundaries. 

The convergence of the infinite integral in the above equa­
tion is induced from the convergence of the integral in equa­
tion (1) and the boundedness of the strain functions, ky^. The 
restriction on admissible strain histories used in equation (1) 
induces a similar restriction in the generalized degrees of 
freedom; the above equation is restricted to histories wlr(t) 
over which W\r(t) is continuous over its history. 

It should be observed that the mass matrix P ( = [P|re]) is 
determined entirely by the mapping from generalized 
displacements to particle displacements and by the distribu­
tion of mass in the structure. The matrix of relaxation func­
tions Y(T) (= [r!ra(T)]) is entirely determined by the mapping 
from the generalized displacements to the strain field in the 
structure and by the viscoelastic properties of the materials in 
the structure. The stiffness matrix Te ( = [rfre]) which would 
be calculated from static elastic properties of the materials in 
the structure is V (oo), 

The Problem of Free Vibration 

^ i » w „ ( 0 + Jo r l r a(r)vV l s(^-r)rfr = 0 (12) 

We look for solutions w]r (t) = Re [A \re~at] where in general, 
A | r and a are complex. 

e-°><a2PWsAls + e-<"Als^Tirs(T)(-a)e^dT = 0 (13) 

It is now convenient to define the complex stiffness of a struc­
ture by 

r r „ ( c I > ) = [ " l « r | „ ( T ) e - ' " r f T . (14) 
Jo 

(This corresponds to the definition for the complex modulus 
of a viscoelastic material.) 

Then [a2P l r a + r U " * ) M l s = 0 (15) 

In matrix form: [a2P + T*(La)]A =0 (16) 

Because of the dependence of T* on a, this is a nonlinear 
eigenvalue problem. 

Perturbation for "Small Viscoelasticitiy" 

A second order approximation for the equations of motion 
for a viscoelastic structure is derived for the special case where 
the elasticity of the viscoelastic structure dominates the tran­
sient response: 

rlre(r)=rf„ + Arlra(o. (17) 
The assumption of small viscoelasticity is that 

Ar l ra(o«rf„ (is) 
for all t. 

The standard e notation will be used to emphasize this 
assumption: 

r ( T ) = r c + e A r ( 0 . (19) 

where e is assumed to be much less than 1. Here and for the 
rest of this paper, matrix notation is employed. 

Also defined is 

AT*(co)=f iG>AT(T)e-'ardT (20) 

so that 

r*(co)=re + eAr*(co). (21) 
Expressed in terms of the above notation, the equation of mo­
tion for the case of free vibration is an eigenproblem: 

(a" ) 2 P + r e + eAr*(a") l^" = 0 (22) 

(no sum on the n's) where (a", A") is the «th eigensolution. 
Here and in what follows, a superscript identifies distinct 
eigensolutions. The above is a nonlinear eigenproblem because 
of the dependence of AT* on a. 

Note that since the real part as well as the imaginary part of 
AT* may be nonzero, the viscoelasticity of the structure will 
not only add damping, but will also alter the apparent stiffness 
of the structure. In acoustics, this stiffening is referred to as 
"dispersion." This stiffening is accommodated in the second 
order approximation later in this paper through modification 
of the effective stiffness matrix. 

A perturbation solution to the above viscoelastic eigen­
problem is sought in the following form: 

a" = -wo"+ e/3" (23) 

A"=x"+ev" (24) 

where wn and x" are on the order of Te. 
Substitution of the assumed solution into the viscoelastic 

eigen equation and retaining only terms up to first order in e 
yields the following matrix equations: 

{-{wm)2P + Te]xm=0 (25) 

for the zeroth order terms and 

[-(o)")2P + Te]v" = [2ioj"l3"P-Ar*(co")]x" (26) 

(no sum on ri) for first order terms. 
It will be useful to observe that, by construction, the mass 

matrix P is symmetric. The elastic stiffness matrix Te is sym­
metric by virtue of the Maxwell reciprocal theorem. 

The first of these matrix equations is contracted with v" and 
the second is contracted with x'". Then terms involving the 
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mass matrix P are resolved out to generate the following 
equation: 

[ 1 - (co" /a /" ) 2 ] (x"<) TYe v" (27) 

= [(2i/3"/<>) (xm) TTex" - (xm) TAY*x" (28) 

Assuming only simple eigensolutions for the elastic problem, 
there are only two cases which must be considered: 

(1) n = m: in which case 

2t|3" 
(x") TAT*x" =—— (x") TYex" (29) 

0>" 

where there is no summation over n. 
(2) n^m: in which case 

(xm)TAY*(<M")x" = - [1 - (coVco"')2](x"')T^y" (30) 

Approximation by a Second Order System 
The equations of motion are next approximated by the 

following second order system: 

Pw + eACw+[Ye + eAYe]w=Q (31) 

where the matrices P and Ye are as defined above, and AC and 
AYe are selected to give the same perturbation solutions as 
derived in the previous section for free vibration. 

Pw + eACw+(Ye + eAYe)w = 0 (32) 

Again, a solution w(t) = Re [Ae~al] is assumed: 

[a2P-aeAC+ (Te + eATe)]A=0. (33) 

Again, the solution is sought as a perturbation to the elastic 
problem: 

a" = - tic" + e|3" (34) 

and A"=xn + ev" (35) 

The following is derived employing manipulations similar to 
the previous section: 

[1 - (uVco'" )2](x">)TYev" = (2t|3Va)") (xm) TTex" 

- (x'"')T[AYe + iu"AC\x" (36) 

from which can be derived: 

2iB" 
(x") T[AYe + ioi"AC]x" =—^—(x") TYex" (37) 

co" 

for all n, and 

(xm)T[AYe + iw"AC]x" 

= -[\-{o)"/o>m)2]{xm)TYev" (38) 

for n ^ m. Requiring that this perturbation be identical to the 
previous one results in the following equation: 

[AYe + io"AC\xn=AY*{wn)xn (39) 

for all n. Explicit expressions for the AC and Arc can be de­
rived with the help of a set of basis vectors \z"} orthogonal to 
the eigenvectors relative to the stiffness matrix: 

Texn 
z" = (40) 

(no sum on the n's) for each n. Postmultiplying both sides by 
(z")T and summing on n, 

AYe]2x"(z")T = ReYlAY*(o>")x"(.z")T (41) 

Since 2^x"(z")T is the identity matrix, 
n 

AYe = Re\j^AY*(w")xn(z")T] (42) 

Similarly, 

A C = 12lm\ AY*(ci")xn(z")r] (43) 
Leo" J 

Some Computational Simplifications 

Examination of the above two equations does not provide 
any indication that the damping and stiffness matrices are 
symmetric. Indeed, there is no reason to expect damping and 
stiffness matrices that derive from linear viscoelasticity to be 
symmetric, since they do not originate with dissipation or 
strain energy potentials. In addition, the damping and stiff­
ness matrices derived above can not be expected to preserve 
the normal modes of the perfectly elastic problem. Though 
physically reasonable, the nonsymmetry and mode coupling of 
the above matrices are usually undesirable features in 
numerical calculation. It is for that reason that the following 
further approximations are introduced so that more amenable 
matrices are achieved. 

Comments on Application to Finite Element Analysis 

On Traditional Methods of Selecting Damping Methods. 
Traditional approaches to treating damping—in particular 
viscous damping, Rayleigh damping, and modal damp­
ing—have been employed both for computational ease and 
because of the absence of a rational method for incorporating 
known viscoelastic properties of materials. The method 
presented here is one such rational method. 

The method presented here is more general and more direct 
than those presented in Biot (1955), Golla and Hughes (1985), 
and Bagley and Torvik (1983) in that it is not restricted to any 
specific subset of linear viscoelasticity. In fact, the method 
presented here simply requires complex moduli of the 
materials in the appropriate range of frequencies. 

On the Cost of Assembling These Damping Matricies. In 
the context of finite element analysis, this method would in­
volve the calculation of complex stiffness matrices Y* at each 
resonant frequency using code almost identical to the genera­
tion of the elastic stiffness matrix. Also calculated at each 
resonant frequency must be the dual vectors z". Both of the 
above operations has its own numerical cost. However, the 
above operations need not be performed for all eigenfrequen-
cies; the process may be restricted to just those frequencies or 
ranges of frequencies of interest. 

On the Symmetry of Damping and Stiffness Matrices De­
rived in the Above Manner. There is no reason to expect coef­
ficient matrices derived from linear viscoelasticity to be sym­
metric except in one special case: where the relaxation tensors, 
£,,„„, (r, X), everywhere in the structure consist only of 
heavy side functions at zero (elastic components) and delta 
functions at zero (Newtonian viscosity). In this special case, 
where strain energy and dissipation potentials exist, the 
method presented here does indeed generate symmetric 
matrices. 

On Preservation of the Normal Modes of the Elastic Pro­
blem. In general, the damping and stiffness matrices generated 
in the manner presented here do not preserve the eigenmodes 
of the elastic problem. However, these matrices can be 
modified slightly in a manner that both results in symmetric 
matrices and preserves the eigenmodes of the elastic problem. 

The revised matrices are obtained by premultiplying each 
component, AY*{w") x" ( z " ) r , of the complex matrix from 
which the damping matrix is derived, by appropriate terms to 
make it orthogonal to all but the corresponding eigenmode: 
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ATe = Re I" Y^z" (x") TAT*(w" )x" (z")T1 

Similarly, 

AC= V. Im [ z" (x") TAT*(o>" )x" (z")T 

w Leo" 

(44) 

(45) 

Each of the matrices is symmetric and preserves the desired 
eigenmode. 

On the Assumption of "Small Viscoelasticity." This 
assumption was employed in connecting viscoelasticity to 
damping, and the derivation suggests that the two can only be 
connected for general deformation histories in the case where 
the assumption is good. The author is developing numerical 

experiments to provide a better notion of just how "small" 
the viscoelasticity of a structure need be in order for it to be 
modelled adequately by a damped system. 
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An Improved Shear-Deformation 
Theory for Moderately Thick 
Multilayered Anisotropic Shells 
and Plates 
The general linear equations governing the motion of moderately thick multilayered 
anisotropic shells are derived by making use of the principle of virtual work in con­
junction with an a priori assumed displacement field. The assumed displacement 
field is piecewise linear in the u and v components and fulfills the static and 
geometric continuity conditions between the contiguous layers; furthermore, it takes 
into account the distortion of the deformed normal. Shear and rotatory inertia terms 
have also been considered in the formulation. Particularization of the resulting 
equations to the flat multilayered anisotropic plates is straightforward; thus, only 
the final expressions are given. The proposed approach gives, as particular cases, the 
linear equations of motion of the classical shells theory based on the Kirchhoff-Love 
kinematic hypothesis and those of the shear deformation theory for which it is 
assumed that the deformed normal do not distort. 

Introduction 

An increasing number of structural designs, especially in the 
aerospace, automobile, and petrochemical industries, are ex­
tensively utilizing fiber composite laminated plates and shells 
as structural elements. Because the solution of the three-
dimensional linear problem with general boundary conditions 
involves considerable mathematical difficulties, in recent years 
some approximate bidimensional linear theories for 
multilayered plates and shells have been developed by making 
use of the axiomatic approach. This approach generally 
utilizes the principle of virtual work in conjunction with an 
assumed displacement field. An integration with respect to the 
thickness coordinate supply the governing differential equa­
tions and consistent boundary conditions in terms of unknown 
generalized coordinates which are independent of the 
thickness coordinate. 

At the present time many of the existing methods of analysis 
for multilayered anisotropic plates and shells are direct exten­
sions of those developed earlier for homogeneous isotropic 
and orthotropic plates and shells. In fact, many approaches 
utilize a displacement field which do not account for the 
equilibrium requirements at the interfaces. 

In the Classical Lamination Theory (C.L.T.), the well-
known Kirchhoff-Love kinematic hypothesis is assumed to be 
verified (Reissner and Stavsky, 1961; Dong et al., 1962; Am-
bartsumyan, 1964). A theoretical unification of the thin shell 
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theories commonly used (Donnel's, Love's, Sanders's, and 
Flugge's theories) as well as a numerical comparison has been 
presented by Soldatos (1984). 

The range of applicabilitiy of the C.L.T. solution has been 
well established for laminated flat plates by Pagano (1969, 
1970). To the best of the author's knowledge no analogous 
solutions exist for curved plates and closed shells. 

These analyses have indicated that a theory which accounts 
for the transverse shear deformation effects would be ade­
quate to predict the gross behavior of the laminate. 

A Mindlin-type first-order transverse shear deformation 
theory (S.D.T.) has been first developed by Whitney and 
Pagano (1970) for multilayered anisotropic plates and by 
Dong and Tso (1972) for multilayered anisotropic shells. 

Both of the previous approaches considered all layers as one 
equivalent single anisotropic layer; thus, these approaches are 
inadequate to model the warpage of cross sections, that is, the 
distortion of the deformed normal due to transverse shear 
stresses. Furthermore, the assumption of nondeformable nor­
mal results in incompatible shearing stresses between every 
two adjacent layers. Also, the latter approach requires the in­
troduction of an arbitrary shear correction factor which is 
dependent on the lamination parameters for obtaining ac­
curate results (Whitney and Pagano, 1970). 

The exact analyses performed by Pagano (1969, 1970) on 
composite flat plates have indicated that the distortion of the 
deformed normal is dependent not only on the laminate 
thickness, but also on the orientation and degree of or-
thotropy of the individual layers. Therefore, the hypothesis of 
nondeformable normals, while acceptable for isotropic plates 
and shells is often quite unacceptable for multilayered 
anisotropic plates and shells with very large ratio of Young's 
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modulus to shear modulus, even if they are relatively thin. 
Thus, a transverse shear deformation theory which also ac­
counts for the distortion of the deformed normal would be 
quite accurate in predicting the elastic linear behavior (deflec­
tion, thickness distribution of the in-plane displacements, 
natural frequencies, etc.) of multilayered anisotropic plates 
and shells. 

Higher order theories, in which a displacement field of 
polynomial form a degree greater than one is assumed, have 
been developed (Whitney and Sun, 1973, 1974; Librescu, 
1975; Lo et al., 1977; Bhimaraddi, 1985) for the purpose of 
removing the inaccuracies in the classical lamination and first-
order shear deformation theories. From an engineering point 
of view, such approaches have little equal because of the dif­
ficulties in obtaining solutions to the system of governing par­
tial differential equations and in prescribing boundary condi­
tions. In this context mention should be made of the approach 
proposed by Reddy which has developed a higher-order but 
simple shear deformation theory of laminated plates (Reddy, 
1984) and shells (Reddy, 1985). The developed theory is simple 
in the sense that it contains the same dependent unknowns as 
in the first-order shear deformation theory. The u and v 
displacements are expanded as cubic functions of the thickness 
coordinate (as in Lo et al., 1977), and the transverse displace­
ment is assumed to be constant. However, in contrast to Lo et 
al., the number of generalized coordinates is reduced to five, 
setting to zero the transverse shearing stresses at the top and 
bottom surfaces. 

Obviously, these higher-order shear deformation theories, 
as well as the first-order theory, will not fulfill the continuity 
conditions for the transverse shearing stresses at the 
interfaces. 

To develop a theory for composite laminates which allows 
the contact conditions for the displacements and the transferse 
shearing stresses at the interfaces to be satisfied simultaneous­
ly, the following two axiomatic approaches have been pro­
posed and developed. 

The first approach has been utilized by Sun and Whitney 
(1973) and Srinivas (1973) to formulate a refined theory for 
multilayered plates, and by Zukas and Vinson (1971) and 
Waltz and Vinson (1976) for multilayered shells. Firstly, 
distinct transverse shear deformations are allowed to exist 
within each layer; thus, initially, for each layer it is assumed 
that the kinematic hypothesis of the first-order shear deforma­
tion theory is verified. Secondly, these deformations are con­
strained in order that the shearing stresses be continuous at the 
interfaces of the layers. 

The second approach has been originated by Ambart-
sumyan (1964, 1969). Following this approach, the distribu­
tions of the transverse shearing stresses in each layer are 
assumed to be known. The fulfillment of both the continuity 
conditions between the adjacent layers and the boundary con­
ditions on the bounding surfaces allows to obtain some 
unknown parameters. The approach has been utilized by 
Ambartsumyan (1969) to formulate a refined plate theory for 
symmetric cross-ply laminates and extended by Whitney 
(1969) to the symmetric laminates in which the material axes 
of each layer have arbitrary orientation with respect to the 
plate axes. Extensions to the laminated cylindrical shells con­
sisting of orthotropic layers have been suggested by Hsu and 
Wang (1970), and to symmetrically layered general or­
thotropic shells by Rath and Das (1973). 

Although the two latter approaches are very accurate, they 
are quite cumbersome and computationally more demanding, 
especially in the case of multiple layers, because the number of 
equations in the final system increases with increasing the 
number of layers. In fact, all the numerical results refer to two 
layered shells. Further, it is very difficult to utilize these ap­
proaches for constructing plate and shell finite elements via 
the finite element displacement method. 

The approach proposed in this paper utilizes a displacement 
field which fulfills a priori the static and geometric continuity 
conditions between contiguous layers. It is worth mentioning 
that the number of partial differential equations in the 
resulting system is independent of the number of layers; in ad­
dition, the order of the system is the same as in the first-order 
shear deformation theory. 

The reduction of the three dimensional problem to the 
bidimensional one is accomplished by assuming a displace­
ment field which allows piecewise linear variation of the in-
plane displacements u and v, and the constant value of the 
transverse displacement w through the thickness of the 
laminate. Thus, the boundary conditions on the external 
bounding surfaces are not fulfilled, as well as in the first-order 
transverse shear deformation theories. 

In a recent series of papers, the writer has employed this ap­
proach to obtain a refined shear deformation theory govern­
ing the linear elastostatic behavior of multilayered orthotropic 
(Di Sciuva, 1984a) and anisotropic (Di Sciuva, 1984b) plates. 
The approach has been extended also to the formulation of the 
geometrically nonlinear equations of motion of multilayered 
orthotropic plates (Di Sciuva, 1986). 

Numerical tests carried out on the cylindrical bending of a 
three-layered symmetric cross-ply (Di Sciuva, 1984a) and 
angle-ply (Di Sciuva, 1984b) strip and on the bending, vibra­
tion, and buckling of a three-layered, symmetric cross-ply, 
square plate simply supported on all edges (Di Sciuva, 1986) 
prove that the proposed approach does work. Thus, by mak­
ing use of this approach, in the following a refined linear 
theory governing the elastodynamic behavior of moderately 
thick anisotropic shells is developed. 

The chief advantage of the assumed displacement field rests 
on its capability to model the distortion of the deformed nor­
mal and to satisfy the contact conditions ad initio, without in­
creasing the number and order of the partial differential equa­
tions with respect to the first-order transverse shear deforma­
tion theory. Furthermore, it is feasible to employ this formula­
tion for constructing plate and shell finite elements via the 
finite element displacement method (Di Sciuva, 1985a-b). 

The present paper is structured as follows. After discussing 
the general linear strain-displacement relations in the Section 
2, we give the complete expression for the displacement field 
in Section 3. By making use of the principle of virtual work, 
the linearized differential equations of motion and related 
boundary conditions for a general shell are derived in Section 
4. In Sections 5 and 6 the previous results are particularized to 
the shells of revolution and to the flat plates, respectively. 

A sequel to the present part containing numerical results 
and comparisons with other results and solutions for curved 
plates and closed shells of revolution is in preparation. 

1 Geometrical Preliminaries 

Consider the space surrounding an arbitrary surface S, 
hereafter designated the shell reference surface, which is de­
fined by two curvilinear orthogonal coordinates (a, /3) coin­
ciding with its lines of principal^ curvature (Gaussian cur­
vilinear coordinates). Let ta and tfi be the unit vectors in the 
directions of a and /3, respectively, 

fa=A~ldaF Tfj=B-ldfjr' 

where T = F(a, /3) is the position vector of a point on the 
reference surface; 

A2 = daF-daF; B2 = deF.d0F 

are the coefficients of the first fundamental form of the shell 
reference surfaces (surface metric coefficients). The symbol da 

stands for partial derivative with respect to a. The unit vector 
perpendicular to S is denoted by n, which is chosen so that Fa, 
t0, and n form a right-handed orthogonal system, n = takt&. 
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The radii of curvature in the directions of a and (3 are denoted 
by Ra and Re, respectively, and are taken to be positive when 
the centers of curvature lie in the positive direction of n. 

Let f be a rectilinear coordinate measured along the normal 
n to S. The following relations hold in the given triorthogonal 
system of curvilinear coordinates: 

Square of a line element: 

Area of an infinitesimal rectangle on the reference surface: 

dS=ABdad$ 

Area of an infinitesimal rectangle on the edge surface Se: 

dSe=H(nd&C 

Volume of an infinitesimal parallelepiped: 

dV=HaHpdad(3d{ 

where1 

Ha=A(l-R~lO H^BiX-Rf^) 

H(t) = ( (mHa/A)2 + (lHf,/B)2)1'2 

Ha and Hp are the coefficients of the second fundamental 
form of the shell reference surface (Lame coefficients). 

2 Strain-Displacement Relations 

Following Washizu (1968), it is found that the following 
strain-displacement relations hold in the Gaussian curvilinear 
coordinates: 

Haeaa = dau + vB-idl3A~ wAR-' 

HBem =dfiV+uA-ldaB- wBR& 

(1) 

(2) 

(3) 

HaHeeaP =tfldB(H-lu) + Hlda(H, lv) (4) 

Haeaf = daw + Hl,a^H-lu) (5) 

H^^dpW + Hjd^H^v) (6) 

Here, u, v, and w are the displacement components of an ar­
bitrary point in the direction of the ta, te and n. 

The approximate displacement field is assumed to be of the 
following form 

+EtiMr-r*)r(r-r t) (7) 

+ E A ( f - f j n f - f t ) (8) 

w(«,/3,f)=w° (9) 

where u°, v°, and w° are displacements of a point on the shell 
reference surface; y°f and yj,f are the values of the shear rota­
tions in the (a, f) and (/3, f) planes, respectively; Y(l - $k) is 
the Heaviside unit function and \j/k(a, /3) and 6k (a, (3) are 
functions to be determined by satisfying the contact condi­
tions on the transverse shearing stresses at the interfaces k. In 
addition, Lk denotes the summation for k ranging from 1 to 
N— 1, N being the number of the layers. 

Substituting the above expressions for the displacements in­
to equations (l)-(6), we obtain the following strain-
displacement relations for a linearized theory of layered 
anisotropic shells including the transverse shear deformation 
effects and the distortion of the deformed normal: 

+ ekB-id0A)({-t;k)Y(i;-!;k) 

HpeBe=e°pe + ^Kp + Lk(dfiek 

+ hA~ldaB)a-^k)Y(t-tk) 

HaH&ea9 =Ha{d&ua- v°A ~' daB 

(1«) 

(2a) 

+ {[de(y%-A-idaw°-u°R^)-

-A-\y<>t-B~ld0W
o-voR^)daB]} 

+ H,1ldav
0-u0B-ldf!A + 

+ ada(y^-B~id0w
o-v°Rp1) 

-B-l(y^-A-ldaw°-u°R-1)dpA]} + 

+ Lk[Ha(d^k-ekA-'daB)+He(dJk 

-iM-'a^Kr-kmr-r*) 
Haeai=Ay^ + ALk^k(l-R~^k)Y^-^k) 

where 

e0
aa = dau° + v°B-ldliA-w0AR-1; 

e "^ = dp v° + u°A ~ldaB~ vfiBRf' 

Ka=-da(A~ldaw° + u°R-i)-B-i(B-ldpW0 

+ v°R^)dffA 

+ day°ctl + y°0{B-ldeA 

^=-a /3(Js-1a /,w
0 + y%-1)-^-1(>!-1aaw0 

+ u°R^)daB 

+ ^y% + yliA~^aB 

3 Expressions for ^k and Qk 

Let us consider a shell of constant thickness h consisting of 
N parallel thin layers of anisotropic materials perfectly 
bonded together. The thickness of each layer is assumed to be 
constant and the material to possess a plane of elastic sym­
metry parallel to the reference surface f = const. The material 
properties and the thickness of each layer may be entirely dif­
ferent. The shell reference surface S is superposed on the top 
bounding surface of the shell2 and the unit vector «*is directed 
inwards in the material of the shell. Owing to the existence of a 
plane of elastic symmetry, the constitutive relations for any in­
dividual layer are given by 

(4a) 

(5a) 

(6a) 

(10) 

(11) 

(12) 

uw 

J
ap 

C\2 C22 C23 ^26 

C"l3 C 2 3 C33 C 3 6 

Cl6 ^26 C 3 6 C 6 6 

W 4 C4 

P 
act 

% 

eB( 

(13) 

where C,-, are the elastic coefficients and the usual notation for 
stresses and engineering strain components has been adopted. 

2Obviously, other choices are possible. For example, for symmetric laminates 
1 (/, tn) stands for the director cosines of the outward normal to C, where C is several partial mathematical simplifications are achieved if the middle surface is 

the intersection curve between the reference surface S and the edge surface Se. selected as reference surface. 
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If a given layer consists of a fiber reinforced composite 
material, it is treated as an ortho tropic sheet, the axes of 
material symmetry being parallel and normal to the fiber 
direction. Thus only 9, rather 13, of coefficients Ctj are in­
dependent in this case. 

As usual, the normal stress <jff is assumed to be small in 
comparison with other normal stresses and is neglected. As a 
consequence, local effects, such as boundary layer 
phenomena, presence of load or geometric discontinuities, 
etc., are beyond the capability of the proposed approach. Tak­
ing into account this assumption and eliminating aK from the 
above relations, the constitutive relations for each layer 
assume the following contracted form 

Qn Qn Qie 

Qn Q22 Q26 

Qie Q26 Qee 

where ak, bk, ck, and dk are known constants only depending 
on the transverse shear mechanical properties of the various 
layers. 

4 Governing Equations 

General Equation of Dynamics. Consider the motion of an 
elastic body under prescribed surface tractions and boundary 
conditions. If the body is assumed to execute an arbitrary set 
of infinitesimal virtual displacements 8u, 8v, and 8w from the 
actual configuration, the following variational equation of 
motion holds (Washizu, 1968) 

Ja( 

J»t 

Q 44 G45 

8$-8W+\ ii(ii8u+v8v+w8w)dV=0 (20) 

G45 Q 55 

cc<r 

EM 

(13a) 

where Qy = Cu — Ci3/Ci} for i,j = 1, 2, 6 and Qu = Cy for 
i,j = 4 , 5 . 

For shells consisting of layers perfectly bonded together (the 
layers of the shell function concurrently without slippage), we 
know from elasticity theory that the displacements and 
stresses at the interface k between the Arth and (k + l)th 
bonded layers must satisfy the following contact conditions 

"* = "*+! vk = vk+i wk = wk+l (14) 

In the above, JX is the material mass density, Wthe work done 
by the applied external forces, and $ the strain energy. In ad­
dition, the overdot indicates differentiation with respect to 
time t and Kis the volume of the body under consideration. 

Strain Energy. If V(s) stands for the volume of the 5th 
layer, the variation of the strain energy is given by (the index s 
is dropped for sake of simplicity) 

<5# = 
N 

5=1 K(s) 
fcaJe, aa ^aa -avvbee, ..I3&eal3 

- a„t 8e„r + a^5e^]HaH0dadfid^ - ru^ j -uep j - j j j ^ j j ^uuu f ju i (21) 

By taking into account equations (la)-(6a) and the expres­
sions (19) for \j/k and 6k, we obtain after some straightforward 
manipulations 

'a?,* "~ aa(,k+l uBi,k " "(3W+1 JK,k • JK,k+l (15) 

In examining the relations (7)-(9) it is not difficult to realize 
that the displacements w and v are continuous functions of the 
f coordinate for all values of the \//k(a, (3) and dk(a, /3). It 
follows that the expressions for \pk (a, ff) and 8k (a, /3) may be 
found from the contact conditions for the transverse shearing 
stresses aai and a^. 

According to the previous relations, the transverse shearing 
stresses at the interface k are given by the following relations 

where 

< 5 * = [[d^BNJ+d^AN^) 

+ Na&d0A- •NedaB-ABR'a 
lQJ8u° + 

+ [«« (BNall) + dp (AN.) + N„daB 

-Nad„A- •ABR^Qfi]8v0 + 

+ lAB(R-lNa+R^Ne)+da(BQa)+d^AQp)]8w0 

aai = Q^k)eai + Q45(k)ei E « olit = Q^{k)eai + Q5i(k)el « 
J/3+r "it = Q«(* + Dea

+f + Q45(£+1)4- Q45(k+l)e+t + Q55(k+l)efc w 

(16a) 

(16*) 

(17a) 

K w 
= [7gr+ E ^ a - V P l / d - V W ; efr = ezt + i 

(176) 
Here, the symbols - or + refer to the values of the func­

tions for f = & - 0 and f = tk + 0, respectively, where f* is 
the value of the f coordinate at the interface k. 

By substituting the expressions for e+f and efc into equa­
tions (166) and satisfying the contact conditions for the 
transverse shearing stresses, yields 

+ AB[(Qa-Qa) + (Ql-Ql)+(Q$-Q$)]8yli + 

+ AB[(Qe-Qp) + (Qb
0-Q$) + (Qc

a-Q
c
a)]8y%t}dadP + 

+ \cll(Na-R^Ma)l+(Nfia-Ra
iM^)m]8u0 

+ [(Nap-Re,Mae)l + 

+ (N0 -R^M„)mW + (QJ + Qfim)8wa 

1 

~~R 

AQ; AGfe 

AQ* 45 A Q & 

-Q S S (*+1) Q « ( * + l ) 

Q45(k+l) -Q44(k+l) 

where we have posed 
AQ!tj = Qij(k+\)-Qu(k); 

R = Q44(k+l)Q55(k+l)-Q2
45(k+l) 

It is readily realized, by substitution of the expressions for 
e~r and e^ into equation (18), that y//k and 9k are known func­
tions of the generalized coordinates 7°f and y^; therefore, we 
pose 

^* = «t72r + c*7?r; h=dky
Q

ai + bkyli (19) 

caf 

L e « 

(18) 

-A~l(MJ + MPam)8daw° + 

-B-^M^l+M^SdpW0 + [(Ma +M"a 

+Md
ae)l+ (Mlia+Mla+M$)m]8yli + 

+ [(Mff +M% +M%,)m+ (MaP +M% + Mc
a)l]8y%}dC 

where we have introduced the following notation for the stress 
resultants 
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(K,K») =B-> <H0 (aaa,aal3)> (N^N^) =A - ' <Ha(am>ffl3ct) > 

(MaMae) =B~l <H^amtaafl)i> (M^MpJ = A - ' <^„(ffft3,ff(Ja)f> 

Qa=B~l<Hpaa{> Qff=A-'<HaOM> 

ABQa = da (BMJ + dpiAMpJ+M^dpA -MsdaB 

ABQ^dplAM^+d^BM^+M^B-MJpA 

[ {M°aMlMc
aMi) 1 , [ aaa 1 

= B~'<Hfi Lk(ak,bk,ck,dk)({-£k)> 
_ (M"a0,M

b
ae,Mc

ae,Mi0)J L ̂  . 

r (MiM\Mc
&Mi) i r «7W " 

=A~l<Ha Lk{ak,bk,ck,dk)(t-{k)> 

( Q ^ e ^ ) = J B - 1 < ^ < T a f E , ( f l „ c , ) ( l - J R a ' f / t ) > 

(e^Q^)=^-1<^^!-^(^,^)(i-JRB- ir)> 
For notational convenience, < > is defined by 

< • • > = £ (••)<# 

and E t stands for E . If we introduce the following quantities 

Nav=NJ + Nafim N^N^l + Npm 

Mav =MJ + Mpam M$v = Mael + M0m 

M„ =Marl + Mf)fm Mvt = -Mavm+M&J 

V^QJ+Qptn 

and take into account that 

A-lda=ldv-md,\ B~ld^mdv + ldt 

an integration by parts on terms like (. .) 5drw°, yields 

8$=-^s{[da(BNa)+d0 (ANea) + N^dpA 

-NpdfiB-ABR-lQJSu0 + 

+ [da (BNali) + dB (ANp) + N0adaB 

-NadBA-ABRp[Qii]8v0 + 

+ [AB(Ra
iNa+R^Np) + da(BQa) + dli(AQli)]5wO + 

+ AB[(Qa-Qa) + (Ql-Ql) + (Q$-Qi)}byli + 

+AB[(Qp-Qli)+(Q%-Q%) + (Qca-Ai)]5yh}clad[l + 

+ j c {(N a 0-Rz lM a v)bu° + {NfSv-R^MfSv)bv° 

+ (Vn+Mylyl)5w°-

-Mv8d„w° + (M„ + M"av + M%) Sy^ 

+ (M0p+M%+M<:
av)8y%}dC-

-Mvt8w°/Cp (22) 

Work of External Forces. Let pa, Pp, and p,- denote the a, 
/3, and f components, respectively, of the surface tractions on 
Sp (Sp being that part of the surface of the shell on which trac­
tions are prescribed). 

If we suppose that the boundary surfaces of the shell are 
loaded only by normal loads p f , the virtual work is given by 

8Wb=\ q(6w°dS (23) 

where qt = pf(0) + pt(h) (l~R~lh) (1 -R^h) andp f(0) 

andp f (h) identify the quantity pt at the outer (f = 0) and in­
ner (f = h) bounding surfaces of the shell, respectively. 

In writing 8 Wb we have assumed that on the boundary sur­
faces only surface tractions, and not displacements, are 
prescribed. 

Let pa(s), Pfs(s), and pt(s) denote the a, /?, and f com­
ponents, respectively, of the edge forces. If Se

p denotes that 
part of the edge surface Se of the shell on which surface trac­
tions are prescribed, the virtual work done by these external 
forces is 

5We = L e lPAs)8u+pl3(s)8v + pt(s)8w]dSe 

5=1 Jsp 

If equations (7)-(9) are substituted into the above, the expres­
sion for 8We becomes, after an integration by parts, 

8We=\ [(Nav-R-'Mav)8u» 
JCP 

+ (#„„ - R f lM^)8v° + (V„ + MvU,)8w°-

-M„d,8w° + W„ +M«ar +M$M{ 

+ (Mliv+Mb
fi,+Mlv)8yli\dC 

-M„,8W°/Cp 

where 

(N„^fpr,V„) =<HU)\Pals)jp(s)j{(s)> 

(Mav,Mp„) = <^H(t)[pa(s),pp(s)]> 

~ Ma
a„ 1 [ ak ' 

= <pa(s)H(t)Lk (f-f*)> 
_ Ml, J L ck _ 

" Ml, "I \bk-
= <Pp(S)H(i;)Ek (r-r*)> 

_ M$, J [_ dk _ 
Work of Inertial Forces. Using the approximate expressions 

for 8u, 8v, and 8w (as well as for u, v, and w) given by the 
equations (7)-(9), an approximate expression for the virtual 
variation of the work given by the inertial forces is obtained as 

8wm = - D \ S ti(s)(U8u+ iJ8v + w8w)HaHgdadPdt= 

= ~\ l(M-2R-lP + R-2J)ii0 + [(P + P°) 
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- A ~' (P - R ~' 7) 9 > ° 16u°ABdadP -

- j s ! ( M - 2 ^ - 1 P + ^ 2 / ) i i 0 + ( P r f - ^ - 1 / d ) 7 S f 

+ [(P + Pb)-Rp ' ( / + / * )]-ygf-

-B-l{P-R^lJ)dffw°) 5v°ABdadP -

-[ [ABMw0 + da[B{P-R-lJ)ii° + 

+ B(J+J")y^ + BJcy$i-A-lBJdaw°] + 

+ 8fi[A(P-Rp1J)v0+AJdy0
a[ + A(.J+Jd)y0

K 

-AB~lJdpW0]}dw0dadP-

- \ l[(P + Pa)-R~'(J+Ja)]u° + (Pd-R0lJd)vo 

+ (7+27" + Jm + Jdd ) 7 ° f + 

+ (Jc + Jd + Jac + Jbd)yj!;-A~i(J+ Ja)daw° 

- B ~' 7</a/3 w° ] 5y°afABdadf3 -

- f ( ( i ^ - ^ - ' / ^ w O + KP + P ^ - ^ - ' C y + J * ) ] ! ; 0 

+ (7c + 7rf + 7<K + 7 M ) T ° f + 

+ (7+ 27* + 7** + Jcc) y°K - A -»Jcda iv° 

- Bl{J + Jb)dew
0)byliABdad& + 

+ j c {[(P-RzxJ)ua + {J+Ja)yli + Jry\ 

-A-iJdaw°]l+ 

^ 

+ l(P-Rpl)v0 + Jdy°ai+ {J+Jb)y% . • 

-JB-133vi'0]nj}5w0crC 

where 

[M P J]=(AB)-i<[l f fWaH^(s)> 

(25) 

[P" Pc] 

[7° 7C] 
= (^45)- 1< ff^Ms)^* cJt]> 

Natural Boundary 
Conditions on C„ 

[Pb Pd] n 

[Jb Jd] J 
= (AB)->< 

" 1 " 

U J 

(26) 

HJleVi(s)[Bk Dk}> 

[7<™7**7~7rfrf] = (AB)-1 <HaH^(s)[AkAr BkBr CkCr DkDr]> 

V<*Jbd] =(AB)~l<HaHpfi(s)[AkCr BkDr] > 

with (Ak, Bk, Ck, Dk) = Hk (ak, bk, ck, dk) (J"-&)• 

Equations of Motion and Boundary Conditions. Inserting 
the expressions for 5$, 8Wb, bWe, and hWin given by equa­
tions (22) through (25) into equation (20), we obtain the dif­
ferential equations of motion and the boundary conditions in 
terms of force and moment resultants. 

The vanishing of the coefficients of the virtual variations in 
the surface integral gives us the following differential equa­
tions of motion: 

da (BNa) + d„ (AN0a) + N^dpA -N^B-ABR-'Qa 

=AB{M-2R-lP + R-2J)ii° + 

+ [(P + P")-R^(J+J°)]y°a{+(Pc-R^Jc)y%[ 

-A-HP-R^^dvW0} 

3a (BNap )+d0 {ANp) +NfiadaB-NadflA -ABR^' Q„ 

=AB[(M-2RplP + Rp2J)v° + 

+ (Pd~R^Jd)y°aS+l(P + Pb)~R^{J+Jb)]y^ 

-B-HP-R^Vdpw0} 

da{BQa) + dli(AQ^+AB{R-lNa+R^Nfi)+ABqi 

= ABMw° + da[B(P-R-^J)u° + 

+ B(J+Ja)y°at + BJcy°et-A-,BJdaw
0] + 

+ d0lA(P-R^J)vo+AJdyo
a( + 

+ A(J+Jd)y°!.-AB-1Jdliw
0] 

{Q.-Qa) + (Q"a-Ql) + {Qi-Q$) = [{P+Pa)-K{{J 

+ Ja)]ii°+(Pd-Rp'Jd)v° + 

+ (7+ 27" + Jm + Jdd)fai + (7C + Jd + Jac + Jbd)y°K 

-A-l(J+J")daw°-B-1Jddfiw
0 

(Qe-Qe) + (Q%-Qbe) + (Qc
a-Q

c
a) = (P° -R^Jc)ii° 

+ [(P + Pb)-R^(J+Jb)]v° + 

+ (Jc + Jd + Jac + 7*rf)7°f + (7+ 27* + Jbb 

+ Jcc)y°^~A~lJcdaw
0-B-1(_J+Jb)dew

0 

(27) 

(28) 

(29) 

(30) 

From the vanishing of the terms in the line integral, the 
following natural (mechanical) and prescribed (geometrical) 
boundary conditions are obtained: 

or Prescribed Boundary 
Condition on C„ 

-lM =N -R~ll 

-\A/f_ _ AT. __ E > ~ 1 i 

V„ + Mvli, = Vn+ MvUt + [ (P - R ~' 7) ii° + (7+ 7°) T ° f -

-Jcy%-A-lJdaw°]l+[(P-R^J)v° + 

+ 7rf7°f + (7+7*)7^- JB~'a / 3>v0]w 

M„=MV 

M*av=M*av 

u° = 

v° = 

w° = 

ii0 

v° 
w° 

3„w° = 

ylr-
y°K-

= dvw° 

=y°al 

= ?Sr 

594/ Vol. 54, SEPTEMBER 1987 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



where we have introduced the following notation 

M*„ = M„ + M»„ + Ml Ml = MBv + Ml 4 

Analoguos expressions hold for M*av and M%v. 

5 Shells of Revolution 

In the engineering applications of thin shells, a shell whose 
reference surface is in the form of a surface of revolution has 
extensive usage. Thus, our concern in the rest of this paper will 
be a theory of the shells of revolution. 

Let R0 be the radius of a latitude circle (also called a 
parallel). The position of a meridian is defined by the angle to 
(the azimuth of the meridian plane), measured from some 
datum meridian plane; the equation of the meridian is R0 = 
R0(X). 

The position of a latitude circle is defined by the angle </>, 
made by the normal to the reference surface and the axis of 
rotation. If the description of the reference surface of the shell 
is based on the independent variables <f> and w for the square of 
a linear element on the reference surface, we have 

(.dr,)2 = Rl(d<f>)2 + R2
0(dW)2 

where R$ stands for the radius of curvature of the meridian. 
The first term on the right-hand side of the above equation 

represents the square of the differential length of arc along a 
meridian, and the second terms represents the square of the 
differential length of arc along a parallel. 

If we associate a with <t> and /3 with o>, for the coefficients of 
the first quadratic form we obtain the following expressions 

A=Rt B = R0=Rasm<j> 

where Ra stands for the second radius of curvature of the sur­
face. Furthermore, for a surface of revolution the relation 
d$R0 = R^cosfi holds. 

With the parameters that we have identified above and with 
the observation that in a shell of revolution R0, R^, and Ru are 
independent of OJ, the above equations reduce to: 

Displacement Field. 

u(<t>,co,n=(l-R^nu° + ttyl{-R^d*w°) 

+E,iMr-fr)r(f-r*) (™) 

+EA(f-f*>y(r-r*) {m 
w(0,co,f)=w° (9/?) 

Strain-Displacement Relations. 

*^*=eS,+r^+E*?^*<r-i"*>y<r-r*> OR) 
R0eua = e l + &a + E* (a A + W i ' ^ o X f - h) Y( f - {k) 

(2R) 

RtRtfi^=Rtda^ - ( / V ? o + * * f 3 w ( 7 ° r - V 3 * M ' < ) - K ° V ) 

- (7°wf-*o LaBw° - «°*« l )V*o + *o V 

+ R0tft(y°t-Rold^0-v0R^) 

cBf=72f+sAy(r-r*) w) 
where 

e o 0 = a , u ° - w ° ^aa=aaifl + u°R;ld^R0-vfiR0R-' (10*) 

K^-d^R^d^ + u^R^ + d ^ (1LR) 

(12/?) 

Ku=-du(RflduW> + iflR;1) 

- V ( V 5* ̂  + u°R;' )30tf 0 + 

+ 3„72r + 7 ^ * ' a ^ 0 

Equations of Motion. 

a0 w v # ) +^*a„AU -x*Na<x>s4>-R0Q* 
= R^R0{(M-2R^P + R^J)ii° + 

+ [{P + P")~R^(J+J")]y^+(Pc-R^Jni^-

-R;l(P-R^J)d^} (26R) 

a0 (/?oA^) +/?09„iV„ +R^N^cos<l,-R0RtR-'Gw 

= J R ^ 0 ( (M-2R-'P+R~2J)v° + 

+ (Pd-R-lJd)y% + [{P + Pb)~R-l(J+Jb)]ylf~ 

-~R0-\P-R-lJ)daw' (27 R) 

d^RoQ^+R^.Q^+RoR^R^N^+R-'NJ 

+ R0R4>gi = R^>RQMw0 + 

+ d„lR0(P-R^J)ua+R0(J+J«)y^ + R0JCyl(~ 

~R^R0Jd^"] + dJR^P^R-iJ)v°+R4>Jdy^ + 

+ R^J+Jd)y°a{-R^R^Jdaw
0] (28R) 

(Q*-Q*)+ {<%-<%)+(&,-<&) 

= [(P+P")-R^(J+Ja)]u° + 

+ (Pd-R-lJd)v° + (J+2Ja + J'"' + JM)y0K 

+ (JC + Jd + Jac + Jbd)yli~ 

-R;l(J+Ja)dtW0-RoiJdd^° (295) 

( 6 ^ - G J + ( G V G £ ) + ( Q V G S ) = ( P C - V J C ) " 0 + 

+ l(P+Pb)- R- ' ( / + / * ) ] y° + (/c + / " + Jac + 7M) y%t + 

+ ( j+2/*+y**+/ c c )7^- i?^ 1 / c a < ( ,H ' 0 

-i?o1(J'+./*)a„M'0 (30i?) 

where 

<?f=iOf(0)+Pj-(/!) 

*<>*•& =RtduMa + 90 ( i? o M 0 J + M ^ 3 ^ 0 

6 Flat Plates 

It is not difficult to realize that the previous relations con­
tain, as a particular case, the linear equations of motion for 
multilayered anisotropic plates. For this purpose, let us to 
choose 

with the plate reference surface belonging to the plane (x, y). 
Then, 

Ra=Rll = co;Ha=Hll = l;A=B=l 

and equations (26) to (38) yield 

dxNx + dyNxy =Mii° + (P + Pa)y°xz + Pc^-P^w0 (26P) 

dxNxy + dyNy=Mii0+Pdy0
xz + (P + Pb)y%-Pdy^ (27P) 

dxQx + dyQy + qt = Mw0+Pdxii° + Pdyv
0 

+ (J+Ja)3xyxz + Jddyy°xz + 

+ J<dxy% + (J+Jd)dyy%-Jdxxw°-Jdyyw° (28P) 
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{Qx-Qx)+ (01-01)+ (<%-(%) = (P+P°)u° 

+ Pdv°+(J+ 2J" + Jm + JM) y°xz 

+ (Jc + Jd + Jac + Jbd)y%- (J+ J")dxw° -Jddyw° (29P) 

{Qy-Qy) + (Qb
y-Q

by) + (Qx-Q
c
x)=Pcii° 

+ {P + Pb)v° + {JC + Jd + Jac + Jbd)yxz 

+ (J+2Jb + Jbb + Jcc)y%~JcdxW°~(J+Jb)dyw° (30P) 

where 

Qx = dxMx + dyMxy and Qy = dyMy + dxyMx 

These equations are exactly those already derived by Di Sciuva 
(1984b). 

7 Concluding Remarks 

In this paper, a system of linear partial differential equa­
tions governing the motion of moderately thick multilayered 
anisotropic shells and plates has been derived. 

The reduction of the three-dimensional problem to the bi-
dimensional one is accomplished assuming a displacement 
field which allows piecewise linear variation of the u and v 
displacement (thus allowing for the distortion of the deformed 
normal to the reference surface), and constant value of the w 
displacement. The assumed displacement field also allows the 
contact conditions at the interfaces to be satisfied 
simultaneously and ab initio. No other simplifying assump­
tions, such as that regarding the smallness of the ratio h/R 
(Love's first approximation) have been adopted. The shear 
and rotatory inertia terms are also included in the derivation. 

On the basis of the numerical results obtained in studying 
multilayered anisotropic plates (Di Sciuva, 1984a-b; 1986), it 
is hoped that the present theory should give better results than 
the conventional shear deformation theory and do not require 
the introduction of the shear correction factors. Moreover, the 
present approach may be employed to develop refined shell 
finite elements via the finite element displacement method (Di 
Sciuva, 1985a-b), which has been found to be not feasible by 
the conventional shear deformation approach. Here, for re­
fined shell finite elements we mean elements constructed on 
the basis of the formulations which take into account the 
distortion of the deformed normal to the reference surface. 
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Elastic-Plastic Analysis of 
Pressurized Cylindrical Shells 
Plasticity in shells is often contained near the ends of a segment where the bending 
stresses are significant. Outside of this local neighborhood the behavior is elastic. 
Thus, an axisymmetric shell can be divided along its axis into a purely elastic region 
away from an end and the local region where plasticity is present. The moment-
curvature relation in the elastic-plastic region is calculated using the Tresca yield 
condition. Use of the Tresca yield condition greatly simplifies this derivation 
because the principal directions are known. This moment-curvature relationship is 
"exact" in the sense that only the standard assumptions of thin shell theory are 
made. The solutions of the elastic and plastic regions are matched at their intersec­
tion for an efficient numerical solution. The technique is used here to study the semi-
infinite clamped cylindrical shell with an internal pressure loading. 

Introduction 

The typical pressure vessel is a thin-walled shell of revolu­
tion. It is well-known that the stress in such a vessel is essen­
tially given by the "membrane" solution except in the local 
vicinity of stiffening rings, or any other geometric discontinui­
ty, where additional "bending" stresses occur. A purely 
elastic design for a vessel made of a ductile material to be load­
ed once is overly conservative. Plastic limit analysis, such as 
detailed in Hodge (1959, 1963), is useful but does not give any 
information about residual stresses or about the strains pre­
sent. For a long pressurized cylinder with an end ring stiffener, 
limit analysis predicts that collapse occurs when the membrane 
stress reaches the yield stress. However, in the linear elastic 
solution the stresses at a discontinuity may far exceed the 
membrane stress. Thus, moderately ductile materials may fail 
before the load predicted by limit analysis. 

As a section of a shell becomes plastic, generally one of the 
surfaces yields first. Then, as the load is increased the plastic 
zone spreads through the thickness and the other surface may 
also begin to yield. To avoid the difficulty of accurately con­
sidering the elastic-plastic behavior through the thickness, ear­
ly investigators, such as Hodge (1963), used approximations to 
yield surface in terms of shell stress resultants for rotationally 
symmetric shells. It was assumed that the entire shell section 
yields simultaneously, producing an elastic-perfectly plastic 
relationship between the shell strain measures, the curvatures 
and midsurface strains, and the moment and force resultants. 
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This is sometime referred to as the "sandwich" shell approx­
imation since it is similar to the behavior of an idealized shell 
made of two thin layers of material separated by a constant 
distance. 

The yield condition is then a function of the stress resultants 
of the shell. This is much simpler than considering the state of 
stress at each material point through the thickness. Hodge also 
developed the two-moment limited interaction yield condition 
by neglecting the interaction between orthogonal forces and 
between orthogonal moments. This approximate yield condi­
tion has been used to study plate (Lance and Onat, 1962) and 
shell (Leckie, 1965) problems. 

The objective of this investigation is to develop an efficient 
method of elastic-plastic analysis of cylindrical shells without 
resorting to approximations of the yield condition in terms of 
the stress resultants. The method is then applied to the 
problem of the semi-infinite clamped cylinder loaded by inter­
nal pressure as illustrated in Fig. 1. The results can be applied 
to many pressure vessels and tanks with fixed ends. 

To obtain "exact" relationships between the strain 
measures and the stress resultants, the elastic-plastic con­
stitutive relations valid for the material at a point must be in­
tegrated through the thickness incorporating the usual 
assumptions of shell theory. The Tresca yield condition, is used 
here because for axisymmetric shells the principal directions 
are known and remain constant. It is shown in a following sec­
tion that for plane stress, with some modest restrictions, the 
current state of stress, can be found as a function of the cur­
rent applied strains. Assuming that the shell is in a state of 
plane stress and that the Kirchhoff-Love hypothesis is correct, 
this solution is integrated through the thickness to give 
"constitutive" relationships between the strain measures and 
stress resultants. 

These elastic-plastic constitutive relations are combined 
with the well-known equilibrium and strain-displacement 
equations, valid for small deflections, to give the complete 
description of the elastic-plastic pressurized cylinder. 
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Fig. 1 Geometry of a clamped-end, pressurized semi-infinite cylin­
drical shell. A1 is the extent of plasticity, if any, on the outside, while A 
is the length of the plastic zone. 
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For internal pressure loading of a closed-end cylinder, the 
axial stress resultant is found from static equilibrium to be 
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the solution of equation (1) which satisfies clamped boundary 
conditions at x = 0 is 
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Fig. 2 Axial and hoop stresses on the inner and outer diameter of an 
elastic, clamped-end pressurized cylinder 

Elastic Solution 

As a preliminary to the elastic-plastic analysis, the linear 
solution for the problem of Fig. 1 is presented here. It will be 
used to determine where yielding first occurs. It is also needed 
for the elastic-plastic solution where the cylinder is concep­
tually divided into elastic and plastic regions. 

The linearized form of Reissner's (1950) equations for the 
axisymmetric deformation of shells of revolution are given in 
matrix form by Steele and Skogh (1970). These are modified 
here for the cylinder in nondimensional form. Axial position is 
x[2Rc][/2 where x is dimensionless, the terms in the bracket 
give it the proper dimensional value, and c = t/(l2(l -
v2))xn. The dependent variables are the axial bending moment 
resultant Ma[Yt2/4], the transverse shear H[Yt(6(l —. 
v2)c/R)'/2/4], the rotation of the shell midsurface xlT(3i?(l 
- v2)/2c)l/2/2E], and the radial displacement h[YR(l{\ -
v2))1/2/2E], where Yis the yield stress. Also in the equation is 
the pressurep[Yt/R] and the axial force resultant Na[Yt\. The 
advantage of this form of the equations is that each of the 
variables that may be prescribed as a boundary condition is 
present in the vector unknown. 

Ma 
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h J 

(2-v)p 

[3(1-.2)]1/2 
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L i J 

.Peal i2-")P 
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1 + / 
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When x = — w, the exponential in the complementary solu­
tion is only four percent of its value at the edge and thus is 
essentially insignificant. This corresponds to a physical 
distance of ir(2Rc)[/2 which will be referred to as the "elastic 
decay distance" hereafter. 

The stresses on the inner and outer diameter are plotted in 
Fig. 2. It is seen that the maximum stress is the axial stress on 
the inner diameter at the clamped edge. Since the hoop and ax­
ial stresses have the same sign, yielding will initiate when aa = 
Y on the inner diameter. The pressure at which this occurs is 

Pel = 

l + ( 2 - x ) 
r il 

[3/(1 -v2)\ 

(4) 

The elastic solution suggests that as the pressure is in­
creased, the outer diameter will eventually yield under the con­
dition aa = —Y. This will be verified by the elastic-plastic 
analysis. 

Elastic-Plastic Moment-Curvature Relationships 

Use of the Tresca yield condition is convenient for the study 
of axisymmetric elastic-plastic shells because for those 
problems the principal stress directions are known and un­
changing. The Tresca yield surface for plane stress is shown in 
Fig. 3. Assuming that the yielding material at a given point in 
the shell stays on the same side of the yield surface, the plane 
stress problem can be integrated to give current stresses as a 
function of the current strains. This solution, combined with 
the standard geometric assumptions of small deformation 
shell theory, was then integrated through the thickness of the 
shell to give the elastic-plastic moment-curvature re­
lationships. 
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plastic strain 
increments 

Fig. 3 Tresca yield surface showing the directions of plastic strain in­
crements at several positions 

Plane Stress Solutions. Consider the problem where all 
yielding occurs under the condition ax = Y, with 0 < a2 < Y. 
Let eu. and e2c be the total current principal strains. For a 
loading history of the virgin material, the principal strains 
may be taken as the following functions of T, which grows 
monotonically with time. 

e i = / ( r ) elc 

e2=g(r) e2c 

(5) 

If at some time the strains decrease, the material would be 
back in the elastic regime. This would not affect future 
yielding which is assumed to take place on the same side of the 
yield surface. Thus, it may be assumed with no loss of 
generality tha t /and g are continuous nondecreasing functions 
with 

/(0) = 

/(1) = 

g(0) = 0 (6) 

(7) 

Yielding will initiate when ax = Y, the yields stress, at some 
time, Ty. httf(Ty) = fy and g(Ty) = gr The elastic stress-
strain law for plane stress (Timoshenko, 1970) gives 

E 
i(T,) = y = -

(1 V ) 
[fyeic + vgye2cj 

°l{jy) = a-p2) \gyS2c + pfyeic) 

(8) 

(9) 
" a-"2) 

The associated flow rule for the Tresca yield condition 
(Kachanov, 1974) gives the plastic strain increments during 
plastic flow as 

def = dep 

(10) efef = 0 

rfe§= -dep 

Expressing the total strain increments as the sum of the elastic 
and plastic parts 

dex = del + del = de\ + dep 

de2 = de2 

The incremental stress-strain relations give 

E 

(11) 

do. \de\ + v deeA 
( l - " 2 ) 

E 

(12) 

d°2 = n-v2) [dei + v (*• " dep) ] (13) 

i/2 

(2 

<1 

-t/2-

(P) (b) 
Fig. A Distribution of axial stress through the thickness when: (a) Only 
the inside is yielding; and (b) both sides are yielding 

For perfectly plasticity, dax = dY = 0, thus the plastic 
strain increment can be found in terms of the two applied 
strains 

dep = dex + vde2 = [/' (r)eu + vg' (r)e2cJdr 

Integrating this from the initial yield at ry to the current 
state at T = 1, and combining with equation (8) gives 

ep = (\-fy)elc + v(\-gy)e2c 

= elc + i>e2c-(l-v
2)-— (14) 

Now the current stresses may be found as a function of the 
current total applied strains. Integrating equations (12), (13), 
with equations (8), (9) as initial values gives 

a-, = vY+Ee-> 
(15) 

For the case when all yielding is on the opposite side of the 
yield surface by CT, = - Y, the analogous relations are 

a, = -Y 

-vY+Ee 
(16) 

2c 

When the yielding is contained on the side of the yield sur­
face defined by a, - a2 = Y, it can be shown (Brooks, 1982) 
that the stresses are 

^ c + e2c) ' 2 (1 -? ) 

E ( \ Y 
(17) 

Integration into Moment-Curvature Relations. The elastic 
solution already given for the clamped semi-infinite cylinder 
with internal pressure is well known (Kraus, 1967; Siede, 
1975). Yielding begins on the inner diameter when the pressure 
is high enough to cause the axial stress to reach the yield stress. 
It was initially assumed, and later verified by the analysis, that 
as the pressure increases, yielding throughout the plastic zone 
for material near the inner diameter is with aa = Y and that 
when the yielding begins on the outer surface it is under the 
condition aa = —Y. 

The normalized moment, M, and axial force, TV, are defined 
such that M = ± 1 is the ultimate moment the cross section 
can carry if there is no axial force (i.e., N = 0) and TV = 1 is 
the ultimate tensile load that can be applied with no moment 
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Fig. 5 The moment at the clamped end versus internal pressure. Also 
shown are boundaries between purely elastic, inside yielding, and both 
sides yielding regions. 
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loading. Figure 4 shows the axial stress distribution through 
the shell thickness for loads above yield. There are three 
distributions of special interest. The combination of moment 
and force that causes each can be determined solely from con­
sideration of the equilibrium of the cross section. For a given 
axial force some moment will cause the inside to just reach 
yield, as shown in Fig. 4(a) with f, = - t / 2 . 

M=——(1-JV) (18) 

As the moment is increased the outside will reach yield, as 
shown in Fig. 4(b) with f2 = (72, when 

2 
M= (l-N)(l+2N) (19) 

Finally, the entire section becomes plastic at the ultimate mo­
ment as in Fig. 4(b) with fj = f2. 

M=N2-l (20) 

Equations (18) through (20) are plotted in Fig. 5 dividing the 

N—M space into elastic, inside yielding, and both sides 
yielding regions. This figure is valid as long as there is no 
unloading of the yielding material and all of the yielding is 
under the condition aa = ± Y. 

The axial stress profile through the thickness after only the 
inside has yielded is shown in Fig. 4(a). The strains are still 
assumed to vary linearly through the thickness. For given mid-
surface strains and axial curvature (the hoop curvature is zero 
for cylinders), the strains are known everywhere. Integrating 
the stress-strain law, either the elastic law or the appropriate 
choice from equations (15) or (16), through the thickness gives 
the axial moment and force. The equations can be 
manipulated to give the axial curvature K[3 Y( 1 - v2)/2Et] in 
terms of the moment and force. 

- 6 4 ( 1 - N J 

h-nfe-] (21) 
27 L 1-N„i 

Figure 4(5) shows the stress profile after yielding has in­
itiated on both surfaces of the shell. The moment-curvature 
relationship for this case is 

- 4 

3V3 
[ l - A ^ + M a ] (22) 

In each case the hoop stress resultant is 

Nh=VNa + eh (23) 

The moment-curvature relationship is plotted in Fig. 6 with 
N„ varied as a parameter, but held constant for each curve. 

Solution 

In the elastic solution, the stresses peak sharply at the 
clamped end, so it was expected that the plasticity would be 
localized near the end. Following the approach of Steele 
(1968), the cylinder is divided into a semi-infinite region that is 
completely elastic and the region near the end where there has 
been plastic flow. Each section is analyzed independently and 
the displacements and stress resultants are matched at the 
intersection. 

The axial stress resultant is known from static equilibrium 
(2). The moment at the intersection of the two regions is then 
calculated from equation (18) with the assumption that 
yielding at all axial positions starts on the inner diameter 
under the condition aa = Y. This assumption was confirmed 
by the analysis. The unknown quantities are A, the length of 
the plastic zone, and h0, x0 , and H0, the radial deflection, 
rotation, and transverse shear at the end of the plastic zone. 

Approximate Solution. The equilibrium equations for the 
cylindrical shell are 

dH _ 4 

~dx 
[3(1 -P2)] 

-(Nh-p) (24) 

dMa 

dx 
- = H (25) 

The analysis of the elastic-plastic problem can be simplfied by 
dropping the variation of transverse shear from the 
equilibrium equations in the plastic zone. As long as the 
plastic zone is small (as it must be, at least at the outset) this 
term should have a small effect. The moment in the plastic 
zone then is just a function of the moment at the intersection, 
M0, which is known from equations (2) and (18), and the 
unknown transverse shear, H0, given by 

Ma(x)=M0+H0x (26) 

Initially all of the yielding in the plastic zone is on the inner 
diameter, so the moment-curvature relationship of equation 
(21) can be used throughout the plastic zone. Substituting 
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equation (26) into equation (21) gives the curvature in the 
plastic zone. 

-4(1 -Na) 3H„x 

* = 3 — l1+^^Nj. (27) 

This equation may be integrated through the plastic zone, 
applying the clamped boundary conditions at the end, to give 
the radial deflection and the rotation at the intersection of the 
two regions. 

16(1 ~N)2[ 3H0A 
Xo = -

9H0 

r 3 / / 0 A I 
L3HnA + 4(l-N)} 

64(1 -JV)3 

21m K i + -
3HnA 

4(1 -N) J 3H0A + 4(1-N). 

(28) 

(29) 

At higher pressures, the outer diameter will also yield near 
the clamped end. The moment, M2, required to cause the 
outer edge to yield at some given pressure level is given by 

equations (2) and (19). From equation (26), the position where 
this occurs is 

A ,= -
Hn 

(30) 

Substituting equation (26) into the moment-curvature equa­
tion (22) gives the curvature near the clamped end. 

K= \l+2N-3N2 + M0xj forA,<JC<A (31) 

For 0 < x < A,, equation (27) is still valid. The rotation and 
deflection at the end of the plastic zone are 

16(1 -N) 2 f 3H0A[ 

Xo=-
(1-NYr 3/foA, 
1H0 L3H0A,+4(1- •N) 9Hn I - • • ] (32) 

ha = 
64(1 -N)1 

21HI Hi+- 3H0 A, 

4(1 -N) 

16 

•]• 
3tfnA o"i 

3H0Al+4(l-N). 
(33) 

where 

r ~\u 

V =U+2N~3N2 + 3H0A 

r 1 = r i + 2 N - 3 N 2 + 3H0A,] 

(34) 

The solution for the elastic region is obtained (using the 
complete equilibrium equations) with the boundary conditions 
that M = M0 and H = H0 at the intersection. This gives the 
rotation and deflection at the intersection as 

(35) Xo --2Mn~Hn 

~Mn+Hn + *o 
(2-v)p 

[3d -* 2 ) ] 1 
(36) 

Setting the above equations equal to either equations 
(28)-(29) or (32)-(33), as appropriate, gives a pair of coupled 
nonlinear equations in the unknowns A and HQ. These equa­
tions were then solved by iteration with starting values ob­
tained from the elastic solution. 

Numerical Solution of Exact Equations. When the exact 
equilibrium equations were used it was not possible to in­
tegrate analytically the moment-curvature relationship 
through the plastic zone. Therefore, the equations were 
numerically integrated with assumed initial values at the end 
of the plastic zone and the results compared with the boundary 
conditions at the clamped end. The moment at the intersection 
of the elastic and plastic zones is known from equation (18). 
The method of solution is to assume this moment and an 
estimate of h0 exist at the intersection of the regions. The 
elastic solution then gives H0 and xo by equations (35), (36). 
These are used as the initial values in the elastic-plastic equa­
tions which are then integrated until x = 0. If h = 0 at this 
point, then the problem is solved. Otherwise the initial 
estimate of h0 is changed and the process is repeated until 
convergence. 

Results 

The results of the computations for both the approximate 
and the exact equations are plotted in Figs. 5 and 7 through 
10. All results are for v = 0.3. It is seen that the two solutions 
agree well. As expected, the agreement is best during the early 
stages of yielding and there is some deviation at higher 
pressures. 
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The growth of the plastic zone as the pressure increases is 
given in Fig. 7. The maximum length is only about ten percent 
of the "elastic boundary layer." Thus, the plastic region is 
contained within a small distance from the clamped end as was 
initially expected from the elastic solution. This is why the ap­
proximate solution is fairly accurate even at relatively high 
pressures. Since the plastic zone is so short, the results in this 
paper may be applied to any cylinder which is long enough to 
be modeled as semi-infinite for the elastic solution. 

Figure 8 shows the boundaries between the plastic and 
elastic parts of the cross section as if one made a cut through 
the thickness and marked the edge of the yielding area. The 
boundaries are shown for several values of pressure. The 
plastic area moves in from the clamped end and from the sur­
faces of the cylinder with increasing load. This verifies that 
there is no unloading in the plastic zone, which was an 
assumption of the analysis. 

Figure 5 shows the variation of the moment at the clamped 
end (i.e., the maximum moment in the cylinder) with the 
pressure. Plotting the moment on this figure in this way allows 
one to see how close the section is to the ultimate load carrying 
capability when the calculations were stopped. 

The moment in the approximate solution grows more slowly 
than in the exact solution. To see that this is reasonable, con­
sider the term that was dropped from the equilibrium equation 
(24) in the approximate solution. 

N„--p = vNa + eh-p^-p\l—Y\< 0 

The hoop strain eh was taken as approximately zero in the 
above inequality because h and x equal zero at the clamped 
end and the plastic zone is short. It would have to be quite 
large to change the sign of the dropped term. Thus, the drop­
ped term increases the magnitude of the transverse shear, and 
thus that of the moment also, as one integrates away from the 
end of the elastic region. 

The calculations were stopped just before the axial moment 
at the clamped end reached its maximum possible value. The 
axial resultant N„ is about one-half at this point. The hoop 
stress in the membrane solution away from the end is twice Na 

or almost one. Since at N = 1 the whole cross section is 
yielding under pure tension, the pressure could not be in­
creased further or the cylinder would burst in the membrane 
region, regardless of the state of stress at the clamped end. 

Thus, even though there is a severe elastic stress concentra­
tion at the clamped end, the collapse pressure is that which 
causes yielding in the membrane solution. The limit analysis of 
Hodge (1963) gives the same result for the collapse pressure. 
Physically, this seems reasonable for a material that has no 
strain limit. The shell yields at the clamped end, but the defor­
mation is constrained by the membrane region until yielding 
also occurs there. Actual failure could occur earlier if the 
bending strains at the end became larger than that permissible 
for the material. 

The maximum strain in the cylinder is the axial strain on the 
inner surface at the clamped end. This is shown in Fig. 9 as a 
function of the applied pressure. At a pressure ninety-five per­
cent above that which causes initial yield, the strain is 17.5 
times the elastic limit strain (Y/E). Thus, many ductile 
materials would survive loading until general yielding in the 
membrane region. Because the maximum strain increases so 
slowly during early yielding, cylinders made of most common 
structural metals would survive pressures significantly greater 
than the elastic limit. 

Figure 10 shows the stresses on the inner and outer surfaces 
of the cylinder at a pressure of 1.8 times the elastic limit 
pressure for the exact solution. The analogous curves for the 
approximate solution give essentially the same results (Brooks, 
1982). 
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Fig. 9 Variation of the axial strain on the inner surface at the clamped 
end (maximum strain in cylinder) with pressure 
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Fig. 10 Axial and hoop stress on the inner and outer diameters at a 
pressure of 1.8 times the elastic limit pressure 

Conclusions 

A very efficient method for elastic-plastic analysis of ax-
isymmetric cylinders has been developed. Since the results are 
all given in dimensionless form they can be applied to any 
cylindrical shell. 

The numerical solution of the equations can be considered 
exact, given the standard shell assumptions which were made. 
The method was so inexpensive that hundreds and even 
thousands of points were used in the numerical integration 
through the plastic zone. Because of this, these results could 
be useful to compare against other numerical methods. One 
complication would be that most general methods use the 
Mises yield condition rather than Tresca, as was used here. 

An important assumption was that the plastic zone would 
remain small. This was based on the fact that the elastic "edge 
effect" solutions decay rapidly with distance. If the plastic 
zone becomes large, the method in its present form might be 
ineffective. This can be seen by considering the elastic com­
plementary solution. It has four exponential solutions, two of 
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which decay and two which grow with axial distance. In an 
analytical solution the growing terms can be discarded, but 
when numerical integration is used all of the terms will be in­
cluded and can be significant if the integration is over a large 
distance. The elastic-plastic solution could have similar 
problems, if the plastic zone were to become too large. 

Although only cylinders are investigated here, it is not dif­
ficult to generalize the method to the general shell of revolu­
tion. The elastic solution for "steep" shells is similar in 
behavior to the cylinder. Thus, for shells where the plasticity 
occurs in the "steep" region the results should be very similar 
to those for the cylinder. The principal directions are still 
known so the Tresca yield condition can still easily be used. 
The only real complication is in the constitutive relations. The 
change of curvature in the circumferential direction, which is 
absent in the cylinder, has to be included. 

There are several other items not considered here which 
could be important. Only the material nonlinearity is includ­
ed, but geometric nonlinearity could be significant especially 
in the plastic zone where the curvature is changing rapidly. 
Shear deformation could also be important within this zone. 
Including the effect of material strain hardening would also be 
a logical extension of the present results. 
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Analysis of Pipe Bends With 
Symmetrical Noncircular Cross 
Sections 

A thin shell analysis is presented for pipe bends with symmetric noncircular cross 
sections under in-plane bending or internal pressure, using the static-geometric 
analogy and neglecting end effects. Any symmetric shape is possible but the analysis 
mainly concerns cross sections with double symmetry; an investigation of two-lobe 
(oval) and four-lobe cross sections demonstrates that pipe bend flexibility is almost 
inversely proportional to flank radius if the pipe wall is thin. Pressurizing a pipe 
bend of oval cross section produces a similar hoop stress distribution to that of a 
bending moment straightening the pipe. 

Introduction 

An exact thin shell analysis for circular pipe bends ter­
minated by flanges or straight pipes and subjected to any end 
loading has been published (Whatham, 1986); we now con­
sider the exact thin shell solution for pipe bends with sym­
metrical noncircular cross sections subjected to in-plane 
bending or internal pressure, neglecting end effects. Reference 
is made to the work of Clark et al. (1952) who obtained ben­
ding and pressurizing solutions for pipe bends with elliptical 
cross sections. 

The first order linear shell theory of Novozhilov (1970) is 
employed but, as the loading generates no shear stresses, the 
equations revert to those of Love (1944). Use is made of 
Goldenweizer's static-geometric analogy and no approxima­
tions are made other than those inherent in the theory. 

Governing equations are derived in terms of displacements 
and stress functions for in-plane bending and pressurization, 
although the pressurization is accompanied by an in-plane 
bending moment unless the cross section is circular; a reverse 
bending solution can be superimposed to obtain the effect of 
pressurization alone. The equations are solved by collocation 
at equal intervals around the pipe circumference and, as a test 
problem, the stresses are calculated in a typical pipe bend for 
different degrees of cross section ovality. Pipe bends with two-
lobe (oval) and 4-lobe cross sections are then investigated for 
the relationship between flank radius and pipe bend flexibility. 

Governing Equations 

A segment of curved pipe with a symmetrical noncircular 
cross section is represented in Fig. 1 by its middle surface, 
acted upon by stress resultants and surface pressure to pro­
duce the displacements u, v, w, and a rotation i/< about the u 
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axis; there are rotations about the other axes but these do not 
enter the analysis. The radius of curvature R is through the 
centroid of the cross section inside the pipe, and curvilinear 
coordinates for the middle surface are 6, r) where 

d = 2irs/c, T\ = 2id/c, c = mid-wall circumference 

From the Novozhilov equations we obtain: 

Fig. 1 Pipe bend middle surface 
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(/) Equilibrium Equations 

3 „ 9 sinu dP* 

„ ~ 3 2 cosu 
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3 
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dQ* 

p v dri 

where 7^ = r , / £ f , M* = Mv/rEt, q* = qr/Et, 

p=R/r,5=l + y/R ,g = r/re = dti/dd.r = c/2w 

8q* (1) 

« , + vrH - — (1 - ^ ) M * , = — ( 1 - ,2)M,* 
7 7 

rn<„ - M ; 6 + VM;„ = M*0a - vM*ni 

(7) 

(ii) Stress-Strain Equations 

T*-1 n-
1 

1-v' 

1 

-(e, + » 0 M9* = 
yr 

-(ev + uee) M* 

12(1 - v2) 

y 
12(1-P2) 

(Ke + VKV) 

(K +VKe) 
" 1~V2 

where y = (t/r)2 

(Hi) Strain-Displacement Equations 

1 / du \ 1 / 3 32w \ 

1 /dv 

(2) 

12 

Components T*a, etc. , are stress resultants applied to the 
pipe bend to give the loading, whereas components T*b, etc., 
are self-equilibrating. 

Stat ic-Geometric A n a l o g y 

Consider now the stress resultants generated by equation (3) 
by substituting stress functions U, W, V, Y for nondimen-
sional displacements u/r, w/r, v/r, \p in accordance with 
Goldenweizer's static-geometric analogy (Novozhilov, 1970). 

dU 
M*= gW 

" 36> 

3 d2W 
T* =—(gU) 

' 30 S 36>2 

(3) Mi 
dV 
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30 

1 / cos ix dw^ 

8r V p drj / 

3d2 + gt where 
1 / cos/i 

-T(-
BW\ 

Strains X and /3 represent the twist and out-of-plane cur­
vature given to the pipe wall if the pipe cross section warps, 
but for in-plane bending or pressurizing, without end effects, 
cross sections remain plane and these strains are zero, as are 
stress resultants P and Q. Incidentally, changes in curvature of 
the pipe wall are given by K, - e^/r, and K$ — ee/re rather than 
K„ and K6. 

Now from Fig. 1 

p dri / 

The stress resultants must be single valued, or continuous 
around the pipe cross section, but will satisfy equations (1) 
whatever the stress functions if pressure q is zero. For the 
forces and moment on the cross section, we find by 
substituting in equations (4) and integrating 

r dWl2" 

W—arL 
-rEt\ 

r dv i 2 ' 
Fy = rEt cosfi + Ysin/i 

L 30 Jo 
(9) 

F,= 

Fj>=\ (Qcosn—Psmix)ds 

M= - f ( M , c o s u + ^ r , ) c f a 

(4) 

whence by equations (1) 

M=r2Et\lJcosiJ.+ Wsmli-~(gU \ \ * 
L r \ 30 / J o 

If U, W, V, Y are single valued then F , Fz, M vanish and 
the stress resultants generated will be self-equilibrating. 

The governing equations are now derived from equations 
(7) by writing the strains in terms of displacements and the 
self-equilibrating stress resultants in terms of single valued 
stress functions Ub, Wb, Vb, Yb. 

^ < + | f (5) 

where At is the inside cross section area and/? is the pressure in 
the pipe. [A] 

Aj=\ ycosfids-ct/2 + irt2/4 

r u*~] 
wb 

u/r 

v. w/r ^ 

3 
drj 

r + ^ 
v/r 

Yb 

.vbj 

- = -

-~(l-v2)8M;a 

7 
- ( 1 - ^ ) 8 7 ^ 

STL-PSTZ, 

-&M%a + vbM;a 

(10) 

(6) q=p(l-t/2re)(l-t/2rv) 

rn = 5R/cosfi 

Consider the stress resultants as the sum of the two com 
ponents; for example, 

T; = T;a + T;b 

Then from equations (2) 

Journal of Applied Mechanics 

where matrix A, given in Table 1, involves differentials in 0 
only. 

Applied stress resultants M*a, T*a, M*da, T%„ are now re­
quired which give the loading on the pipe and also satisfy 
equations (1). This differs from the analysis for circular cross 
sections (Whatham, 1986) where the governing equations 
satisfied equilibrium and T*a, P* were only required to give 
the loading. 
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Table 1 Matrix A 

Ub 
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sinu 3 
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p d6 
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1 
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•Kale 
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2 3 2 

de2 
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Table 2 Oval 

A/vr2 

1 
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ee 

7 3 

cross section constants 

B 

0 

- 0 . 0 7 1 4 

- 0 . 1 3 6 0 

- 0 . 1 9 4 5 

- 0 . 2 4 7 6 

- 0 . 3 4 0 0 

- 0 . 4 1 7 1 

- 0 . 4 8 2 1 

(g ) 

C, 

0 

0.1679 

0.2862 

0.3705 

0.4308 

0.5038 

0.5381 

0.5508 

w/r 

sinu 3 3 

P de de2 

COS/̂  
vbg 

P 

Sg 

7 3 2 

12 30 2 

^ 1 (ellipse) 

0 

0.1730 

0.3018 

0.3979 

0.4696 

0.5618 

0.6097 

0.6309 

A = 
(f y\ 

ycosixds, Aj=A— I )i 
> ' \ r 4 / 

Furthermore, if the governing equations had been in terms 
oi M*b, T*b, ee, KB satisfying equilibrium and compatibility, 
we would have had to include the last of equations (4) in terms 
of M*b, T*b and equated to zero to obtain self-equilibrium and 
the same equation in terms of — ee, Ke equated to zero to en­
sure the displacements were single valued. 

Although end effects are neglected, an earlier paper 
(Whatham, 1981) described how the effects of a rigid flange or 
a tangent pipe could be included. 

Applied Stress Resultants for In-Plane Bending 

Stress functions can be used to generate these stress 
resultants because q is zero; if Va, Ya are zero then, by equa­
tions (5) and (9), Fy and Fz also vanish. The following multi­
valued stress functions were derived from equations (9) to give 
a bending moment M on the pipe and single valued stress 
resultants. 

Ua=M*6cosn 

Wa=M*6smn 

Va=Ya=0 

where M* = M/2wr2Et. 
By equations (8) 

Tl 

(11) 

M* 
va=-M*gcosix 

—M*cosfi 
(12) 

T*ea = (MVp5)sin2
Al 

ML=0 

These stress resultants were substituted in equation (10) to 
obtain the solution for pure in-plane bending. 

Fig. 2 T' for pressurizing an oval pipe bend 

Applied Stress Resultants for Pressurizing 

Stress resultants could not be found which would simply 
pressurize a noncircular pipe bend; the stress resultants which 
were used pressurized the bend but at the same time imposed a 
bending moment on the cross section, requiring a bending mo­
ment applied in the opposite direction to neutralize it. Writing 
equations (1) in terms of applied stress resultants and neglec­
ting M*a,M\*a. 

3 sinu 

Tla/re + T;a/rv=q*/r 
(13) 
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Fig. 3 Segment of middle surface 

Fig. 4 Example of symmetrical cross section 

As t-0 then (q, r,fl, 7 ^ ) - {p, f,a, T,a) and hence 

L J n0 / L J no 

where 

p* =pr/Et 

If the cross section has double symmetry, then 5=1 at 
JX0 = T / 2 and 

T*ea =—p*p(82 - l)/8cos/x 

f* =P5(p*-g7iJ,)/cosM 

(15) 

At the flanks (ji = ± ir/2) 

7X, =27*, =/>•/* 

For a finite wall thickness, solving equations (13) with Tga, 
T;a, q* replaced by 7*Ja - 7|„, T*va - f*va, q* -p* gives 

\2r 8 rJP T* = T* 

^,*a=M,*o=0 

The distribution of T*a in Fig. 2 indicates that a bending 
moment is produced when the pipe cross section is oval; sup­
pose this moment is given by 

M=-CiRirr2p (17) 

where coefficient C, must be determined. For cross sections 
with double symmetry 

1 
C, 

R-wr2p J o CCOSu V ACOSU / 
dd 

rcosfx i 
(18) 

whence Cx may be determined by quadrature. As it is indepen­
dent of / and R, the bending moment by equation (17) for a 
doubly symmetric shape is proportional to the bend radius, 
the pressure, and through irr2 the area A enclosed by the mid-
surface but is independent of wall thickness. Applying equa­
tion (18) to an elliptical cross section gives Lorenz's result 
(Clark et al., 1952) 

A 
C (ellipse) -('"J") (19) 

where b,a are the dimensions of the major and minor axes; 
Table 2 gives C, for a class of oval cross sections which will be 
described later and C,, „. , for the same circumference ellip-

1 (ellipse) 

tical cross sections. 
The stress resultants from equations (15) and (16) were 

substituted in equations (10) to obtain the solution for com­
bined pressurizing and bending; for pressurizing alone the 
bending moment from equation (17) was applied to the pipe 
bend in the opposite direction and the solutions added. 
Expressing the Variables and Solving 

Stress functions Ub, Wb and dimensionless displacements 
u/r, w/r were expressed as Fourier series in 6 with appropriate 
parity but Vb, Yb, v/r, \js could be expressed more simply. 
Rotation a in Fig. 3 is a measure of v/r and \p because 

v/r= -ap8 

4> = - acos/j. (20) 

and as a check, the warping strains X, /? are zero by equations 
(3). 

There is a constant component Hb of force in the wall acting 
in a direction parallel to the pipe bend axis as shown in Fig. 3 
and this component happens to be a measure of Vb and Yb 

Vb=H*bP8 

Yb=H*bcosn (21) 

where 

H*b=Hb/rEt 

Stress resultants Pb, Qb are zero by equations (8) and, in the 
case of in-plane bending, Hb is the total force because Va, Ya, 
and hence Ha, are zero. We note that a is zero in a pressurized 
torus but Hb is not. 

If the Fourier series for the variables are truncated to N 
terms there are 4N+2 coefficients to be determined in addi­
tion to ratios a/17 a n d H%/t\ — for in-plane bending or 
pressurizing, d/d-q in equation (10) is replaced by 1/rj. The 
four governing equations were expanded to the required 
47V+ 4 equations by collocation at the mid-points of N+ 1 
equal intervals around half the circumference; these equations 
were then solved with N= 32 which gave converged solutions 
in all cases. For circular cross sections, the governing equa­
tions were also expanded by equating the coefficients of like 
terms (Fourier analysis) which gave the same solution for the 
same N. 

/J6N Defining the Pipe Cross-Section 

A randomly generated symmetrical middle surface is shown 
in Fig. 4, defined by angle fx as a function of distance s 
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Table 3 Multi-lobe cross sections 

cos m9 
at 

lobes 
at 

lobes 
between 
lobes 

2TI 

2n e^>-
B=-1 

6TX 

1 
B=3 

r—\ 

1 
4_ 

ffi 
^ = 0 + ,x,sin0 + ft>sin20 + . . . (22) 

where 

0 = 2trs/c 

The function g = dp/dd is easily calculated but the ratio 
t/re =gt/r must nowhere exceed 0.3 for shell theory to apply 
(Whatham, 1986). 

Cartesian coordinate y of the outline is required in order to 
calculate <5; taking the centroid of the cross section inside the 
pipe as origin, we see from Fig. 4 

dx = cosixds, hence x = - I cos/xcfc 

dy = sin/wfe, hencey =y0 - sinfids 

(23) 

enabling x,y to be determined by quadrature. 
Coefficients /*,, n2, etc., for a particular cross section are 

derived by curve fitting and, for continuity of x and y, it is 
necessary that 

i c f12x 

sin^cfe = r \ smpdd = 0 
o Jo 

(24) 

{ c p 2ir 

cos/ids = r \ cospdd = 0 
o Jo 

The sin n integral is zero because sin ju is an odd function of 
6 but the coefficients of equation (22) may have to be adjusted 
to eliminate the cos ^ integral. For example, the cross section 
in Fig. 4 was generated by 
ix = 6 + O.5sin0 - O.9452sin20 

+ O.3sin30-O.4sin40 (25) 
where the coefficient -0.9452 has been adjusted for that 
purpose. 

We now consider the continuity of a class of multi-lobe 
cross sections shown in Table 3, defined by 

H = e + Bsmmd (26) 

where m = number of lobes 
For these sections 

J 2TT r> 2 x 

cosndd= cosdcos(Bsmm6)dd (a) (27) 

|Y Y, 

Fig. 5 Thin wall pipe bend distortion from in-plane bending 

Fig. 6 Quadrants of oval cross sections 

smdsm(Bsmm6)dd (b) 

Integral (a) is zero because the integrand is an odd function 
of 0; to determine integral (b), formula 8.514-6 of Gradshteyn 
and Ryzhik (1980) yields 

sin(5sinw0) = 2 ^ J2k+l(B)sm(2k+l)md (28) 

where J2k+\{.E) are Bessel functions. Integral (b) then becomes 

2 Li J2k+ I(.B) sin0sin(2£ + l)mddd (29) 

From orthogonality, integral (b) is zero if m > 1 but not when 
m = 1, unless / , (B) = 0 which requires that 

5 = 3.8137, 7.0156, etc. 

Such shapes are absurd because the contour crosses itselt, so 
we must have m > 1 and the circumference is then continuous 
regardless of B. 

In-plane bending distorts circular pipe bends with thick 
walls (t/r = 0A) to an oval shape but thin walls (t/r = 0.01) 
distort as shown in Fig. 5 where segments X remain almost 
stress free and the pipe bend deflection depends on segments 
Y. Two and four-lobe cross sections were used to investigate 
the relationship between pipe bend flexibility and flank radius 
rf, the cross sections being defined by equation (26) with 
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Fig. 7 Hoop stress on outside surface—circular cross section 
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Fig. 9 Hoop stress on outside surface—oval diameter ratio 2.0 
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Fig. 10 Pipe bend flexibility versus flank curvature 

m = 2, B = —(l-c/2irrf) 

w = 4, 5 = (1 - C/2TT/V) 
4 

(30) 

Two-lobe oval cross sections were then investigated further 
and the relationship between B and major-to-minor axis ratio 
b/a is given in Table 2; quadrants of two cross sections in Fig. 
6 show that, if b/a is less than 1.4, they approximate the ellip­
tical cross sections analyzed by Clark et al. (1952). 

Results 

Figure 7 shows the outside surface hoop stress distributions 
from in-plane bending or internally pressurizing a pipe bend 
of circular cross-section. The stresses cannot be added to ob­
tain the combined effect of bending and pressurizing because 
there is a nonlinearity; pressurizing maintains circularity of 
the cross section and counteracts the ovalizing effect of the 
bending moment whether the bend angle is being opened or 
closed. But if the pipe cross section is noncircular, then 
pressurizing and bending solutions can be added. 

Figures 8 and 9 show the hoop stress on pipe bends of oval 
cross section from a bending moment which opens the bend 
and also the hoop stress from the combined effects of internal 
pressure and a bending moment C,i?7rr2j9 which closes the 
bend. The stresses from the combined loading are relatively 
small and hence, by superposition, the stresses from pressuriz­
ing alone approximate those from a bending moment which 
opens the bend, tending to straighten the pipe. This supports 
the observation of Clark et al. (1952) regarding pipe bends of 
elliptical cross section. 

Factors enabling the deflections under bending moment or 
pressure to be calculated have been published for a range of 
oval pipe bends in which R/r= 1.25-20, t/r=Q.Q\ - 0 . 1 and 
b/a= 1 -2 (Whatham, 1983). 

Results of the investigation of pipe bends with two and 
four-lobe cross sections plotted in Fig. 10 show that, for cross 
sections with double symmetry, flexibility is almost inversely 
proportional to flank radius rf if the pipe wall is thin 
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(t/r<0.05) and the bend characteristic h-4ir2Rt/c2 is less 
than 0.1. This is also the asymptotic result of Clark et al. 
(1952) for elliptic pipe bends written as 

V3(l - v2)M<l> 
(3D Wff-E 

Conclusions 

Equations have been presented for an exact thin shell 
analysis of curved pipes with symmetrical noncircular cross 
sections when subjected to in-plane bending or pressurization, 
employing Goldenweizer's static-geometric analogy. There is 
no restriction on the symmetrical cross section shape, pro­
vided the wall thickness-to-radius ratio does not exceed 0.3. 
End effects were neglected but an earlier paper (Whatham, 
1981) described how end effects from, for example, a rigid 
flange or a tangent pipe could be included. 

Hoop stress distributions showed that, for oval cross sec­
tions, pressurizing has approximately the same effect as a 
bending moment which tends to straighten the pipe. Pressure 
and bending moment solutions could be superimposed unless 
the cross section was circular. Calculations for two and four-
lobe cross sections showed that the flexibility of pipe bends 
with double symmetry is almost inversely proportional to 
flank radius if the pipe wall is thin and the bend radius 
moderate. 

The work has resulted in the publication of factors giving 
the deflection under bending moment or pressure of a range of 
pipe bends with oval cross sections. 
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Thick Composite Plates Subjected 
to Lateral Loading 
An analytical solution for an orthotropic plate subjected to general lateral loading is 
presented. The solution uses a stress function approach to obtain the localized 
stresses and strains due to the loading by an axisymmetric rigid sphere. Plots of load 
versus local indentation are compared with experimental test data previously 
reported in the literature. The analysis agrees well with the experimental data and 
could be used in conjunction with failure criteria to predict damage initiation in such 
a localized region. 

1 Introduction 

An important factor in the design of composite structures is 
their response to impact events. Events such as tool drop and 
runway kickup are examples of impact on aircraft structures. 
During impact, localized stresses are generated which can 
cause premature failure. Accurate prediction of these stresses 
is important in advanced composite materials as a first step in 
assessing structural sensitivity due to impact. Advanced com­
posites, due to their relatively low strength in nonfiber-
reinforced directions (e.g., out-of-plane), exhibit sensitivity to 
the lateral loading which occurs during an impact event. This 
results in delamination (separation of plies) and transverse 
cracking (in the direction perpendicular to fibers in an in­
dividual ply) as well as fiber breakage. 

Current research has been aimed at separating the local con­
tact problem from the dynamic problem such that analysis or 
test data from statical indentation laws may be used in the 
analysis of dynamical transients (Lai, 1983; Sun and Chat-
topadhyay, 1975). The solution to the contact problem for an 
infinite half-plane (Conway, 1956) has been employed with 
some success by Greszczuk (1975) but is limited to the infinite 
boundaries in the analysis. Recently, Tan and Sun (1985) con­
ducted static indentation experiments to determine the contact 
laws to be implemented into subsequent finite element 
analyses. The present solution is analytic and is used to 
develop the static indentation laws based on ply properties 
and, more importantly, the localized deformation such that 
failure criteria may be applied. 

2 Axisymmetric Elasticity Solution 

To solve for the localized loading in a homogeneous, or­
thotropic plate, of thickness h and radius Rd, the axisym­
metric boundary value problem shown in Fig. 1 is solved. 
While the assumption of through-the thickness homogeneity 
may be severe, subsequent comparison with test data will 
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demonstrate its utility for laminates constructed from thin 
plies. The plate is supported along its edges and a moment Mr 

is applied via superposition along its perimeter to approximate 
the far-field loading outside of the local perturbations due to 
the axisymmetric load distribution caused by contact. For 
small strains under the assumption of axisymmetry, the 
following kinematic relationships apply: 

(1) 

Here, ur, is the radial displacement and w is the displacement 
in the z direction. The assumption of axisymmetry provides 
that d/dd is identically zero. The compatibility conditions 
associated with the above assumptions are: 

d 
(«« ) = <> 

dur 

17 

r 

e« = 

Irz = 

dw 

dz 

dur dw 

dz dr 

dr 
d2e d2e 

dz2 dr2 drdz 
= 0 (2) 

The constitutive properties for a cylindrically orthotropic 
material can be represented as: 

Impacting sphere 

l ^ ^ - ^ ^ W 

istributed moment ~) = Dii 

f = Distributed shear 

Fig. 1 Problem schematic 

Journal of Applied Mechanics SEPTEMBER 1987, Vol . 54 / 611 

Copyright © 1987 by ASME
Downloaded 03 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



= [«(/] {°r°e°z 

yrz=
aA- (3) 

where atj is the engineering compliance matrix. For the present 
problem, the material is furthermore assumed to be 
transversely isotropic in the r-0 plane. In terms of the 
engineering constants, the constitutive properties are thus: 

«22 
1 

2~~ET= 

F 
±-,rr 

vrz 

1 
Eeo 

"Or 

"dz 

1 
Gez 

(4) 

The governing stress equilibrium equations for axisym-
metric problems in the absence of body forces may be written 
as: 

darr 

dr 

°°rz 
dr 

+ • 

+ 

d°rz 
dz 

d°zz 
dz 

+ • 

• + 

°rr 

°rz 
r 

r 

= 0 

= 0 

(5) 

Combining equations (2) and (3) to represent the compatibiity 
in terms of the stress components , the compatibility condi­
tions become: 

aua„ + ay i + a,,or. 
_d_ 

Ir 

J! 
dz 

2 [ " l l ^ + ^nO 

[r(al2orr + auoM + al3ozz)] = 0 

d2 (6) 
> + a i3°y+ - p -

[«13 (<J/r + < % ) + 0 3 3 f f i J ~aM 
d2°n 
drdz 

= 0 

In the absence of body forces (or if body forces are derivable 
from a potential) a stress function \p (r, z) (Lekhnitskii, 1963) 
is introduced satisfying the first equilibrium equation of equa­
tion (5) and equation (6) such that : 

o„ = -
_d_ 

~dz 

d2xjs b 
• + 

d*/, 

dr2 

[»-£-• - - - ( • 

dz V 

(C dr2 , „ 

a / d2t I di 
~ ~dr \ 

r dr 

i at 

- + « • 
a 2^ 
dz2 

d 

~dz 

d2^ c 

r dr 

d\f, 
+ d 

d2i\ 

dz2 

dr2 + a • 
aV 
dz2 

where 

a = 
0 i 3 ( 0 i i - ° i 2 ) 

0 1 3 ( 0 1 3 + 0 4 4 ) - 0 1 2 « 3 3 

013(011 - « 1 2 ) + 011044 

0 1 1 - 0 1 2 

(8) 

d = 

A = auai3-a
2
u 

Equations (5) and (7) are combined to obtain the governing 
equation in \p: 

»2-'- 1 dip d2p ^ 

\dr2 + r 

1 d\ / d2^ 

T~dr) V dr2 

d2 / 

-a^(c 
12 ' d2i< 

c . , + 

+ T^ + a '— I + 

d2^ 

r dr 

c dip 

dz2 

dt a 2 ^ \ 
dr2 r dr dz 

Equat ion (9) may be further written in the form: 

V? V 2
2 ^ = 0 

where 

and 

v? 
_ ( d2 l j _ 1 a2 \ 
~\drr + ~T~dr~+ s2 dz2) 

, - [ • 
a + c± [{a + c)2 -4d]1 1/2 -1 1/2 

'] 

(9) 

(10) 

(11) 

(12) 

A solution for ip is sought in the form of equation (13) 
which is separable in r and z: 

$= ZJ fm(z) gm(r) (13) 

The edge boundary conditions (traction free) for a supported 
plate may be approximated by harmonics of a Bessel function 
of the first kind: 

(14a) gm(r) = Ja(umr) 

with 

and 

R„ 

Jo ( /O = 0 

(14b) 

(14c) 

This satisfies the condition that the solution of \p be regular at 
r equal to zero. Substitution into equation (10) results in an or­
dinary differential equation in z. The solution of this equation 
may be satisfied by equation (15): 

fm (z) =Amesi"'"z +Bmesi"mz + Cmesia'»z+Dme-S2am* (15) 

for real distinct roots s, and s2. The constants Am, B,n, Cm, 
and D,„ are evaluated from the upper and lower surface 
stresses as specified in the boundary conditions. 

(7) 3 Boundary Cond i t i ons 

The actual boundary conditions for the plate away from the 
point of load application are neither simply-supported nor 
clamped since the edge is elastic. The area of interest, 
however, is the very localized region near the point of contact. 
Thus , as an approximation to the edge conditions, a constant 
moment is imposed on the plate to properly adjust the bending 
stresses arr and am. The magnitude of this bending moment is 
calculated using the procedure outlined by Love (1927). A mo­
ment is calculated at a distance away from the point of load 
application. This moment is then invoked on the plate edge 
and the results of this solution are added to the current simply-
supported solution via superposition. This method is validated 
by the fact that the s tandard plate solution is recovered in a 
short distance away from the local perturbations as will be 
subsequently shown. 

On the top surface of the plate, the loading p{r) is known 
and may be expanded as a Fourier-Bessel series of the form: 

P(r)= E $™Jo i<»mr) (16a) 
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Fig. 2 Hertzian contact loading 

where 

ST [R"p(r)rJ0 (u,„r)dr (166) 
Rn J" 

The boundary conditions at the top surface (z equal to - h/2) 
are: 

o„ = 0 
(17) 

On the bottom surface of the plate, (z equal to h/2) the boun­
dary conditions are as follows: 

"» = ° (18) 
arz = 0 

Invoking these boundary conditions in equation (15) results in 
the expressions for the constants Am, Bm, C,„, and Dm con­
tained in Appendix A. 

4 The Hertzian Assumption 

As an approximation, the load distribution is assumed to be 
Hertzian in nature. This assumption is valid based on recent 
experimental data generated by Tan and Sun (1985) and sup­
ported analytically by Sankar (1985) for the small indentation 
to indentor-radius ratios considered here. The loading 
assumption for a rigid indentor is shown in Fig. 2. The loading 
distribution (Hertzian) is of the form: 

p(r)=P0(l-(-^-)2y5 (19) 

where p0 is the maximum load intensity and Rc is the radius of 
contact. The Hertzian loading is expanded as a Fourier-Bessel 
series of the type as shown in equation (16). The fim are ob­
tained by using equations (16) and (19) with the integration in 
equation (16) extending up to the radius of contact, Rc. 

For the contact problem, the indentor is assumed to be rigid 
such that the indentation is an explicit function of Rc. This 
assumption is valid for metal indentors where the stiffness of 
the indentor is much greater than the Ezz of a composite 
material. (A typical value of Ezz is approximately 10.6 GPa.) 

In order to determine the unknown constant p0, the strain is 
integrated with respect to z to obtain the displacement w as: 

(20) 
or2 

'dr2 - + -
d\j. 
dr 

+ d 

Finally, the approach a, is defined as the maximum indentor 
penetration as illustrated in Fig. 3 based on an indentor radius 
Rj. From geometry and the rigid indentor assumption the ap­
proach a is calculated according to: 

a = Ri-(Rl-R
2

c)
s (21) 

as well as the fact that 

of = w (0, - h/2) - w(0, h/2) (22) 

o /Y^ -R ig id indentor 

a = approach 

h-Rc-

" ^ Plate 

Fig. 3 Rigid indentor contact schematic 

The solution procedure is as follows. A unit p0 is invoked 
and the approach a is evaluated at the center of the plate (r 
equal to 0) as the difference between the deflections on the top 
surface and the bottom surface. The unit amplitude p0 is 
linearly scaled until the approach as determined in equation 
(22) is equal to that as determined in equation (21). The total 
load P is then determined by integration of the loading func­
tion, expressed in equation (19), over the contact surface to 
obtain: 

2irR2
cp„ 

(23) 

The solution is now complete. For a given radius of indenta­
tion, the axisymmetric stresses and strains in an orthotropic 
plate may be determined based on the assumptions that the in­
dentor is rigid and the constant stresses are Hertzian in nature. 
The solution is illustrated in the following numerical example. 

5 Analytical/Experimental Comparisons 

A [0/+ 4 5 / 0 / - 45/0]^ laminate of graphite/epoxy was 
analyzed to compare with test data generated on the same 
layup by Tan and Sun (1985). The assumed ply data based on 
Hercules AS1/3501-6 graphite/epoxy prepreg system (Lagace, 
1982) is: 

En 
E22 

Gl2 

"n 
"23 

G 2 3 
Thickness 

= 130.8 GPa 
= E}3 = 10.6 GPa 
= G13 = 6.0 GPa 
= p13 = 0.28 
= 0.34 
= 3.9 GPa 
= 0.134 mm 

To determine the three-dimensional constitutive properties 
in an average sense, the three-dimensional stiffness matrix 
based on the above ply properties was rotated in the x-y plane, 
summed and averaged through the thickness. As the laminate 
is balanced and symmetric, the following average engineering 
properties based on the above procedure are: 

^xx ~ 

Gxz = 

G„, = 

87.8 GPa 
21.4 GPa 
11.9 GPa 
4.25 GPa 
5.42 GPa 

vxy = 0.60 
vxz = 0.20 
vyz = 0.30 

Note that the in-plane shear modulus, Gxy, does not enter 
into the problem from the condition of axisymmetry. The 
above plate is not transversely isotropic but using the proper­
ties generated along both axes {x and y), the analysis was con­
ducted using x as the major axis and y as the minor axis. These 
properties were used in an axisymmetric fashion via equation 
(4). Under the transverse isotropy assumed in the present 
analysis, the r, 6 constitutive properties correspond to the x 
and y direction depending on the in-plane (major or minor) 
axis used in the analysis. The current analysis was found to be 
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Fig. 4 Major axis contact load versus deflection 

much more dependent on the through-the-thickness properties 
than the in-plane properties. Hence, the analysis was con­
trolled by the engineering constants Ea, Gxz, and Gyz. 

Using the technique outlined above, the case of a rigid 12.7 
mm diameter sphere was used for comparison to data ob­
tained in tests under the same conditions (Tan and Sun, 1985). 
Two types of local indentation tests were conducted on 
laminated beams with either direction (major or minor) along 
the beam axis. An aspect ratio of 0.05 (plate thickness/plate 
radius) was used for the analysis since the classical plate solu­
tion (Love, 1927) is recovered outside of these boundaries and 
only the very local deformations are of interest in the present 
problem. 

Solutions for the major axis loading are compared with the 
experimental data generated by Tan and Sun (1985) in Fig. 4. 
Here, the nondimensional depth parameter J" is defined as: 

i=(z + h/2)/h 

Fifteen harmonics of the loading function p(r) were used 
(equation (16)) such that oscillations of less than two percent 
in the loading, as expanded as a Fourier-Bessel series, were 
present. Excellent agreement is found between the analysis 
and the actual test data as the error is less than 1.5 percent. 
The agreement for the minor axis solution shown in Fig. 5 is 
not as close due to the geometric nonlinearities noted by Tan 
and Sun (1985). The low flexural modulus in the y direction 
caused more of the indentor to come in contact with the plate 
effectively reducing p„ and increasing Rc as a function of the 
load. The current model is incapable of handling such 
nonlinearities and is thus in error by approximately 8 percent 
from the test data. These results may, however, be adequate as 
input to other analyses depending upon the particular 
application. 
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Fig. 5 Minor axis contact load versus deflection 

Normalized depth, £ 
0.2 0.4 0.6 0.8 

[ 0 / + 4 5 / 0 / - 4 5 / 0 ] , 

a = 3.!8 x10"zmm 
Load =231N 

Fig. 6 Contact compressive strains (at r equal to 0) as a function of nor­
malized depth 

6 Contact Strains 

The strains generated due to the contact problem are of par­
ticular interest in developing failure criteria. These strains are 
used to predict incipient damage due to the localized loading. 
The strains may be calculated via equations (3) and (7) and are 
presented for the previous example for an approach, a, of 
0.032 mm. 

In Fig. 6, the through-the-thickness strains e„ are plotted as 
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Fig. 8 Midplane shearing strain as a function of normalized radius 

a function of depth at the center of the plate for a loading of 
231 N at the center of the plate. The strains begin at a finite 
value and decay to zero at the bottom surface (/ equal to h/2). 
Figure 7 is a plot of the bending strains at the center of the 
plate (<rm is equal to arr at r equal 0). The strains are com­
pressive at the top surface and become tensile through the 
thickness. The neutral axis is not at the midplane of the 
laminate. It is also interesting to note that the bending strains 
are nonlinear through the thickness in the elasticity solution. 

A plot of the shearing strains at the laminate midplane is 
shown in Fig. 8 as a function of radius. The shearing stress an 

is zero at r equal to zero as required by equations (7) and (14). 
This figure illustrates how quickly the local stresses in the con­
tact region die out away from the point of load application. In 
fact, at r/a equal to 0.4, the standard plate solution is 
recovered and hence classical methods are valid outside of this 
region. 

7 Additional Loadings 

Not all loadings can be adequately represented by a Fourier -
Bessel series and hence accurate solutions cannot be directly 
obtained. However, if the point load solution can be obtained, 
superposition may be used to obtain solutions for more 
general loadings. 

The point load solution can be obtained by considering a 
loading of intensity p over radius c as shown in fig. 9, then the 
total load P is pirc2. With the use of equation (166) and taking 
the limit as the radius of contact c approaches zero, the coeffi­
cients /?,„ become: 

(25) 

Po = Load amplitude 

A («„ )Rl 
The same boundary conditions as employed previously are 

applicable such that the simultaneous equations for the 
unknown coefficients Am, Bm, Cm, and Dm as presented in 
Appendix A may be solved. To obtain more general loadings 
this solution may be directly integrated using superposition for 
any loading function. This solution may also be used for sharp 
indentors which are not spherical as presumed in the preceding 
analyses. 

Fig. 9 Constant load over a finite area 

8 Summary 

A relatively straightforward and efficient approach has 
been presented to solve for the deflection and strains in a com­
posite laminate subjected to lateral loading. Even with the 
assumption of homogeneity, the analysis agrees well with test 
data and can be used to predict localized strains which can 
then be utilized with appropriate failure criteria to predict 
damage initiation due to contact loading. The model cannot 
account for all of the geometric and material nonlinearities ex­
perienced during large deformations and loadings but does 
provide useful data to predict damage thresholds and damage 
extent due to contact or impact type problems. The present 
method offers advantages over finite element analyses in the 
linear range since it is a continuous and analytic solution. It is 
thus particularity useful in parametric-type studies in contact 
problems of orthotropic materials. 
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A P P E N D I X A 

Solution for the Constants A,„, Bm, Cm, and Dm 

The constants A,„, Bm, Cm, and Dm (in equation (15)) may 
be obtained by placing the expressions for \p in the equations 
for azz and arz (equation (7)) at the mth harmonic. 

+ ( - cs2 + ds\) Bme?wnfi + (ds]~ ds]) c„,e-~siv 

+ (cs2 - dsl) Dme -s2"„,z] Jo (o>mr) (A. 1) 

an = o>3
m [(l + asj) A^1^ +(I+as2

2)Bmes2^ 

+ (1 + asj)cme~s\">><z + (1 + as\) Dme 

~S2V] J , (co,,/) 

The boundary conditions expressed in equations (17) and (18) 
are invoked at each surface. 

With the /3m known for any given loading, the coefficients 
Am,Bm, C,„, and Dm are obtained by solving the simultaneous 
equations at each harmonic m: 

( - cs, + fife^e-vi*72 ( - cs2 + ds\)e^"nM/2 

(-csi+ ds\)e-<1'msih/2 (-cs2+ dsi
2)e"ms2hn 

(1 + as\ ) e - " « / , / 2 (1 + as\)e'"'nr<\''/2 

(1 + ay2)e-u'"si' , /2 (1 + as\)d*n?il>n 

(csx -ds\)e~a"rs2i'/2 

(csx-ds\)e~il'ms\i'/2 

(l+fli 'f)e™»r !l /"'2 

(\ + as2
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(cs2-dsl)ean^2h/2 
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~ 
Am 

Bm 

c 
. Dm _ 

- = -

_ 
fim 

0 

0 

0 

(A.2) 
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Buckling of a Rectangular Frame 
Revisited 
An investigation of the buckling under uniform beam load of a rectangular frame 
with columns restrained by linear rotational springs indicates that for certain ranges 
of bending stiffness ratio, length-height ratio, and support rotational stiffness 
parameter, the antisymmetrical bifurcation mode of buckling does not exist and 
buckling occurs at a symmetrical deformation limit load. The ranges of parameters 
for which this phenomenon may be important are studied. 

Introduction 

It is an accepted fact in Home and Merchant (1965) that 
single story frames having members with primary bending 
moments will buckle in an antisymmetric mode at a load less 
than the symmetric limit load. The basis for this belief is 
found in the investigations of Chilver (1956), Chwalla (1938), 
and Lee (1963) of the behavior of frames with columns simply 
supported at the base. During the course of an investigation of 
the problem for clamped frames, results at variance with the 
above behavior were obtained. For the particular values of 
frame geometric and bending stiffness parameters in­
vestigated, no antisymmetric bifurcation point was found. 
Failure occurred when the symmetric load-deformation curve 
reached a limit point. It was decided then to redo the problem 
for a frame restrained at its base by linear springs (Fig. 1) and 
to investigate the variation of the critical load and mode of 
buckling with the various parameters. The derivation of the 
pertinent equations and a discussion of the calculated results 
are given herein. 

2P, •A 

-©; 

E b I b 

EC IC 

-& 

E C I C 

Fig. 1 Rectangular frame with elastic torsional restraint 
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Derivation 

1 General Stiffness Relationships. The end load-end 
deformation relations for an axially loaded member of 
uniform bending stiffness can be expressed in the following 
form (see Fig. 2 and Home and Merchant, 1965) 

£t- 4 
.9-

T 

C^L 

^AJ M. 

Fig. 2 Positive directions of forces and moments: (a) horizontal beam; 
(b) vertical column 
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2 Symmetric Frame Deformations. In analyzing the 
symmetric deformation of the frame, let the magnitude of the 
uniform load on the horizontal member be taken as 2PC/L so 

(2a) that the load in each vertical column is Pc. Since the distortion 
is assumed symmetrical about the center line, the equilibrium 
of only one of the joints need be considered. The end displace-

(26) ment of the elastically restrained vertical column on the left at 
the upper joint is a rotation - d (Fig. 3), so that the moment in 
the column at this joint is given by equations (4) as 

Mc2 = — ^8 (7) 

A = 2 ( t a n | v 7 - ^ - v j ) . 

(2c) 

(2d) 

(2e) 

(2/) 

HC •03(A) 
H 

with 

P.H2 

r2ErL (8) 

The compressive axial load in the horizontal beam is unknown 
I t i , , . . , , ,. . .. , „ and will be denoted by PA. The moment in the beam at the left 
If the member is restrained by a linear rotational spring of • • , • xl_ r , , ' . ° , , , uv-a '" QL " ^ "-1L 

joint is the sum of the fixed-end moment due to the uniform 
load and the moment due to end rotation such that 

stiffness C at end 1 so that 

W{=Q (3a) 

Mx = -Cex (36) 

the pertinent and load-end deformation relationships may be 
determined as 

el = -e2=-e. 
Thus equations (1) and (5) yield 

(9a) 

(96) 

M, 

1 

EI 
l + ^ 0 3 ( . ) 

EI 

I3" (0i (J) + - ^ [ 0 1 ( y ' i ) 0 3 ( y ) - />]] - ^ - [ * = ( / ) + • 
EI 

lc~ i(y) 

EI r EI 1 
[02(y)+^01(y)J 

Elc EI 
- i *3<y>+^.<y>. 

w. 
(4) 

The cases of frames simply supported or clamped at the base 
are obtained by putting C equal to zero or infinity in the 
equations. 

Finally, if an axially compressed member is subjected to with 
uniform transverse load q, the fixed-end reactions are given by 

M„. h(j„) 
EbIb 

L [0 3 U)-04(y A ) ]0 

Jb: 

vu 

M. 

M-V-

where 

m,(j)--

e 

mx(j)qi2 

e 

-mi(J)ql2 J 

1 

(5) 

^EbIb " 

The total moment applied to the joint is given by 

EbIb/L 

(10) 

(11) 

202 (J) 
(6) 

EJJH [03(jft) - 0 4 ( A ) ] \e+ 

HC 

ir2Jc 

*2Ut) H 
= 0 (12) 

from which the angle of rotation may be obtained. 
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Fig. 3 Symmetrical deformed shape 

0+80, 
0-S0 

Fig. 4 Deformed shape with antisymmetric perturbations 

The axial load in the beam is equal in magnitude but op­
posite in direction to the shear force in the column at the joint. 
With the beam axial load considered positive in compression, 
the use of the first of equations (4) and equation (11) and the 
substitution of the expression for 6 given by equation (12) 
yields the following relation between j b and j c 

EJC 

JAW_M3 HCVxKJc) 1 
EJh \W) 

Jb —Ji 

EJC 02 (A) 
1 + l ^ ( y c ) 

ECIC 

0 3 (A)+"^0l(A) 
HC EhIh/L 

(13) 

EJC 
-+- -[03(A) -*4(A)1 

3 Infinitesimal Antisymmetric Deformations of the 
Frame. In order to investigate the possibility of a bifurcation 
of the symmetric deformation state, assume that for a given 
distributed load additional infinitesimal antisymmetrical 
deformations of the frame occur, i.e., a sideways motion - 8D 
and equal joint rotations —SO (Fig. 5). The column axial load 
parameters change by equal and opposite amounts since the 
vertical load on the beam remains constant. The use of equa­
tions (4) then yields the shear in each column at the upper 
joints, correct to first order terms, as 
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Fig. 5 Variation of column axial load with beam axial load 
(E„lb/Eclc = t,L/H = 2) 
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PCL -\ EbIb 

02(A) J L 
02(A)^- (16) 

where the upper sign refers to the left column, the lower to the 
right column, and primes indicate differentiation with respect 
to the argument. The column shear forces change by equal 
amounts indicating that the beam axial load is unchanged. 

The joint moment in the columns and in the beam are given 
by equations (4) and equations (1) correct to first order terms 
as 

Finally, the change in axial compressive load in the columns 
is equal to the change of end shear in the beam. Then 

zJc=-A-¥r(4-Y<i>2Ub)&e. (17) 
7T ECIC \ L J 

The infinitesimal horizontal load required to be applied to the 
frame to provide the infinitesimal antisymmetrical displace­
ment is the sum of the column shear forces. Thus 
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&V=-iV&+V&) (18a) 

while the infinitesimal joint moments required to produce the 
infinitesimal antisymmetric deformations are given by virtue 
of equation (12), as 

5M=-(Mj;2+Mbi)=-(Mf2+Mb2). (186) 

The use of equations (14) to (17) yield the infinitesimal an­
tisymmetric load-deformation relations as 

For buckling in an antisymmetric mode setting the determi­
nant of the resulting stiffness matrix of equation (19) equal to 
zero yields after much manipulation 

E I 
COtirvT. —7rvX 

HC Jc EbIb/L 
+ 6 — — = 0 (21) W7c-

1+-
F I 

~HC 
Trv7cCOt7rv7c 

equations (20) and (21) have been obtained previously in a 
somewhat different form by Galambos (1960) and by Appel-
tauer and Barth (1961). 

Results and Discussion 

Calculations were first carried out for simply supported and 
clamped frames having the relative stiffnesses and dimensions 

Ebh _ 1 
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H 
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HC 

1+-EJC 

HC' lUc) 

2(Jb) 
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(19) 

where primes indicate differentiation with respect to the argu­
ment j c and d is given by equation (12). Buckling in an an­
tisymmetric mode is possible if the determinant of the stiffness 
matrix of equations (19) vanishes, for then the frame may be 
in equilibrium with small antisymmetric displacements 
without the imposition of antisymmetric loads. 

4 Buckling of Frames With Loads Applied at the 
Joints. Results for a frame elastically restrained at the base 
and with the vertical load applied only at the joints may be ob­
tained from the previous equations. In this casey6, 6, and the 
fixed-end beam moments vanish prior to buckling. The 
criterion for buckling in a symmetric mode is obtained from 
equation (12) by setting the infinitesimal symmetric joint stiff­
ness dM/dd equal to zero to yield 

EJc 
<t>l(Jc)+-77^r<f>AJc) HC 

EJc 
l+^f<M-/ 'c) 

- + 2-
EbIb/L 

EJC/H 
(20) 

HC 

These are the values treated by Home and Merchant (1965). 
Equation (13) was solved, with the use of computer code 
DRTMI of Anon (1970), for the lowest values of j c corre­
sponding to a range of values of j b . This scheme was adopted 
since for both types of support the values of j c increase to a 
maximum a.sjb increases and then decrease, as shown in Fig. 
5. The maximum values of j c represent critical loads for sym­
metric deformation since the frame cannot be in equilibrium 
for larger values of loading. The maximum values of j c ob­
tained are 0.6174 for the simply supported frame and 0.4044 
for the clamped frame. The anomaly of the ostensibly stiffer 
structure having the lower symmetric critical load may be at­
tributed to the clamped frame having a much larger beam 
axial load. 

Another interesting phenomenon is revealed by an examina­
tion of the antisymmetric bifurcation point. For each set of 
values j b and,/,,, corresponding values of the determinant of 
the stiffness matrix of equation (19) were calculated. For the 
simply supported frame the determinant vanishes at a value of 

j c of 0.1409 whereas for the clamped frame there is no value of 
j c for which the determinant vanishes. Thus the symmetric 
limit load is the buckling load of the clamped frame while the 
simply supported frame buckles in an antisymmetric mode. 

The effect of finite rotational restraint on the critical loads 
of the same frame is shown in Fig. 6. Calculations of the sym­
metric limit load and the antisymmetric bifurcation load were 
made and indicate that the symmetric limit load decreases with 
increasing support stiffness whereas the antisymmetric bifur­
cation load increases. The two loads coincide for a value of 
support spring flexibility parameter EJC/HC of about 0.18, 
below which the antisymmetric bifurcation point ceases to ex­
ist. The frame thus buckles in an antisymmetric mode with in-
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Fig. 7 Comparison of various methods of calculation of symmetric 
critical load (Eblb/Eclc = -\, UH = 2) 

creasing load as the support rotational stiffness increases until 
a critical value of stiffness is reached. For larger values of sup­
port stiffness buckling occurs in a symmetric mode with 
decreasing critical load. 

Also shown in Fig. 6 is the antisymmetric buckling load with 
the load applied at the joints (equation (21)) which is 
reasonably close to the values obtained from the nonlinear 
analysis. This is not the case with the symmetric buckling load 
with the load applied at the joints. The results shown in Fig. 7 
indicate that the discrepancy between the values obtained 
from equation (20) and the symmetric limit loads given by the 
nonlinear analysis increases drastically as the support rota­
tional stiffness increases. For the simply supported frame the 
ratio of the two loads is 1.90 whereas for the clamped frame 
the ratio is 5.75. The buckling loads obtained using the values 

2 . 0 

Fig. 8 Variation of column and beam axial loads and antisymmetric 
bifurcation load with bending stiffness ratio (L/H = 2, C = oo) 

of beam axial load given by linear theory and assuming the 
beam and column loads to be applied at the joints are shown 
in the figure by the middle curve. These values are closer to the 
results of the nonlinear analysis but are still considerably in er­
ror and fail to predict the decrease of critical symmetric load 
with increasing support rotational stiffness. 

The foregoing investigation has indicated a change of buckl­
ing mode from antisymmetric bifurcation to a symmetric limit 
point with increasing support torsional stiffness for a par­
ticular class of frames. To determine whether this is always the 
case, a series of calculations were carried out for clamped 
frames with a value of L/H of 2 and varying values of bending 
stiffness ratio. The results of the solution of equation (13) are 
shown in Fig. 8 together with the values for which the determi­
nant of the stiffness matrix of equation (19) vanishes. The 
results indicate that the symmetric limit load is critical for 
values of bending stiffness ratio EbIb/EcIc less than about 2.1, 
while the antisymmetric bifurcation load is critical for larger 
values. Thus the range of frame parameters where a change of 
buckling mode occurs is limited. The effect of various approx­
imations is shown in Fig. 9, which indicates, as before, that 
the antisymmetric bifurcation load, where it exists, is affected 
very little by prebuckling deformations whereas the symmetric 
limit load can be calculated accurately only by means of a 
nonlinear analysis. 

The complete range of parameters for which the symmetric 
limit load is critical is indicated by the results of Fig. 10 where 
symmetric limit loads and antisymmetric bifurcation loads are 
shown for clamped frames having various bending stiffness 
and dimension ratios. If the symmetric limit load 
predominates for a clamped frame it may be critical for an 
elastically supported frame and should be investigated. If, 
however, antisymmetric buckling predominates for a clamped 
frame it will be predominant for an elastically supported 
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Fig. 10 Symmetric and antisymmetric critical loads for clamped 
frames 

frame and can be calculated with reasonable accuracy by 
neglecting prebuckling deformations. It can be seen, however, 
that generally symmetrical buckling is important only for 
frames for which the beam bending stiffness is less than the 
column bending stiffness. The maximum stiffness ratio 
EbIb/EcIc for which symmetrical buckling predominates 
decreases with decreasing length-height ratio from a value of 
about 1.0 for L/H of 5 to a value of about 0.1 for L/H of \. It 
should also be noted that the neglect of support fixity by the 
assumption of simple support is always conservative. For 
simply supported frames, antisymmetrical buckling 
predominates and is satisfactorily calculated by assuming 
beam and column loads to be given by the results of linear 
theory. 
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Blacksburg, VA 24061 counts for transverse shear strains and moderate rotations is presented. The theory 
contains, as special cases, the von Karman classical plate theory, the first-order 
shear deformation theory (i.e., the Reissner-Mindlin plate theory) and the third-
order shear deformation plate theory. The theory is characterized, even for isotropic 
plates, by strong coupling between various equations of motion. 

1 Introduction 

In geometrically nonlinear theories of elastic anisotropic 
plates one often assumes that the strains and rotations about 
the normal to the midplane are infinitesimal and retains the 
products and squares of the derivatives of the transverse 
deflection in the strain-displacement equations (the von Kar­
man assumption; see Medwadowski, 1958; Ebcioglu, 1964; 
Chia, 1980; Reddy, 1983 and 1984a). The full geometric 
nonlinearity (implied by the strain-displacement equations of 
nonlinear elasticity) in shell theories was considered by Naghdi 
(1972), Librescu (1975), Yokoo and Matsunaga (1974), Habip 
(1966), and Pietraszkiewicz (1979), among others. Considera­
tion of full geometric nonlinearity not only results in complex 
equations, but is not warranted in most practical problems. 
On the other hand, the von Karman nonlinear theory does not 
account for all moderate rotation terms that could be of 
significance in the analysis (especially in stability problems) of 
plates. The small strain and moderate rotation concept was 
used in the classical theory of plates and shells (in which the 
transverse strains are neglected) by Sanders (1963), Koiter 
(1966), Reissner (1958), Pietraszkiewicz (1980, 1984), and 
Schmidt (1984) and in refined plate and shell theories by 
Wempner (1973), Naghdi and Vangsarnpigoon (1983), and 
Librescu and Schmidt (1986). Additional large rotation 
theories can be found in the works of Ranjan and Steele 
(1980), Kayuk and Sakhastskii (1985), Nolte et al. (1986), and 
Iura (1986). 

The present study deals with a new higher-order theory of 
anisotropic plates that accounts for transverse shear strains 
and moderate rotations. The theory is a generalization of the 
classical plate theory, the first-order shear deformation (i.e., 
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Reissner-Mindlin) plate theory, the refined theory of Kromm 
(1953, 1955), and the third-order shear deformation theories 
of Reddy (1984a, b). The theory is based on an assumed 
displacement field and orders of magnitudes of linear strains 
and rotations. The associated strain-displacement equations 
are presented and the equations of motion are derived using 
the principle of virtual work. Specialization of the equations 
of motion for various well-known existing theories is 
demonstrated. A detailed account of the strain-displacement 
equations, constitutive equations and the equations of motion 
of the first-order shear deformation theory with moderate 
rotations is presented. The latter should aid the development 
of the finite element models of the theory. 

2 Notation and Basic Assumptions 

Points of a three-dimensional continuum V are denoted by 
their orthogonal curvilinear coordinates x = (x ' ,x 2 ,x 3) . 
Covariant and contravariant base vectors at points of the con­
tinuum are denoted by g,- and g', respectively. Latin indices are 
assumed to have values 1, 2, 3, and the Greek indices have 
values 1, 2. The plate continuum in the undeformed con­
figuration is defined by the Cartesian product of points in the 
midplane Q and the normal [ - h / 2 , h/2]: 

r h h 1 

where h denotes the constant thickness of the plate. Let x" 
denote the curvilinear inplane coordinates and x3 be the nor­
mal to fl. The metric tensor components of Q are denoted by 

%<*=-^~' ^•Sl3=8t3a> § 3 = n (1) 
ox01 

where r is the position vector of a particle (x01, x3) at time t, 8% 
is the Kronecker delta, and n is the unit normal to the 
boundary of Q. 

The displacement vector of a point in the plate at time t is of 
the form 

u = uaga + uin = uag
a + u3n (2) 
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where the Einstein summation convention on repeated 
subscripts is assumed. The covariant components of the 
Green-Lagrange strain tensor are given by 

ey = - y - ("/1; + Uj \i + u,n uu
m !/) (3) 

where a vertical line denotes covariant differentiation (see 
Reddy and Rasmussen, 1982). The strain components ey- can 
be expressed in terms of the linearized strains ey- and rotations 

where g = df/dx3, and 

1 
«y = eii + -^remfif + -z- ( e„„< + emjo>?) + -

1 

where 

1 1 

(4) 

(5) 

We now assume that the strains ey and rotations <ou- are of 
the following magnitude (cf Librescu and Schmidt, 1986): 

e„=O(02), c ^ = O(02), ua3=0(6), 0 < < 1 (6) 

Equation (6) implies that the strains and the rotations about 
the normal to the midplane are small, and that the rotations of 
a normal to the midplane are moderate. Such assumptions are 
justified in view of the large inplane rigidity and transverse 
flexibility of composite laminates. 

Neglecting terms of order (04) and higher in the strain-
displacement equations (4), we obtain (cf Librescu and 
Schmidt, 1986): 

1 

1 

T 

eHfj = ea& + ~z-(elawl + eifio)3
a) + -^-a>3tt«$ 

ea3 =e a 3 + ^ H e \ « u 3 + e 3 3 ^ ) + ^r-Wxa"3 

1 

T 
I 

T 

£33=e33+eX3"3+-J-"X3"3 (7) 

where the underlined terms are of order (63). 

3 Displacements and Strains 
The present theory is based on the following assumed varia­

tion of the displacement components across the plate 
thickness: 

Ha(*
e.*3.0 = K(xe,t)-x3u°3la+f(x3)u[

a(x^t) 
u3(xt>,x3,t) = u^,t) + u^(x0,t) (8) 

where/is a specified function of the thickness coordinate x3. 
Note that the transverse deflection is assumed to be independ­
ent of x3 and consists of two parts, one due to bending and the 
other due to transverse shear. The separation of the transverse 
displacement into two parts allows the representation of non-
vanishing shear strain at clamped edges. When u% is zero, then 
the linear portion of e13 vanishes at a clamped edge because 
w3a = «^ = 0 there (cf Huffington, Jr., 1963; Krishna Murty, 
1986). The particular form of displacement field is assumed in 
order to include the displacement fields of the classical plate 
theory (set u% = 0 and ul

a = 0), the first-order shear deforma­
tion theory (set u% = 0 and f(x3) = x3[l -4/3(x3/h)2]), among 
others. Note that in all derivations presented here no special 
form of f(x3) is used, to keep the generality of the theory. 

For the displacement field in equation (8), the strains for the 
moderate rotation theory become (consistent with the assump­
tions in equation (6)), 

ea3 = £rf +ge°«i +x3K°al + gx3Kx
a3 +fel

a3 +fge1
a3 

eafi ' 

Kaff'-

1 1 
~=T ( K \P + Kg fa) + -Z- ( «? I„ + "3 l„)(«S VI + «? V) 

— _ . , ? . 

("il3 + "pfa) 

= ~y"(M3fa~"j3laW3l|3) 

to _ ea3 — 

c = 
Krf = 

c ' -
ea3 ~ 

F 1 -e a 3 — 

e 3 3 - • 

c° — 
e 3 3 ~ 

a° — 
e 3 3 ~ " 

2 

1 

~2 

- -

- -

1 

T 
1 

~2 

~(Ua +«g|a 

~M3IXaM3IX 

1 
y-"3ixa"x 

1 , 

-U\\aK 

uO i/O 
" M 3 f a " 3 l a 

- « 3 b « i 
1 
-"X 

«4) 

(10) 

4 Equations of Motion 

The dynamic version of the principle of virtual 
displacements is used to derive variationally consistent equa­
tions of motion associated with the displacement field in equa­
tion (8). The principle can be stated (see Reddy, 1984c), in the 
absence of body forces and prescribed tractions, as 

0= f \[ (aiJ8eij)dV+ [ q8u3dA-[ p(ufiu,)dv\dt (11) 

where a'' denote the contravariant components of the sym­
metric stress tensor, q = q(xa) is the distributed transverse 
force per unit area, and p is the density of the material of the 
plate. The superposed dot denotes the time derivative, 
u = du/dt. Using the strains in equation (9), equation (11) can 
be written as 

0= j ^ J ^ [\kn
hn [ f f ^ (6e^+^^+ /S^) + 2a«3(5e«3 

+ g8e°3 + x38K°a3 +x3g5K<ai + / 5 4 3 +fg8el
a3) + o33(8e°33 +g^h 

+ g28e°n)-pu^uo
a-(x

3)H0
3ia8u°ia-pful8ul

a+px3(u0
a8u0

3la 

+ 8«S«?iJ-/p(«SH + ««2«i) + fl^3(«ffa««i + ««?fa«i) 

-p(u°3 + a°3){8ul + 8ii3
1)]dx3+q(8u0

3+8uf^dA\dt (12) 

Following the standard procedure in the development of plate 
theories, we introduce stress resultants, couples, and 
analogous higher-order quantities, 

--^h+g^+g1^ (9) 

p A/2 

{N^,MaP,Pali)= (Jali{l,x3,f)dx3 

J -A/2 
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(•A/2 

{Qa,Qa,R",Ra,Sa,Sa) = a"3{l,g,x3,x3g,f,fg)dx3 

J - A / 2 

f A/2 

{N3,N3,N3) = a33{l,g,g2)dx3 (13) 
J -A /2 

Note that the introduction of the moments, couples, and 
higher-order quantities is necessary to reduce the three-
dimensional theory to a two-dimensional one. Substituting the 
relations (13) into equation (12), we obtain 

0= j o [ j n [N^dE^+M^dele+poeSK^ 

+ 2{Q»8e°ai + Q*8£°3 + R<>8K°3 + R"8K
l
a2 + S"8el

al + PSi^) 

+ N38e^+N38e^+N38e^+q{8u^ + 8u^) 

- / j « ; f i i i ; + ( i i ? + i}'f)(5iis + fii}?)] + /1(«/2fia!i„ + 8«Siif,a) 

-/f(i iSfi«i + ««S«i) + A(«3i«*«i + 8«Su,«i) 

-I2uha8u^a-lWMa\dA}dt (14) 

where -Ts denote the inertias, 
• A/2 i n/1 

pdx3 

- A / 2 

(•A/2 

/ , = \ px3dx3 

J -A /2 

(•A/2 

/{= pfdx3 

J -A /2 

/•A/2 

/ = p{x3)2dx3 

J -A /2 
(•A/2 

\ _ px3fdx3 

It, 

-A/2 

• A/2 

S A/2 

-A /2 

dx3 
(15) 

The equations of motion of the theory are obtained by 
substituting equation (10) for the strains in terms of the 
displacements {u°a, u\, wf, «a), integrating by parts to transfer 
differentiation from the displacements to the stress resultants 
and couples, collecting the coefficients of the various virtual 
displacements, and invoking the fundamental lemma of the 
calculus of variations. We obtain the following six equations: 

8<: Naf> ^-(Qf>u°\a)^
 + ^<)^=IoK-hiiha + iWa 

8ut. M«e \aP + {N«f>(u°3y + u°iV)) l«-(Q„Mgia)lp 

-(J?"l gug|„) l g + ( ^ ) l < , a - ( S » ^ | a + (N3Hg|a)la 

-(JV t t«!,)le,=g + / 0 («g+gg) + /1 i igi t t+/2»i, in-/2«giB a 

8u°3: [NaHu°^li + u°w)]\a + Qa\a=q + I0(u°, + iii) 

AP%-(G"«?i«) W „ « « 

M"? \al}+ (N«eu°3W)\a-(Q"u%la)\p 

- ( ^ " l««Sw) l f l+ ( ^«? i a ) l a 

= q + I0u
0
3+llu°a^-I1u^aa (17) 

(ii) First-Order Shear Deformation Plate Theory (u3 =0 , 
f=x3) 

Nc*\ll + (.Q?'ul
a)\ll=I0u°+I1u

1
a 

Q"\a + N^u°^)\a = q + I0u\ 

A ^ I ( ? - Q f l ( 8 ( t f + «Si< , )-N3«i+/? ' ' l f lHi=/1«;+/2 ir», (18) 

{Hi) Third-Order Shear Deformation Plate Theory 

(«? = 0, f=x3[l-~(x3\h)2J) 

Qa\a+(N^u^p)\a = q + lJ°3 

P^^-QV^ + K^ + S^pul-fPu^I^+Hul (19) 

Note that several other theories can be obtained from equa­
tion (16) as special cases. For example, the refined theory of 
Kromm (1953, 1955) can be obtained by setting wg = 0. 

5 The First-Order Theory With Moderate Rotations 

In view of the extensive use of the first-order shear deforma­
tion theory (most often referred to as the Reissner-Mindlin 
plate theory or simply the Mindlin plate theory) in practice, 
the detailed equations of the theory with moderate rotation ef­
fects are presented here. Librescu and Schmidt (1986) 
presented such a theory, but the governing equations given 
there were in terms of the resultants instead of displacements. 
It is informative to note that the substitution of the 
displacements and their gradients for the resultants into the 
equations given by Librescu and Schmidt (1986) will give rise 
to many additional terms which, by the assumption in equa­
tion (16), should be zero. To make use of the relations (16) 
these additional terms must be expressed in terms of the 
strains e,-,- and rotations co,-,-. 

Displacement Field 

ua{x'i ,x3 , 0 = M°(X ( J ,0 + x3ul
a(x<3,t) 

u3{xli,x3,t) = u%{xl3,t) (20) 

Strain-Displacement Equations 

with 

-(S« ,«Sia) l ( !- iV3«i+A^«?iB=if«S-/2«?,a+^«i (16) 

£al3 ~ea0+X ea0 

e3a=e3a+X e3a 

e33 _ 6 3 3 

1 1 
eS<3 = ^ T ( "« 10 + "is l<J + ^ T " 3 la "3 I. 

eaP - ~^~ ( Ua 1(3 + "(3 la) 

(21) 

where the underlined terms are due entirely to the inclusion of 
moderate rotations (i.e., over and above the von Karman 
nonlinear terms). 

Equations (16) can be specialized to the three different 
theories discussed earlier. The equations are summarized 
below: 

(0 Classical Plate Theory {u°3 = 0, u\ = 0) 

eOa= {uOta + ulJ + —Ufa 
731a 

, 1 e 3 a -U$U$\a 

(22) 

Journal of Applied Mechanics SEPTEMBER 1987, Vol. 54/625 

Downloaded 03 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Equations of Motion 

Ma0 

where 

A^l f l +(Q*«i i P ) l / j= / 0 «S + / , « i 

(N^u^^ + Qf l„ = ? + /„«? 

(•A/2 

(Nafi,Mafl) = ^ " ( l , ^ 3 ) ^ 3 

J -A /2 

( • A / 2 

(Qa,Ra)= aa3(l,x3)dx3 

^ J -A/2 

(23) 

T V 3 : w 
Constitutive Equations of a Laminate 

- N l -

N2 

N6 

N3 

M 1 

M2 

JA3^ 

"Q2~ 

e1 

R2 

. * ' , 

. = 

An 

A12 

A16 

A" 

5 " 

£12 

fi16 

A44 
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A'2 

A22 
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A23 

B12 
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A45 
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B44 B45 

B45 B55 

A16 

A26 

A66 

A36 

B16 

B26 

B66 

B44 

B4S 

D44 

D45 

Ai3 

A36 

A33 

Bi3 

B23 

B36 

B45 

B5S 

£,45 

D55 

Bu 

Bn 

B'2 B16 

B22 B26 

B\6 B26 £66 

Bn 

Du 

Dn 

D16 

B23 B36 

£,12 £,16 

£,22 £,26 

£,26 £,66 

(24) 

e l l 

622 

/ e 1 2 

e33 

el, 
A e22 

-

Ze23 

2e?3 

2el3 

_ 2 e { 3 ^ 

(25) 

where Nu =N\N22 =N2, Nn =N6, etc., and 

iAVJ"J}»)= £ [** Q^)(l,x3,(^3)2)rfx3 

k=\ Jxk~l 

(i, y=l,2,3,6) (26) 

N being the number of layers in the laminate, Q'/^are the 
elastic coefficients of kth layer in the laminate coordinate 
system, and {x\_l, x\) are the x3 coordinates of the bottom 
and top of the kth layer. The coefficients Au, Bij, and D'j for 
i,j = A, 5 are defined in equation (26) except that Q'(k) are 
multiplied by appropriate shear correction factors. Inspection 
of the equations of motion (23) reveal that the moderate rota­
tion terms couple all three equations of motion. Recall that the 
von Karman nonlinearity is present only in the third equation. 

6 Closure 

A higher-order shear deformation theory for the dynamics 
of general anisotropic plate that accounts for moderate rota­
tions is developed. The theory contains, as special cases, the 
von Karman analogs of the classical plate theory, the Reissner-
Mindlin plate theory and a third-order shear deformation 
theory. All equations of motion of the theory are strongly 
coupled. The detailed equations of the first-order, moderate 
rotation, shear deformation theory of laminated composite 
plates are outlined. A close examination of the virtual work 
statement shows that the displacement finite element model of 
the first-order theory still requires C° elements for the approx­
imation of the five displacements (u°a, u'a, uf). The develop­
ment of finite element models of the moderate rotation 
theories presented here awaits attention. 
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Nearly Circular Connections of 
Elastic Half Spaces 
In this paper we solve the elasticity problem of two elastic half spaces that are joined 
together over a region that does not differ much from a circle, i.e., the problem of 
an external planar crack leaving a nearly circular uncracked connection. The method 
we use is based on the perturbation technique developed by Rice (1985) for solving 
the elastic field of a crack whose front deviates slightly from some reference 
geometry. Quantities such as crack opening displacement and stress intensity factor 
are derived in detail to the first order of accuracy in the deviation of the shape of the 
connection from a circle. In addition, some results such as the crack face weight 
functions and Green's functions for a perfectly circular connection are also dis­
cussed under various boundary conditions at infinity. The formulae derived are used 
to study the configurational stability problem for quasistatic growth of an external 
circular crack. The results, derived when the crack front is perturbed from circular 
in a harmonic waveform and is subjected to axisymmetric loading, suggest that a 
perturbation of wavenumber higher than one is configurationally stable under all 
boundary conditions at infinity. The perturbation with wavenumber equal to one, 
which corresponds to a translational shift of the geometric center of the circular con­
nection, turns out to be configurationally stable if any rotation in the remote field is 
suppressed and configurationally unstable if there is no such restraint. 

Introduction 
Rice (1985) developed a method of solving the elasticity pro­

blem of a planar crack whose front differs slightly in location 
from that of some reference geometry. It has been applied to 
cases such as semi-infinite planar cracks with slightly 
nonstraight fronts (Rice, 1985; Gao and Rice, 1986) and inter­
nal somewhat circular cracks (Gao and Rice, 1987). The latter 
work (Gao and Rice, 1987) has shown that the perturbation 
method is not only convenient but also remarkably accurate in 
determining crack opening displacement and stress intensity 
factors for crack configurations that differ moderately from a 
circular reference geometry. The internal circular crack pro­
blem was addressed much earlier in a perturbation sense by 
Panasyuk (1962), and Gao and Rice (1987) compare their ap­
proach to his. Rice's perturbation method can be carried out 
immediately for a tensile crack if the solution for the stress in­
tensity factor distribution is known along the reference crack 
front due to a pair of concentrated wedging forces acting to 
open the crack at an arbitrary location on its surfaces. Such a 
point force solution, sometimes called the crack face weight 
function after Bueckner (1970, 1973) and Rice (1972), was 
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derived by Stallybrass (1981) for an external circular crack, 
i.e., a circular connection between elastic half-spaces under a 
traction free boundary condition at infinity. Following 
Stallybrass's work we are also able to clarify ambiguities in 
some previously proposed solutions in the literature (e.g., 
Kassir and Sih, 1975; Tada et al., 1973). 

In this paper we therefore solve for the crack opening 
displacement and tensile mode stress intensity factor for a 
slightly noncircular connection. The notation 8 (F) is used in 
what follows to denote the variation in some field variable F 
from its form for the reference circular crack to that for the 
perturbed crack shape. 

Consider two isotropic, homogeneous three-dimensional 
elastic semi-infinite solids joined over some slightly noncir­
cular connection of bounding contour c. A Cartesian coor­
dinate system x, y, z is attached so that the joining planes lie 
on y = 0 and the origin of the coordinate system is assumed to 
coincide with the center of some convenient reference circle. 
This configuration forms an external crack with its front c 
described by some function a{s) where a(s) is the distance 
from the origin of the coordinate system to the position s 
along the crack front; a(s) is nearly constant, and is constant 
on the reference circle. The crack system is subjected to some 
distribution of fixed forces that induce "Mode 1" tension 
along the crack front. We may note that in this case when the 
crack grows into the connecting ligament, a(s) decreases. 
Therefore, we represent the crack growth from the reference 
circular shape to the actual shape by -8a(s). In this cir­
cumstance it can be shown, following Rice (1985), that the 
variation in opening displacement Au(x,z) between upper and 
lower crack surfaces at location x, z, when the crack front is 
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altered from the reference circular front b y - &a{s) in presence 
of the fixed load system, is 

2(1 -v2) C 
5[Au(x,z)] = - <P K°(s)k(s;x,z)8a(s)ds (1) 

E • Jc 

to first order in 5a(s). Here K° (s) is the Mode 1 intensity fac­
tor induced along the reference crack front by the fixed load 
system and k{s;x,z) is the intensity factor that would be in­
duced at arc length position 5 along the reference front by a 
pair of unit wedging forces opening the crack at location at 
x, z\ k(s; x, z) can be called the Mode 1 crack face weight 
function. This weight function is discussed in detail in Appen­
dix A. Here the intensity factor K is defined so that K/^2%e is 
the asymptotic form of the tensile stress at small perpendicular 
distance e from the crack front on the prolongation of the 
crack plane within the connection. 

Crack Opening Displacement 

We choose the reference crack as a perfectly circular con­
nection of radius a and adopt polar coordinates for conve­
nience so that s = ad' in equation (1). Here the polar coor­
dinate angle 8' is measured from the positive x axis, increasing 
towards the positive z axis. To emphasize dependence on the 
reference circular radius a, we introduce the notations 
K°(s) =K°[6;a] and k(s; x, z) = k(8'\ r, 8; a) for the intensity 
factors induced at 8' along the reference crack front, respec­
tively, by the given load system and by a pair of unit wedging 
point forces at polar position r, 6. Then equation (1) becomes 

2(1 -v2) f2* 
5[Au(r,6)]= —~-

E Jo 
xK°[6'; a]k(d'\ r, 6; a) a 8a(d') dd' (2) 

where 8a(8') = a(8')-a. Also, we introduce the notation 
AM (r, 6) = Aw° [r, 8; a) to describe the opening of a perfectly 
circular connection of radius a under the given loadings. 

We can also derive K° [8'; a] by the law of superposition 
when some distributed load p(r; 8) is acting on the external 
crack faces 

] e p(p,<t>)k(8';p,<l>;a)pdpd<l> (3) 

The problem of general tensile loading can also be described in 
this way whenp(r, 6) is equated to the tensile stress which the 
general loading would induce at r, 8 in the absence of the ex­
ternal crack. 

To find the opening displacement field for a perfectly cir­
cular connection, we impose a uniform crack growth, i.e., 
5a(8') = 8a in equation (2). Then dividing both sides of equa­
tion (2) by 8a and lettering 5a — 0, we get 

dAu°[r, 8;a]_ (1 -y 2 ) f2* 

da ~ E Jo 

xK°[d';a]k(8';r,8;a)ad8' (4) 

Noting that A«° [r, 8; a] = 0 when a > r (only crack faces 
open), we integrate over the crack size variable a' and get 

(l-v2) f2* f A U o [ r , 9 ; f l ] = 2 ^ j o I 
xK°[8'; a'] k(8'\ r, 8; a') a' da' dd' (5) 

Substituting equation (3) into (5), we get the following 
general crack opening displacement for external circular 
cracks, 

Au°[r, 8;a] = 2K k(8'; p, <t>; a') 
k, J0 Ja JO Jo' 

xk(8'\ r, 8; a') a'p(p, $) pdpd<t> da'dd' (6) 

If we switch the order of integration with respect to a', 8' and 
p, (/>, we therefore could rewrite equation (6) as 

Au° [r, 8; a] = \J j ' D(r, 8; p, <j>) p(p, <f>) pdPd<f> (7) 

where 

D(r, 8; p, <j>) = 2K 

E Jo Jo 
xk{8'\ p, (j>; a') k(8'\ r, 8; a') a' dd' da' (8) 

is clearly identified as the crack face Green's function for an 
external circular crack, and it is further discussed in detail in 
Appendix B and also in Appendix D. 

Equation (6), or equation (7) combined with equation (8), 
gives us the formula to determine the crack opening displace­
ment for a perfectly circular connection. The integrals in those 
equations can be carried out once the loading system p(r, 8) 
and the crack face weight function k(8'; r, 6; a) is known. 
The function k(8'\ r, 8; a) is discussed in Appendix A and 
presented under various boundary conditions at infinity. The 
most general form of k(8'\ r, 8; a) is given by equation (A-9) 
of Appendix A under traction free, completely unrestrained 
displacement conditions at infinity. For convenience we pre­
sent it here too: 

a^lr2-^2 "I 

a2 + r2 -2ar cos (8' -8)1 

+ 3 F — cos"1 ( — ) + ( l — — ^ ] cos (5'-(9)] (9) 

When the shape of the connection is slightly noncircular, it 
is convenient for purposes of calculating the opening Au (r, 8) 
along the ray at any particular angle 8 to take the radius of the 
reference circular crack front to be a circle of radius equal to 
a(8). We then are able to let r approach simultaneously both 
the reference front and the actual perturbed front. This pro­
cedure, as described in earlier papers (Rice, 1985, Gao and 
Rice, 1986, 1987), is necessary to retain the correct asymptotic 
behavior near the crack front as is crucial for the calculation 
of the stress intensity factor along the perturbed crack front. 
Then equation (2) becomes, 

5 [Au(r, 8)] = 2 ^ [ * K°[8'; a(8)] k(8'\ r, 8; a(8)) 
E Jo 
X la(d)-a(6')] a(8) dd' (10) 

Equation (10) plus equation (6) then gives the total opening 
displacement as 

Au(r, 8) = Au°[r, 8; a{8)} + & [Au(r, 8)] 

( l - v 2 ) f2lr (fr 

= 2- - \ K°[8';a']k(8';r,8;a')a'da' 
E Jo (J<7(9) 

+ K°[B'; a(d)}k(d'\ r, 8; a(9)) [a(8)-a(.d')]a(8)] d8' 

= 2
(1~y2) [ 2 T 

E JO )a(fi') 

x K°[8'; a'] k(8'; r, 8; a') a' da' dd' (H) 

where the last = means equal to first order of accuracy in 
a(8') - a(8). Equation (11) can be used to evaluate the open­
ing displacement for a slightly noncircular connection if one is 
given the shape of that connection (i.e., the function a(8')). 
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Stress Intensity Factors 

Stress intensity factors can be extracted from the near tip 
behavior of the crack opening displacement, as indicated by 
equation (5-13) of Appendix B. The same relation holds be­
tween 5 [Au(r, 0)] and 5K(8), the first order variation of inten­
sity factor as 

8{Au(r, 8}]=^^1 

x [&K(fi) - \ P ^ - + ° [(«(0)-/-)3/2]] (12) 

where again the variations are from the reference circular 
front, of radius equal to a(6), to the perturbed front. 
Substituting crack face weight function (9) into equation (10) 
and letting r — a(B), we get the following asymptotic formula 

&[Au(r,8)]=-
•KE 

2(1 -v2) \r-a(8) [2* 

-wa(d) 

a(8)^2a(8) 

i(0) ' a(0)24sin2 [ (0-0 ' ) /2] 

6V2cos ( 0 ' - 0 ^ 
- j [a(8)-a(8')] dB' (13) 

Comparing equation (13) with (12), we see immediately that 
the variation in stress intensity factor is 

5K(8) = K(B)-K°{8; a(8)] 

= ~PV \ * K»[6'; a(8)} U-a(8')/a(8)] 
27T JO 

[ x 1+-
1 

4 sin2 [ (0 ' -0) /2] 
+ 6 cos ( 0 ' - 0 ) ] dB' (14) 

Here PV denotes principal value. Equation (14) gives the for­
mula to evaluate the stress intensity factor when the shape of 
the connection, i.e., a(8'), and the loading configuration, i.e., 
K° [0'; a(0)], are known. 

In fact, equation (14) is correct only when we do not have a 
displacement-restraint type of boundary condition at infinity, 
i.e., when the crack system is subjected only to fixed forces. 
Similar to the discussion in Appendix A, we treat some typical 
displacement boundary conditions at infinity in the following. 

(0 "Clamped" at Infinity, i.e., Fixed Against Any Displace­
ment. In this case, the crack face weight function should be 
kd(B'\ r, 0; a) of equation (.4-6) of Appendix A. Following 
the similar steps leading to equation (14), we have 

5K(8) = ~PV 
07T 

K°[B'\ a(0)]l-a(0')/a(0)] 
sin2[(0'-0)/2] 

dB' (15) 

07) Free Vertical Motion But Fixed Against Rotation. In 
this case, the crack face weight function should be 
k„(8'; r,B;a) of equation (,4-7) of Appendix A. Similarly we 
have 

l r2ir 

5K(8) = PV K° [0';«(0)] [l-a(0')/«(0)l 
2-7T JO 

4 % s i n W - 0 ) / 2 > ' (16) 

(Hi) Free Rotation But Fixed Against Vertical Displacement 
Along y Axis. In this case, the crack face weight function 
should be kr(8'; r, 0; a) of equation (.4-8). Therefore, 

5K(d) = —-PV \ *K° [B';a(8)] [l-a(8')/a(8)} 
2ir Jo 

1 
-+6 cos (0' -t dB' (17) 

U s i n 2 [ ( 0 ' - 0 ) / 2 ] 

From now on, for conciseness we will refer to the above dif­
ferent cases of boundary conditions at infinity by their case 
number, e.g., case (i) represents fixed displacement at infinity, 
and the case of equations (9), (13) and (14), for which there is 
no restraint against displacement at infinity, will be called case 
(iv). 

Growth Mode of an External Circular Crack 

The previous elastic analysis of somewhat circular connec­
tions may be used to study the configurational stability of the 
fracturing process of a bonded circular area between two large 
elastic solids, at least when this occurs quasistatically (e.g., by 
fatigue load cycling or sustained load corrosion) under elastic 
fracture mechanics conditions. We study the configurational 
stability of the mode of growth as a concentric circle of 
diminishing radius for an external, initially circular, crack 
under some spatially fixed axisymmetric loading system. Since 
any somewhat noncircular crack growth profile could be 
represented in terms of a Fourier series, it will be sufficient to 
consider the following perturbation of the front in a harmonic 
wave form: 

a(6) = a0-Re [AeM] (18) 

where a0 is a real constant, n is an integer, A is a constant 
(possibly complex) and \A\/a0 << 1. We assume that the 
quasistatic growth rate of the crack increases with the intensity 
factor at the same location along the front. Then a small har­
monic perturbation of wave number n can be said to be con­
figurationally unstable (increase in amplitude \A |) during sub-
critical crack growth if the intensity factor K(8) is decreased 
from K°[6; a0] when a(B) exceeds aQ and increased when a(8) is 
less than a0, and configurationally stable if the opposite is 
true. That is, crack growth is likely to amplify the forms of 
those unstable wave configurations, if any exist. Of course, 
the growth or decay of the harmonic perturbations is 
understood to be superposed on the uniform axially symmetric 
diminuation of a0 in describing the total crack growth. 

Since the applied loading is now considered axially sym­
metric relative to the reference crack center, K°[B'; a] = 
K°[a], i.e., it is independent of angle. Substituting equation 
(18) into equations (14), (15), (16), and (17), carrying out the 
integrations, and expanding K°[a] to the linear term in a 
Taylor series about a0, we have to the first order in \A\, 

K(8)=K°la0] - i ^ A + Jh_ ^ [ f f j "j Re [AeM] (i9) 
C da0 2a0 J 

where for case (/), n^ = n\ for case (if), nl = n + 2; for case 
(«0, 

- 5 n=\ 

n otherwise 

and for case (iv), 

- 3 

n + 2 

n = \ 

otherwise 
(20) 

Clearly if the sum within the curly brackets in equation (19) is 
positive, any perturbation from circular of the corresponding 
wavenumber would be diminishing, i.e., configurationally 
stable since K attains the smallest value at the places where the 
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crack has grown most, i.e., where Ae'"e = \A\. For conve­
nience we name this sum by //(«]) to emphasize its dependence 
on the number «, (which further relates to wave number ri) so 
that the critical, neutrally stable situation can be said to be 
reached at a number n\ (riot necessarily integer) satisfying 
H{nc{) = 0. It is easy to see that when nl > nc

{ the quantity 
within the curly bracket in equation (19) becomes positive and 
it becomes negative if the opposite is true. Therefore, «, < n\ 
must be satisfied for a configurationally unstable wavy mode 
perturbation. It can also be noticed that the translational shift 
mode, i.e., n = 1 is most likely to be unstable for cases (Hi) 
and (iv) since nx < 0 in those cases, and higher modes (n > 1) 
are more likely to be unstable for cases (i) and (Hi) since «, = 
n in those cases. Hence it might be suitable to conclude here 
that case (ii) when points at infinity can only move freely in the 
vertical direction and are fixed against rotation is the most 
stable crack system while case (Hi) when points at infinity can 
only rotate freely about a fixed point on the central axis y is 
the most unstable system, especially for the translational mode 
n = 1. 

Remotely Applied Centered Force; Imposed Remote 
Displacement 

Consider, for example, that a remotely applied tensile force 
F is transmitted across a circular connection with no net mo­
ment about the center of the connection. The case (iv) for­
mulae of the last section apply here and 

dK° «, ^ . , « , - 3 
//(«,) = " K° K° (21) 

da0 2a0 2a0 

By equations (20), we know that « 1 = « + 2 f o r « > l . 
Therefore, H > 0 for n > 1 so that all perturbations of 
wavenumber greater than one are configurationally stable. 
For the translational mode, i.e., when n = l a n d « , = - 3, it 
is obvious that H < 0 so that this mode is configurationally 
unstable. In fact, equation (19) becomes when n = 1, 

K = K° [1 + 3 Re(Aeie)/a0] (22) 

We get the same relation by applying equation (B-8) of Appen­
dix B, for a connection under remotely applied force and mo­
ment, as in this case the center of the connection has simply 
been shifted by an amount \A I so as to generate a net moment 
equal to F\A\ about the 6 = 90° - arg (A) axis (here arg (̂ 4) is 
the phase angle of A). Therefore, equation (22) is valid even 
for a shift of any finite amount. This suggests that transla­
tional shift is very likely to occur when the crack system is sub­
jected only to a centered force. It should be noted that the 
shape the crack will take after finite amount of growth is hard 
to predict because once the translational shift occurs the net 
moment thus generated has to be considered. The stress inten­
sity factor will become nonuniform along the shifted circle, 
and thus it will not remain circular. 

A case is studied in Appendix C for which the crack system 
is subjected to a fixed vertical displacement of amount equal 
to c at infinity and the stress intensity factor and crack open­
ing displacement thus induced are also derived there. Under 
this displacement boundary condition, the crack face weight 
function should be kd (9';r,d;a) of equation (A-6). Hence by 
equation (C-4) of Appendix C, we have 

Ec 
K°[6;a]=- — = , (23) 

( l - y 2 ) V ™ 
Therefore, 

H, = -
dK° 

da0 2cn 

•K°: 
(n - 1 ) Ec 

2(1-
->0 (24) 

for n > 1. Equation (34) indicates that the translational mode 
is neutrally stable while perturbations of higher modes are 
stable. Growth in a circular shape should occur in this case. 

The above results suggest that in a displacement controlled 
tensile test where we fix the amount of remote vertical 
displacement of a specimen which is constrained against rota­
tion, growth in a circular shape should occur. In the load con­
trolled tensile tests where a fixed, originally centered load is 
applied to the specimen (weight load, for example), a 
nonuniformity of growth which begins as an amplification of 
any initial nonuniformity in the translational shift mode is 
likely to take place, so that the crack could hardly grow in a 
uniform manner. 
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A P E N D I X A 

Crack Face Weight Function for an External Circular 
Crack 

From equation (6) to (8) of the text it is clear that the for­
mulae for the crack face opening displacement all require the 
knowledge of crack face weight function k(6';r,d;a), i.e., the 
stress intensity factor induced at 6' along the reference cir­
cular front by a pair of unit wedging forces at r, 8 on the crack 
faces outside the circular connection. As pointed out by 
Stallybrass (1981), this weight function solution depends on 
the boundary condition at infinity. Examples of such boun­
dary conditions at infinity could be vanishing displacements or 
traction free conditions. In the following we follow Stallybrass 
(1981) and categorize the forms of crack face weight function 
under different boundary conditions at infinity. 
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The normal stress distribution within the circular connec­
tion on the prolongation of the crack plane due to a unit point 
wedging force pair acting to open the crack faces at location r, 
8 is the same as the stress field induced within a circular punch 
area due to an externally applied unit concentrated force on 
the surface of the half space at the corresponding location. 
That stress distribution was derived by Galin (1953) using 
potential theory and later by Stallybrass (1981) using an in­
tegral equation approach and, for the case when the solid is 
restrained against displacement at infinity, the stress at loca­
tion p, 4> in the connection is 

<>Go,0;r,0) = 
1 VT^V 

TT2VT^V P2 - 2rp cos«> - 8) + r1 (4-1) 

Equation 04-1) enables us to calculate the net force and 
moments hence generated on each horizontal plane (planes 
parallel to the crack plane), i.e., 

P(r) = - j o " j f l * < W ; r , 0 ) pdPd<t>+l 

C O S ' (•f) 04-2) 

The net moment generated about the 6 + 90° axis is 

{ a /» 27r 

o ] o pcos(<l>-6)o$(p,cl>;r,6)pdpd(l> + r 

"T^h" (-f)^1-^-)"2] ir>a) {A-3) 

where we also explicitly emphasized the dependence of P and 
M on position variable r, where the unit point force acts. 

Since the stress distribution 04-1) represents the case when 
all displacements vanish at infinity, the above calculated net 
force P in 04-2) and net moment M in 04-3) are balanced by 
"reaction" force and moment from the restraint at infinity. In 
the situation when we have traction free boundary condition 
at infinity, i.e., when there is no restraint against displacement 
there, the "reaction" force and moment should be taken off 
by superposing equal, oppositely sensed force and moment at 
infinity to achieve such boundary conditions. Therefore, two 
auxiliary problems should be discussed prior to the full presen­
tation of crack face weight functions, namely, the circular 
connection subjected to remote net centered force P and net 
moment M about the 9 + 90° axis at infinity. Fortunately the 
stress distribution induced within the circular connection due 
to these loadings have been derived by Sneddon (1951) as 

<> (p,4>;r,0) = . P!^-^ (r>a,p<a) (4-4) 

and 

<WM\r,V)--

2wa^~a2 - p1 

3M(/-)pcos(<£-0) 

2iraNa2-p2 
(r>a,p<a) 04-5) 

Equation 04-4) and 04-5) represents the stress distribution in­
duced within the circular connection by net tensile force P(r) 
and net moment M(r) about 8 + 90° axis at infinity. By the 
rule of superposition discussed before, the total stress distribu­
tion within the circular connection area would be (j) equation 
04-1) if infinity is "clamped", i.e., with no displacements; (ii) 
equations (A-l) plus 04-4) if the solid is allowed only to move 
freely in the y direction (or vertically) but is fixed against rota­
tion at infinity; (Hi) equations 04-1) plus 04-5) if the solid 
could only rotate freely without displacement of points lying 
along the y axis at infinity; (iv) equations 04-1) plus 04-4) plus 
04-5) if the solid is free to move without any restraint against 
displacement at infinity. 

Assembling all the discussion made so far, we list the crack 
face weight function at the following typical boundary condi­
tions at infinity: 

(i) "Clamped" at Infinity, i.e., Fixed Against Any 
Displacements. In this case, the crack face weight function is 
simply 

kd(8'\r,6;a) = lim sp2Ma-p~)<^ (p,8';r,8) 
P-a 

(4-6) 

a1+r2-2arcos(8' -6) 

Former discussion shows that the difference between solution 
under this condition and the solution under the condition of 
traction free, unrestrained displacement conditions at infinity 
lies only in terms representing the effect of a net force P as in 
04-2) and a net moment M a s in 04-3). Therefore, in solving 
the elasticity problems of a circular connection, in the first 
step we use above kd as crack face weight function and in the 
second step we study separately the effect of the remote tensile 
forces and/or or moments and combine the results with those 
of the first step. An example of this way of thinking will be 
shown in Appendix B in deriving the crack face Green's 
function. 

Solution 04-6) matches the point force solution proposed by 
Kassir and Sih (1975), although they failed to specify the 
limitation of the boundary condition at infinity on their 
solution. 

(ii) Free Vertical Motion But Fixed Against Rotation at In­
finity. In this case, the remote tensile centered force P of 
equation 04-2) should be superposed. Therefore, the crack 
face weight function is 

kv(d';r,d;a) = um ^Ma^) [<r<"> (p,6';r,8) 

+ o$(p,0'irM=-
(TTfl)3 

X [--'(-f)-
aVr 

! + r2-2arcos(6'-d)\ 

Note that this equation 04-7) coincides with the solution pro­
posed by Tada et al. (1973), although they also did not specify 
the condition under which their solution would be valid. 

(Hi) Free Rotation But Fixed Against Vertical Displacement 
Along y Axis at Infinity. In this case, there is an additional 
contribution from the superposed net moment only. 
Therefore, 

kr(d';r,8;a) = \[m_ V2ir(a-p) \<M (p,8';r,8) 

+ W ^'^=1^ L2
 + /^(8'-8) 

+ 3 [ — c o s - 1 ( — ) + ( 1 — V ) ] c o s ( 0 ' - 0 ) ] 04-8) 

(iv) Traction Free at Infinity. In this case, contributions 
from both net force and net moment should count, and we 
have the following solution by Stallybrass (1981) 

k„(8' ;r,8;a) = lim V2ir(«-~p) [<T<"> (p,8' ;r,0) 

+ < » (p,e';r,ff) + o%> (p,8';r,8)]=-
(iray 

a\/r2 — a2 

x j cos-1 ( )+—5 5—-
U. V r / aL + r - 2ar cos( -e) M-f 

(4-9) 
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A P P E N D I X B 

Crack Face Green's Function; Opening Displacement 
for Circular Connection under Remotely Applied Force 
and Moment 

Equat ion (9) of the text gives the expression for the crack 
face Green's function as 

D{rfi;p,4>) = 2-
\-v2 m\n{r,p) p 2TT 

E r s 
x k(6';p,4>;a')k(6';r,6;a')a'da'dd' (5-1) 

Temporarily let us impose the condition that all the 
displacements vanish at infinity. In this case, we could replace 
crack face weight function k in equation (5-1) by kd in equa­
tion 04-6). Therefore, replacing k by kd and D by Dd in equa­
tion (5-1), we have 

Dd(r,9;p,4>) = 2-
5V3 1min(r,p) r "t 

a JO 

\(r/a',e-6')\(p/a',<t>-6') , 
x , —, dd da (5-2) 

V r 2 - a ' 2 s/p2-a'2 

where 

x \(k,4>) = (1 - k2)/(\ - 2kcos<j> + k2) (5-3) 

has been introduced for conciseness of the formulae, follow­
ing Sankar and Fabrikant (1982). 

Now consider the following t ransformat ion 

r* = l/r, p* = \/p\ a* = \/a; x=\/a' (5-4) 

It may be shown that equation (5-2) becomes, 

Dd(r,6;p,<i>) = 2 
\-v2 i a* f> lit 

max(r*,p*) JO 
EirTp 

\(x/r* ,6-6')\(x/p* ,<t>-6') 

Vx2 - r*2 *Jx2 — p*2 
dd'dx (5-5) 

The integral in equation (5-5) has been studied by Gao and 
Rice (1987). They pointed out that above integral can be 
reduced to a pseudo-elliptic integral, and by a standard 
transformation they proved 

I" f 
Jmax(r*,p*) JO 

2- \(x/r*,8-6')\(x/p*,4>-6') 

Vx2 - r * 2 V ^ - p * 2 
dd'dx 

2TT (4W1 

arctan I 
d* \ 

2)(a*2-p*2)^ 

a*d* 
(5-6) 

where d* = -Jr*2 -2r*p*cos(6 — (j>)^f>*2. Us ing equa t ions 
(5-4) again to transform back to the original variables, we 
finally have, 

Dd(r,d;p,4>) = 4-
1 
,E7r2tf arctan 

•yf(rr- a2)(p2-a2)^ 

ad 
(5-7) 

where d = *Jr2 - 2rp cos(0 — <t>) + p2is the distance between r, 6 
and p, <j>. Equation (5-7) matches the corresponding formulae 
given by Galin (1953) and Stallybrass (1981). It is discussed 
also in Appendix D. The above result looks very similar to the 
crack face Green's function for internal circular cracks given 
by Gao and Rice (1987), which is not unexpected because of 
the similarity of crack face weight functions in this case. 

Recall that equation (5-7) represents the crack face Green's 
function when the condition of vanishing displacement field at 
infinity is imposed. This has been called case (f). We know 
from Appendix A that by superposing a net force P of equa­

tion 04-2) and net moment Mof equation 04-3) about 6 + 90° 
axis, we can get rid of the restriction on the displacement field 
at infinity and achieve the traction free boundary condition 
there with no restraint against displacement, case (iv), and can 
similarly deal with cases (ii) and (Hi). Therefore, to calculate 
the crack face Green's function for cases (if), (iif), and (iv) we 
need to study two auxiliary problems, namely, crack opening 
displacement under remote applied centered for F and mo­
ment M, where the moment Mis now assumed to be about the 
90° axis for convenience. 

Consider that the described external circular crack system is 
subjected to a remotely applied tensile force F with a net mo­
ment Mabout the 6 = 90° axis. In this case, if0 [d';a] is given 
by Tada et a. (1973) (also, see Neuber, 1937, and Sneddon, 
1951) as 

K° [d';a]--
aF+3Mcos6' 

(5-8) 
2a24Va 

Substituting equation (5-8) into equations (5), (6), and using 
04-8), one may easily find 

dA°u[r,6;a] (\-v2) c 2 ' 

da E(Tta)"' 1 27T 

o {F 
+ 3Mcos d'/a) 

([cos"(-f)+^T 
a\frsr- a'-

+ 3[~f cos-'(-^) + (l-^)1/2]cos(0'-0)]^' 

r2 - 2ar cos(6 -

2 \ 1/2 -i 

n\ 

(\-v2) CF 

•KE th^-f)^! 
3 M cos 6 

. " ^ C 0 S " ' ( T " ) 
3r 

2sfr i2 2r4r2 — a2 } 
(5-9) 

Now we integrate over the radius of the connection between a 
and r, as in going from equation (5) to (6), and find that 

(\-v2) (F 
Au°[r,d;a] = 2 

3 M cos 6 

•KE £~-(-f) 
[-f»-(T-M'--£-n} * -10) 

If we replace F by P(p) of equation 04-2) a n d M b y M(p) (also 
the axis of the moment is changed to </> + 90°) of equation 
04-3) of Appendix A , we therefore could rewrite equation 
(5-10) as 

U-"2) C 
\P(r)P(p) 

Au°[r,6;a] = 4-
ir2Ea 

3M(r)M(p) 
H ^ ^ cos 2a2 (0-0)] (5-11) 

If we combine equation (5-11) and equation (5-7), we have, 
for case (iv) 

1 - v2 C a / 
D(r,d;p,4>) = 4 — - a r c t a n (• 

E-KLa L d \ 

V(/-2-a2)(p2-a2)N 

ad 

s 3M(r)M(p) -) 
+ P(r)P(p) + ' ^ cos«>-0)J (5-12) 

where P(r), M(r) are given by equations 04-2) and 04-3). We 
also observe that the symmetry is indeed preserved in equation 
(5-12). The M terms are deleted in (5-12) to give D for case 
(if), and the P terms are deleted to give D for case (Hi). 

In going from equation (5-8) to equation (5-10), we have 
just shown an example of how to calculate the crack opening 
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displacement from the knowledge of the distribution of stress 
intensity factor along the crack front. It is, of course, also 
possible to go in the reverse direction, i.e., to extract the in­
tensity factor distribution from the near front behavior of the 
opening displacement. When r — a+, cos~[(a/r) -~ 
<2{r-d)Ta and {\~a2/r2)xn - V~2(r-
tion (.6-10) shows 

g + , cos" 
-a)/a , so that equa-

Au°[r,d;a] = $ d-"2) F 

>-2a~4-Ka 

2a2 

3Mcos « \ \r — a 

(1 

E 2TT 

2TT 

K°[e;a] + 0[(r-a)1/2] (5-13) 

The latter version of equation (.6-13) represents the known 
asymptotic behavior of crack opening displacement near the 
crack front for any tensile crack. 

When r — oo, cos~' (a/r) — ir/2, 

Au°[r,6;a]-
(1 v2) F 1M r cos 0~; 

t o 2«2 (5-14) 

Equation (5-14) shows that the crack faces far from the front 
would tend to be linear flat planes (free of stress) with slopes 
about 6 = 90° of ± 3 M ( l - e 2 ) / ( 2 a 3 £ ) . These planes would 
ultimately contact when M ^ 0, invalidating the present solu­
tion, if the jointed solids are truly unbounded half spaces, 
although this need not be a problem in practice for finite 
joined bodies, especially if the mathematically planar crack 
represents a shallow notch cut-out. 

A P P E N D I X C 

Stress Intensity Factor of an External Circular Crack 
with Fixed Displacement at Infinity 

Assume that the elastic solid is subjected to a fixed amount 
of vertical displacement at infinity as following 

u±a, = (c + ax)sgn(y) (C-l) 

where sgn(j>) = y/\y\ for y ^ 0, and the same coordinate 
system as used in the text is adopted and x = r cos 6. We solve 
here for the stress intensity factor induced by this displace­
ment in equation (C-l) and the crack opening displacement 
function. 

Referring to equation (5-14) of Appendix B, we know that 
under remotely applied centered force and moment the crack 
faces far from the crack front would tend to become linear flat 
planes (free of stress). We also observe that under the imposed 
remote dispalcement field (C-l), crack faces far from the front 
should approach the same displacement field at infinity 
because the stresses approach zero there. Therefore imposing 
a fixed displacement field at infinity (y — ± oo) is equivalent 
to imposing a net tensile force and a net moment at infinity for 
an external circular crack. Now consider a crack system sub­
ject only to a tensile force F and a net moment M at infinity 
but otherwise traction free. From Appendix B, we know crack 
opening displacement far from the crack front is 

Au°[r,e;a] 
(1 -v2) (F 3M r cos i 

2a1 

Now let 

Au°[r,6;a] = u + oa-u_ (C-2) 

Comparing both sides of equation (C-2), we find the following 
relations 

F = -
2Eac 

M=-
4Ea\ 

(C-3) 
3(1 -v2) 

Therefore by equation (5-8) and (5-10) the stress intensity 
factor induced is 

c + 2aa cos 
K°[d;a]=- r = (C-4) 

and the crack opening displacement is 

Au°[r,d;a]= — jc cos^1 ( — ) 

+ aa cos 6 [~ cos ~' (~) + ( l - ~ ) ' " ] ] (C-5) 

A P P E N D I X D 

General Displacement Green's Function and Stress 
Field for Internal and External Circular Cracks 

When a three-dimensional crack system is subjected to ten­
sile loading that is symmetric relative to the crack plane, it is 
known that the elasticity equations and boundary conditions 
can be satisfied if the displacement and stress field are written 
as (Galin, 1953; Green and Zerna, 1954; Meade and Keer, 
1984) 

uy = - 2[(1 - p2)/E] Y+ [(1 + v) /E]yd Y/dy 

ux = [(1 + v)/E]d{F+yY)/dx 

uz = [{\ + v)/E\d(F+yY)/dz 

{D-D 

where F and Y are harmonic functions related by dF/dy = 
(1 - 2c) Y. The coordinates are set up in the same manner as in 
the text with the crack on the y = 0 plane. The stress com­
ponents that enter crack surface boundary conditions are 
calculated from stress-strain relations as 

Gyy=-dY/dy+yd2Y/dy2 

on = yd2 Y/dydx, ayz = yd2 Y/dydz (D-2) 

It is seen from equations (D-2) that there is no shear traction 
on y = 0. Thus the problem of loading on the crack face is one 
of finding a function Y satisfying V 2 F = 0 , vanishing at infini­
ty (at least for case (0), and generating stress a(x, z) and open­
ing gap Au (x, z) on y = 0 given by 

<j(x,z) = -dY/dy\y=0 and Aw= - [ 4 ( 1 - v2)/E]Y\y=0+ (D-3) 

(a) Internal Circular Cracks. Now we consider the 
elasticity problem of a three-dimensional elastic solid with an 
internal circular crack of radius equal to a subjected to a point 
force pair in the ±y directions acting at f, r; on the crack 
faces. According to equations (D-\), {D-2), and (D-3), we for­
mulate following problem, 

V 2 7 = 0 

7 = 0 when x2+z2>a; y = 0 

dY/dy=-S(x~£)S(z—o) when x2+z2<a; y = 0 {D-4) 

7 = 0 at oo 

Let us denote the solution to equation {D-4) as Y = H(x, y, z; 
£, rf). It is known (Galin, 1953) that 

H(x,y,z;£,-o) = r r arctan 
•K2d 

-•J(a2-£2-r,2){a2-x2-y2-z2+R)~ 
V2arf 

(D-5) 

Journal of Applied Mechanics SEPTEMBER 1987, Vol. 54/633 

Downloaded 03 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



where 

d2 = (x-^)2 + (z—n)2+y2 

R2 = (a2-x2-y2~ z2)2 + 4a2 y2 (D-6) 

Replacing Y by H in equations (£-1) and (D-2), we then get 
the displacement Green's function and stress field at an ar­
bitrary location in space. Specifically, the crack face Green's 
function is seen to be 

4(1 -v1) 

E 

4(1 -v2) rVT^F^ 2)(G 2-x 2- / ) 
= —j——arctan (D-l) 

ir2Ed I. ad 

If expressed in polar coordinates, equation (D-l) becomes, 

£(/-,0;p,0) =—5——arctan (£-8) 
wiEd t ad J 

where d reduced to V/-2 - 2rp cos(0 — </>)+ P2 • Equation (£-8) 
coincides with the solution derived through the perturbation 
analysis by Gao and Rice (1987, Appendix A). 

(b) External Circular Cracks. Now we consider a similar 
crack system but with an external circular crack, or a circular 
connection of radius equal to a subjected to a point force pair 
in the ±y directions acting at if, -q on the crack faces with zero 
displacement at infinity. In an analogous way we formulate 
the problem as solving 

V 2 F = 0 

y = 0 when x2+z2<a; y = 0 

dY/dy=-5(x-£)5(z-r)) when x2 + z2>a; y = 0 (D-9) 

7 = 0 at 00 

Note that in this formulation we imply that there is no 
displacements at infinity and hence the solution thus generated 
can only be applied to case (i) of the text. The solution to 

equation (D-9), dentoed here as Y =L (x, y, z\ £, 17), was given 
also by Galin (1953) as 

L(x,y,z;£,y) = yy arctan 
w2d 

^ (H2 +n
2 -a2)(x2 +y2 +z2 -a2 +R)^ 

I V2ad J ( U) 

where d and R are given by equations (D-6). Similarly if we 
replace Y by L in equations (D-\) and (D-2) the displacement 
Green's function and stress field at an arbitrary location in an 
elastic solid with an external crack are generated. Specifically 
the crack face Green's function can be extracted and expressed 
in polar coordinates as 

n / « ,> 4 ( 1 - , 2 ) f - V ^ - ^ K / - 2 - ? ) - ) 
Dd(rfi;p,4>)=—r——arctan (£-11) 

•w'-Ed (. ad J 

Equation (£-11) coincides with (5-7) of Appendix B, where 
the crack face Green's function is derived by the perturbation 
formalism. 

Let us note that by using the solutions of equations (£-5) 
and (£-10) for Y in equations (£-1), we can compute the 
displacements uz, uy, and uz at (x, y, z) due to unit opening 
point forces acting on the crack faces at (£, ?;, 0), for the 
respective internal and external circular crack cases. By the 
elastic reciprocal theorem, those very same results for uz, uy, 
and uz also represent the opening gaps Aw on the crack faces 
induced at (£, rj, 0) by unit point forces at (x, y, z) in the 
respective x, y, and z directions. But from the knowledge of 
that opening gap Aw in the vicinity of the crack front, one may 
also calculate (e.g., equation (5-13)) the tensile mode stress in­
tensity factors induced by the unit point forces at (x, y, z) in 
the respective x, y, and z directions. These stress intensity fac­
tor defined the x, y, and z components of the tensile mode vec­
tor weight function h as introduced by Rice (1972, 1985). 
Hence, although we do not further pursue the details here, the 
results of this Appendix allow calculation of the vector tensile 
mode weight function at general field points for internal and 
external circular cracks. 
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The Dynamic Energy Release Rate 
for a Steadily Propagating 
Antiplane Shear Crack in a 
Linearly Viscoelastic Body 
The steady-state propagation of a semi-infinite, antiplane shear crack is recon­
sidered for a general, infinite, homogeneous and isotropic linearly viscoelastic body. 
As with an earlier study, the inertial term in the equation of motion is retained and 
the shear modulus is only assumed to be positive, continuous, decreasing, and con­
vex. A Barenblatt type failure zone is introduced in order to cancel the singular 
stress, and a numerically convenient expression for the dynamic Energy Release 
Rate (ERR) is derived for a rather general class of crack face loadings. The ERR is 
shown to have a complicated dependence on crack speed and material properties 
with significant qualitative differences between viscoelastic and elastic material. The 
results are illustrated with numerical calculations for both power-law material and a 
standard linear solid. 

1 Introduction 

A central issue in fracture mechanics is the development of 
fracture criteria. A great many experimental and analytical 
studies have addressed this topic in the nearly sixty years since 
Griffith's pioneering work. One fact that has emerged from 
this effort is that the choice of a fracture criterion is very much 
dependent upon the particular scenario considered. For exam­
ple, the notion of a critical Stress Intensity Factor (SIF) has 
provided a highly successful criterion for quasi-static crack 
propagation in linearly elastic material. Important factors for 
the success of the SIF in this setting are that it is often easily 
computed and that the Energy Release Rate (ERR) can be 
determined in a simple manner from it. However, such is not 
necessarily the case for dynamically propagating cracks in 
viscoelastic material. Indeed, it is shown in this paper that for 
such models, the ERR may have a much more complicated 
dependence upon crack speed and the viscoelastic moduli. 

Several studies of dynamic viscoelastic crack propagation 
have appeared in the literature, beginning with Willis' treat­
ment of a steadily propagating, semi-infinite, Mode III crack 
in an infinite viscoelastic body (Willis, 1967). Using the 
Wiener-Hopf technique, Willis was able to construct the SIF 
for material that can be modelled as a standard linear solid. In 
1977 Atkinson and Coleman used a perturbation technique to 
construct approximations to the SIF for a semi-infinite, Mode 
I crack propagating in steady-state through a viscoelastic 

Contributed by the Applied Mechanics Division for publication in the JOUR­
NAL OF APPLIED MECHANICS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 48th Street, New York, N.Y. 
10017, and will be accepted until two months after final publication of the paper 
itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by ASME 
Applied Mechanics Division, October 28, 1985; final revision, February 17, 
1987. 

layer, also modelled as a standard linear solid. In 1979, Atkin­
son and Popelar employed the Wiener-Hopf technique to 
analyze a semi-infinite, Mode III crack that suddenly begins to 
propagate at a constant speed through a viscoelastic layer sub­
jected to constant antiplane loading. A fairly general con­
stitutive relation in terms of differential operators is assumed. 
In 1980, Popelar and Atkinson consider the corresponding 
Mode I problem. In each of these last two papers, Atkinson 
and Popelar produced formal expressions for the SIF which 
were evaluated only for a standard linear solid. Using a local 
work argument, they also exhibited expressions for the ERR 
that are based upon the singular stress solution. 

In 1982, using somewhat different analytical methods, 
Walton reconsidered the problem in Willis (1967). Under quite 
general constitutive assumptions, considerably more so than 
those adopted by Atkinson et al. which exclude, for example, 
the important class of power-law material, Walton con­
structed a simple expression for the SIF which exhibits quite 
clearly and precisely its dependence upon crack speed and 
material properties. More recently, this analysis was general­
ized to the case of a Mode III crack in a layer (Walton, 1985). 

In this paper the methods in Walton (1982) are extended to 
carry out the calculation of the ERR. The notion of ERR con­
sidered here provides a phenomenologically meaningful and 
mathematically convenient fracture criterion for dynamic 
viscoelastic crack propagation. An essential feature of the 
model is that a Barenblatt type failure zone is assumed to exist 
at the crack tip. Use of the Barenblatt model not only 
simplifies the calculation of the ERR but, much more impor­
tantly, it introduces an additional length scale and produces 
bounded stresses and strains which result in the ERR having a 
fundamentally different dependence upon crack speed and 
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material properties from that derived by Atkinson and 
Popelar using the singular fields. For example, it is shown 
below that in the limit of vanishing failure zone length, the 
ERR equals the product of the square of the SIF and a simple 
function of crack speed and the glassy values of the 
viscoelastic shear modulus. This is in agreement with the result 
of Atkinson and Popelar (1979) and also Kostrov and Nikitin 
(1970). In contrast, when the failure zone has a nonzero 
length, the ERR is the product of the square of the SIF and a 
function of crack speed and the full form of the viscoelastic 
shear modulus, not just the glassy properties. Moreover, it is 
shown here that while the SIF is a monotonically decreasing 
function of crack speed, the ERR can exhibit much more com­
plicated, nonmonotonic behavior depending upon combined 
viscoelastic and inertial effects. As discussed later, this has in­
teresting implications with regard to stable versus unstable 
steady-state crack speeds. 

The Barenblatt model has been utilized extensively in elastic 
fracture mechanics. This author would be remiss in not calling 
attention to Barenblatt's seminal 1962 paper. More recently, 
the Barenblatt model has been applied to studies of quasi-
static viscoelastic fracture, most notably in Knauss (1973) and 
Schapery (1975), in which it was observed that whether a 
failure zone is incorporated or not significantly affects the 
behavior of the ERR. 

Utilizing the techniques of this paper, this author has 
recently completed the analysis of the considerably more 
complicated corresponding Mode I problem. Moreover, 
L. Schovanec and this author have also recently calculated the 
ERR for two parallel, interacting Mode III cracks. Both of 
these investigations are the subject of forthcoming papers. 

The specific boundary value problem considered here is that 
corresponding to the steady propagation (to the right) with 
speed Fof a semi-infinite, antiplane shear crack in a general, 
homogeneous and isotropic, linearly viscoelastic body. The 
shear modulus, ix(t), is assumed only to be a positive, nonin-
creasing, and convex function of time, t. The governing equa­
tion of motion for the out-of-plane displacement, u3, is 

fi*dAu3=p uxtt 

where A is the two-dimensional Laplacian, A = (d2/dx2) + 
(d2/dx2), and /i* de denotes the Riemann-Stieltjes convolution 

" * * = J 1 pV-T)de(T). 

Upon adoption of the Galilean variables x = xx — Vt,y = x2, 
the boundary conditions may be written 

<T23(*>0)= — ( / i * r f H 3 ) = / ( * ) , X<0 
dy 

H3(*,0) = 0, x>0 

x2 +y2 — oo 

where a^ are the stress components and f(x) is a system of 
tractions moving with the crack. 

The starting point of the present investigation is the solution 
derived in Walton (1982) for the above boundary value pro­
blem. It was shown in Walton (1982) that two cases arise 
naturally in constructing the solution: 0 < V < C* and C* < 
V < C where C* = 0*(oo)/p)1/2 and C = (pi(0)/p)1/2 are the 
elastic shear wave speeds corresponding to the equilibrium and 
glassy values of the shear modules n(t). For 0 < V < C*, the 
stress field is that for static elastic fracture and is therefore in­
dependent of crack speed and material properties. Whereas, 
for C* < V < C, the stress field is both speed and material 
dependent. Specifically, the SIF, K, is given by 

K = 

- l r° 
— fffjCx,0)1x1 2 dx, 0 < K < C * 
7T J - T O 

- f 
(1) 

<72-3(A:,0)IXI 2 e«oXdx,C*<V<C 

whereg" (x) (g+ (x)) denotes the restriction of g(x) to A: < 0 
(x > 0) and q0 is the unique positive constant such that 

S oo 

lx(t)e~ioV>dt--
o 

(F/C)V(0) . (2) 

In order to calculate the ERR, the object of principal in­
terest in the present study, it is necessary, as discussed earlier, 
to modify the above boundary value problem by the introduc­
tion of a Barenblatt type failure zone. Specifically, it is now 
assumed that two loads are acting on the crack faces: the ap­
plied (external) tractions cr23(*> 0) discussed above, but now 
denoted a~ (x), and cohesive (failure) stresses a J (x) acting in 
a failure zone of length af immediately behind the crack tip. 
The only assumptions about aj (x) are that af is small relative 
to some length scale ae associated with aj (x) and that Ke + 
Kf = 0 where Ke and Kj are the SIF's corresponding to a~ 
and a J , respectively. Hence the effect of the failure zone is to 
cancel the singular stresses ahead of the crack tip and thereby 
produce a cusp-shaped crack profile behind the tip. 

The ERR, G, for steady-state crack propagation is now easi­
ly shown to be given by 

J —Of 
x) Ui\{x,0)dx (3) 

where w3(x, 0) is the crack face displacement corresponding to 
the combined loading o~ + aj. Thus G has the interpretation 
of the work input to the crack tip, i.e., the energy available to 
the crack tip for propagating the crack. Unlike for elastic 
material, G for viscoelastic material is not merely a simple 
function of K. Rather, as is evident from Walton (1982), u3i 

(x, 0) has a complicated dependence upon the loading a~ (x, 
0), making impracticable the direct numerical evaluation of 
equation (3). In the next section, a computationally conve­
nient expression for equation (3) is derived for a special, but 
still fairly general, class of loadings a~ and aj . 

2 The Calculation of G 

For simplicity of argument and clarity of result, the ERR, 
G, given in equation (3) will be calculated first for a simple 
special case. Specifically, the external load, a~ (x) and failure 
zone stresses, aj (x) will be assumed to have the forms 

a~ (x)=Lee
x/ae 

-ao<x<0 (4) 
a J (x) = -Lje"af 

where af/ae « 1. (cf Sills and Benveniste, 1981). For aj/ae 

small enough, the fact that of (x) does not have support in 
some small, compact, interval behind the crack tip will have a 
negligible effect on the results. The assumptions (4) then clear­
ly incorporate the salient features of the Barenblatt model, 
namely, a set of cohesive stresses and associated length scale ay 
and a length scale ae associated with the applied load a~ such 
that aj cancels the singular stresses produced by <J~ and af/ae 

<<C 1. It should be noted that in this case, equation (3) is 
replaced by 

i: Of (x)u3A(x,0)dx. (5) 

In order to present the results in a suitable nondimensional 
form, it is useful to introduce certain parameters. First a 
characteristic timescale, T, is defined and the shear modulus 
given the form 
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where m(s) is a nondimensional function of s with lim m(s) 
S—Oo 

= 1 and px = lim ii(t). Also useful are the nondimensional 

parameters a, /3, 7, e and X defined by 

a = C* r/ae /3 = q0 ae 7 s K/C* e s a / a , X = L/Le. (6) 
It should be noted that a and j3 can assume any positive value 
while 7 must be such that 0 < 7 < C/C*. Also, /3 = 0 
whenever 0 < K < C*. 

The desired expression for G is most easily expressed in 
terms of the Carson transform, m(s), of m(t) defined by 

m(s) — m(0) + \ e tsdm(t). 
Jo 

It is useful to record for future reference the easily derived 
formula 

jX(r)=nam(rT). 

It will now be shown that for loads of the form (4), G is 
given by 

-(fc)2 1T" K2 

V l + e / m(ay/e) L 

1 

lh(ay/e) L 1 -y2/ih(ay/e) . 
(7) 

2 M 

where A' = Ke = —Ay is the dynamic SIF. From equations (1) 
and (4) it follows easily that 

K= LM = LM 
Vl+(3e V1+/3 

The derivation of equation (7) from (5) utilizes the Fourier 
transform / of a function / . Specifically, 

f(P)=\°° fWe^dx 
J — 00 

with inverse, f(x), given by 

/ ( * ) = — [ " f(p)e~ixrdp. 
ZTT •! - • » 

Applying the Parseval formula for the Fourier transform, it 
follows from equation (5) that 

G= J-00 °J (^)"3,l(P)«(P- (9) 

In consideration of equation (4), a straight forward calcula­
tion shows that 

6f (P): 

(P)-

-afLf 

(l + icifp) 

~afLS 
2-w(\-iafp) 

(10) 

The integral in equation (9) may be readily evaluated using 
residues since, from equations (10), it is clear that af (p) has a 
meromorphic extension to the lower complex half-plane with a 
simple pole at - i/af. Moreover, u3l (x, 0) vanishes for x > 0 
from which it follows that w31 (p) = u^A (p) has an analytic 
extension, F~ (z), to the lower half-plane with 

lim F~ (p — iq) =0 . 

Consequently, for G one has 

G=LfF-(-i/af). (11) 

It remains to evaluate F~ (—ifa/). To this end use will be 
made of the following formulas derived in Walton (1982): 

u^{p)=d(p)/G(p), (12) 

G(p) = -isgn(p)jX(iVp)y1(iVp)< (13) 

and 

yl(iPV) = (l-y2/m(iVpT)y (14) 

Here one has 

a(p)=a (p)+a+(p) 

a (x)=ae (x)+af (x) 

where a+ (x) (a~ (x)) denotes the restriction of a(x) to the 
half-line x > 0 (x < 0). It should be noted that a+ (x) is the 
nonsingular stress field ahead of the crack that results from 
superposing a~ and ay. Moreover, it is shown in Walton 
(1982) that 

°+ <J>) • 

where 

F+{Z)> 

-• lim F+(z) 
/m(z)-0 + 

(<70- 'Z) ' 
2-717 

& (T){q0-iT)-
dr 

(r-z)' 

(15) 

with q0 given in equation (2). To evaluate equation (15), con­
sider first 

°t (P) • 

in which 

Ft (Z) = - (q0 

•• lim F+(z), 
/m(?)-0 + 

-iz)1 —r 
2717 J -

oe (r)(q0-iT)-
dr 

(r-z) 
(16) 

From the analog of equations (10) for a~ (/?), one sees that 
a~ (p) has a simple pole at i/ae. Since the branch of 
(q0~'T)~W2 must be chosen to be analytic in the upper half-
plane (see Walton, 1982), the integral in equation (16) can be 
calculated using residues. Thus for Im(z) > 0, 

Fe
+(z) = -(q0-iz)U2[-iLe(Q0 + l/ae)-

i/2/(i/ae 

-z) + a^(z)(q0-iz)-'/2]. 

Now letting Im(z) — 0 and adding a~ (p) to a* (p) there 
results 

o(p)=F?(p)+ae(p) 

= iLe(q0-ipy/2(q0 + l/ae)~
i/2/(i/ae-p) 

= aeLe(P/(l+IS))'/2(l-ip/q0)
W2/(l+ipae). (17) 

Similarly, for oy(p) one can show that 

af(p) = -afLf(fle/{\+il6y/2(\-ip/qoy>2/{l + ipaf). (18) 

Combining equations (4), (8), (17), and (18) one concludes 
that 

d{p) = -aeLe(P/(\+{$)yn 
(\-e)(\-ip/qoy 

(19) 
(l + iaj)){\ + iafp) 

Substition of equation (19) into (12) gives 

F~ (p) =«3 i l (p) =aeLe(?,/{\ +|3))1/2(1 - e ) * , ( p ) * 2 ( p ) (20) 

with 

*,(/?) = (\+iaep)~l{\+iafp)-x 

and 

$2(p) = (l-ip/q0)
W2/G(p). 

$, (p) is obviously an analytic function in the lower half-plane 
and in Walton (1982) it was shown that the branches of 
(\-ip/q0)

in and y,(iVp) must be chosen so that $ 2 (p) is 
also analytic there. Thus one may substitute equation (20) into 
(11) making use of equation (13) and (14) to conclude that 

(/3/(l+/3))1 / 2(l-e) I l - l / f o 0 « , ) |1 / 2 

= aeLeLr 
"Jl 

2(1 +ae/af)ii.(V/af) I \-y2/m{V/af) 
(21) 
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Combining equations (6), (8), and (21), there finally results the 
desired formula (7). 

The derivation given above is easiy modified to produce an 
analog to formula (7) for more general loads of the form 

• i ; a-(x)=LA e'x/aed hAt) 

(22) 

Of (x) = -L elx/afdhf(t) 

where he(t) and hf{t) are arbitrary signed (not necessarily 
positive) measures restricted only to the extent that the re­
quired integrals converge. For example, the special cases (4) 
correspond to d he{t) = d hf(t) — 5(t - 1), the Dirac 
measure concentrated at t = 1. As further examples, d he(t) 
= sin(t)dt and dhe{t) = cos(t)dt produce 

_ , > Le _ (x/ae)Le 

°e W = T 7 ~ T T ~ " T 2 " a n d °e ( * ) = , , , , o ' 

respectively. 
Substitution of equations (22) into (1) followed by an inter­

change of the order of integration results in 

\KA = 
Le4ae 

L/sfa, 

(t + p)-l/2dhe(t) 

t + ej3)~W2d hf{t) 

= \Kf\ 

where, as before, /3 = aeqa. Corresponding to equations (10) 
there is 

°e (P)=aeL*\ (t + ipae)-
xdhe(t) 

oe ( p ) = -
a„L„ 

2TT 
( 00 

0 

(23) 

(t-iaeP)-ldhe(t). 

Lines (15) and (16) are still valid but with b^ given now by 
equations (23). In particular, one has for Im (z) > 0 and after 
an interchange of integration that 

F+{z) = -(qa-iz) 
1 

2TH 

it)-l/2(T + itae)-
[ 

J oo r* c 

o dh^T)\ 

dt 

(Go 

(24) 
(t-z) 

The integrand in the inner integral in equation (24) is analytic 
for /,„ (t) > 0 except for simple poles at / = / r/ae and t = z. 
Calculating the inner integral by residues, there then results 

I f ™ dt 
r - r (q0-it)-"

2(T + itae)~
l 

lirl J -°° In, (t-z) 

= KQo -iz)~W2- (q0 + r/ae) ~ 1 / 2 ] / ( T + izae). 

If one now lets I,„(z) — 0 in this last result and makes use of 
equation (23a) and equation (24) it follows that 

°e<J>)= °e + °7 = aeLe (1 - ip/q0)
1/2 

dhe(r) 
( / 3 / ( r + / 3 ) ) 1 / 2 , . , . 

Jo (T + ipae) 

For df(p) one has 

af{p) = -afLf{l-ip/q0)
in\" We/(T + pe))in 

(25) 

dhAr) 

(r + ipaf) ' 

the analog of equation (18), which when combined with equa­
tion (25), gives 

with H(p) s 

a(p)=ae(p)+af(p) 

= (\-ip/q0Y'2H(p) 

aeLAp/(T + (1))i/2 

) (T + iaep) 

afLf(ep/(T + ep))1 

dhe(r) 

dhf(T). 

(26) 

(27) 
(r + iafp) 

It is easily seen that H(p) is analytic for /,„ (p) < 0 and H{p) 
•— 0 as Im(p) — —oo. After substitution of equations (11), 
(12), (236), (26), and (27) into equation (9) and an interchange 
of integration one obtains 

G = a/Lf\~ dhf(t) — J ^ *(tj>)dp (28) 

where 

*(t,p) = 
H(P)(\-ip/q0)

h 

(t-ipaf)G(p) 

As before, the branches of y{(ipV) and ^J\-ip/q0 can be 
chosen so that / s g n ( p ) V l - / ' p / q 0 / y \ ( i p V ) is analytic for 
I„,(p) < 0. Thus , y(t,p) is analytic for I,„(P) < 0, except 
for a simple pole at p = - it/a,. Evaluating the inner integral 
in equation (28) by residues, yields finally 

m-it/Of) r l - / / ( j 8 e ) 
; = — M dhf{t) 

/*« Jo /otyt\ 
ml 1 

1 - y2/m (ayt/e). 

V e / 
(29) 

with H( —it/af) defined in equation (27). 
The two integrations required to evaluate equation (29) 

make it much more cumbersome to calculate numerically than 
equation (7), though still much easier than calculating G 
directly from either equations (3) or (5). However, since e <<C 
1, it is not unreasonable to take dhf(t) = 8(t - 1), i.e., to 
take the simple form (46) for a J (x), since the details of the 
failure zone stress are not significant. Formula (29) then 
simplifies greatly to 

Q _ Lj H(-i/af) r 1 -1 /Q3Q "|1 / 2 

L l-y2/m(ay/e) J Moo m(ay/e) 

H(-i/af) = -Ufa ( e / 3 / ( l + 6 / 3 ) ) ' 

+ ^ 1 / 2 ! o ° ° 7 7 T 
dhe(r) 

(T+l/e)(T + l3)U2 

subject to the auxiliary constraint 

dhe(t) 
LATTW) ~ A e) Jo (t + L (t+py/2' 

In the next section, the qualitative behavior of G is in­
vestigated by considering the special cases of a power-law 
material and a s tandard linear solid. 

3 Numerical E x a m p l e s 

The formula (7) will now be applied to the special cases of a 
standard linear solid and power-law material . First considered 
is the standard linear solid, which is modelled by a constant 
Poisson's ratio arid a shear modulus , n(t), of the form 

A»(0=At„(l+i»e- , / r) 

= lx00m(t/T). 

It follows that 1 + ij = (C/C*)2 and m(s) is given by 

638/ Vol. 54, SEPTEMBER 1987 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Fig. 1 k versus y' for a standard linear solid with J; = 10 and a 
1.0, 10.0 

1.0T 

0.1, 

.0 -4.0 -2.0 _ 2.0 
log (y) 

Fig. 2 g versus log(-y) for a standard linear solid with >; •• 
= 0.1, 1.0, 10.0, 100.0 

10, 0.01, 

m(s) = 
l+s(l+v) 

(30) 
(1+5) 

From equations (2) and (30) one easily shows that 

( Y 2 - I ) 
q° r K ( ( l + , ) - 7 * ) ' ( 3 1 ) 

It should be noted that the restriction 0 < V < C corresponds 
to 0 < Y2 < 1 + rj, and moreover, that q0 = 0 for 0 < y < 1. 
From equations (7), (8), (13), (30), and (31), one readily ob­
tains the formula 

aeL
2
e 

2^co 
• g(a,y,rj,e) (32) 

where 

^(„,7,,ie) = ( - T - i - ) _ (e + cry) 

log (y) 

Fig. 3 g versus log(-y) for a standard linear solid with i, = 10, A = 10.0, 
and a = 0.1, 1.0, 10.0, 100.0 

In Fig. 1, A: is plotted against 7 ' = y/^Tl + ri for a = 0.1, 1, 
and 10. Clearly, k must vanish as 7 ' approaches 1. 

In Fig. 2, g(a, 7,17, e) is plotted against logffl. where 7 = 7 
for 0 < 7 < 1 and 7 = (Vij+1 - l)/(Vrj+l - 7) for 1< 7 
<Vrj+1, for ij = 10, e = 0.01 and a = 0.1, 1, 10, 100. Thus 
the failure zone length is assumed to be constant. For many 
materials (such as rubber) a more realistic approximation is 
furnished by assuming a constant failure zone stress level, Lf. 
This is tantamount to holding X constant and allowing e to 
vary. From equation (8) one easily calculates e as a function of 
X to be 

e=[X 2 ( /3+l) - (3]- ' . 

Consequently, one may regard g as a function of a, 7, 77, and 
X. Figure 3 is the analog of Fig. 2 for X = 10, TJ = 10, and a = 
0.1, 1, 10. It should be noted that g vanishes as 7 approaches 
Vij+ 1 when X is held constant. However, with e constant, g 
tends to a nonzero finite limit as 7 tends to vrf+ 1, i.e., as V 
approaches the glassy shear wave speed. Indeed, from equa­
tion (33&) it is easily seen that 

limg(o:.7.>J.e) = ( — ) 
(e + aV^+TXe/f))1 

(e + a()7+l)3 / 2)1 / : 

c*7(l+i?))1 /2((l-72)e + a 7 ( l + ' / - Y 2 ) ) 1 / 2 

(33) 

The second example considered is a power-law material for 
which the shear modulus is assumed to have the form 

M(0=Mc»(l + ( ^ ) - " ) , 0<n<\ 

= Ha,m{t/T). 

For such material, the glassy wave speed, C, is infinite and 

m(s) is given by 

m(s) = l+T(.l-n)s". (34) 

0 < 7 < 1 

and 

g(a,Y,7j,e) = 
V 1+e / (1 + 

(e + «7)(l +/3e)' 

e / (1 +13) (ay (n + I-y2))W2(.e +ay (1+r,))1 1<7<(1+??) 1 

Figure 1 displays a normalized SIF, k = K/(Le\lae), which . „x , . . . . iU , 
from equation (8) is seen to be just k = (1 + /3)"1/2. From F r o m equations (2) and (34) one sees that 
equation (31), (3 is seen to be given by _ / 1 \ [" 72 _ 1 1 l/" 

q° ~ \VT) Lra-«) J (72-l) 
ay((l + ri)~y2) and hence that 
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Fig. 4 k versus y for a power-law material with ij = 0.3 and a = 0.1,1.0, 
10.0 

log ( y l 

Fig. 5 g versus logft) for a power-law material with i 
a = 0.1, 1.0, 10.0, 100.0 

0.1, n = 0.3 and 

j3=(y2-l)Un/(ay) 

where, for convenience, a has been redefined by 

a = T(l-n)l/nC*T/ae. 

(35) 

Combining equations (7), (8), (13), (34), and (35), it may be 
shown that 

a
eL

2
e , 

G = ^-^g(a,y,n,e) 
2^„ 

-3 .0 -2 .0 -1.0 
log (y) 

Fig. 6 g versus logf-/) for a power-law material with e = 0.01, a = 1.0 
and n = 0.1, 0.3, 0.5, 0.7 

V passes through C*. A more striking observation is the loss 
of monotonicity of g as a function of y for certain ranges of 
the parameters. For example, in Figs. 2 and 3, it is seen that 
for a = 0.1, g is monotone decreasing in y, whereas for a = 
1, 10 g has a relative maximum on 1 < y < Vl +T/. AS seen 
from Fig. 6, for power-law material, varying the exponent n 
also causes a transition from monotonicity to having a single 
relative maximum. The lack of monotonicity suggests that cer­
tain crack speeds are unstable. In particular, since G has the 
interpretation of work input to the crack tip, the 7-intervals on 
which g is increasing are those on which an increase in crack 
speed produces an increase in the work available to propagate 
the crack and hence should be considered unstable in steady-
state. Evidently this lack of monotonicity is due to the com­
bined inertial and viscoelastic effects considered here. 

It is worth noting that these results illustrate that in contrast 
to elastic material, for viscoelastic material, there is no simple 
relationship between G and K. Indeed, though K is always a 
monotone decreasing function of V which vanishes at the 
glassy shear wave speed, G need not be monotone and need 
not vanish at V = c. Additional insight into the effect of 
material viscoelasticity can be gained by comparison with the 
ERR, G, for dynamic, elastic, steady-state crack propagation 
that arises as a simple limiting case of the analysis presented 
above. In the elastic limit, G is seen to be a monotone increas­
ing function of crack speed that becomes infinite at the shear 
wave speed. This suggests that for elastic material, all crack 
speeds below the shear wave speed are unstable in steady-state 
which agrees with results contained in Freund (1986). Thus, 

where 

g(a,y,n,e)= -

Figure 4 is a plot of the nondimensional SIF k =, (1 + (3) ~1/2 

against 7 for a = 0.1, 1, 10, and n = 0.3. Figure 5 shows g 
plotted against log(7) for a = 0.1, 1, 10, 100, n = 0.3, e = 
0.01. Figure 6 has a = 1, e = 0.01, n = 0.1, 0.3, 0.5, 0.7. The 
case X constant is not exhibited here since it results in little 
change from the constant e calculations. 

Several comments on the numerical results should be made. 
It can be observed for a standard linear solid in Figs. 2 and 3 
and may be shown analytically for general material that the 
slope of the curve g versus 7 is discontinuous for 7 = 1, i.e., as 

the presence of material viscoelasticity tends to stabilize crack 
growth. 

This paper closes with a brief illustration of the use of G as a 
fracture criterion. One must postulate the existence of a 
critical value of G, G„, which may be velocity dependent and 
which when exceeded results in crack acceleration. What is 
needed then is to invert equation (7) to find the 7 versus Le 

relationship for G = Gcr. Turning to the standard linear solid 
example, it is evident from equation (32) that the desired rela­
tion requires the inversion of (Le/p,„,) = (G/aeiia,)

i/2/(g(a, 
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1 versus logft) with c = 0.01, -q = 10, and a = 0.1, 

7, i?i e))1/2 for 7 as a function of the nondimensional load 
Le/p„. Figure 7 shows plots of logCy) versus l / (g(a , 7, 77, 
e) ) 1 / 2 fore = 0.01,7) = 10, and a = 0.1, 1, 10, 100, where 7 
= 7/Vij + 1 . The points on the ordinate axis represent, 
modulo multiplication by a constant, values of the nondimen­
sional load Le/ym; the corresponding crack speed may then be 
found on the abscissa. It should be noticed that the speed in­
tervals on which the curves are increasing (decreasing) corre­
spond to stable (unstable) crack speeds. 
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Periodic Array of Cracks in a Half-
Plane Subjected to Arbitrary 
Loading 
The plane elastic problem for aperiodic array of cracks in a half-plane subjected to 
equal, but otherwise arbitrary normal crack surface tractions is examined. The 
mixed boundary value problem, which is formulated directly in terms of the crack 
surface displacements, results in a hypersingular integral equation in which the 
unknown function is the crack opening displacement. Based on the theory of finite 
part integrals, a least squares numerical algorithm is employed to efficiently solve 
the singular integral equation. Numerical results include crack opening 
displacements, stress intensity factors, and Green's functions for the entire range of 
possible periodic crack spacing. 

1 Introduction 

In this paper the elasticity problem for an infinite array of 
periodic cracks in a half-plane is examined to determine the 
stress intensity factors and the crack opening displacements as 
a function of the crack spacing. Of particular interest for frac­
ture mechanics applications are the calculated values of the 
stress intensity factors for a row of edge cracks subjected to 
arbitrary surface tractions normal to the crack surface. It is 
well-known that with decreasing edge crack spacing, crack in­
teractions reduce the magnitude of the stress intensity factors 
at the crack tips to a level well below the stress intensity factors 
associated with a single crack of the same length. Therefore, 
generalized solutions for such crack configurations, i.e., solu­
tions which are applicable for arbitrary loading normal to the 
crack surface, are more useful for determining the conditions 
for sudden fracture in brittle materials that are known to have 
a large number of small, equal length, surfaces cracks, than 
similar solutions developed for a single crack. Typical ex­
amples of nonuniform stress fields which would be of par­
ticular interest include transient thermal stresses and wedge 
loading of the crack surfaces. 

The solution for the problem of a half-plane with an infinite 
row of periodic edge cracks subjected to uniform axial stress 
has been given by Benthem and Koiter (1973) using an asymp­
totic approximation and Bowie (1973) who used conformal 
mapping. More recently, solutions for interacting arrays of 
parallel edge cracks subjected to specific thermal stress condi­
tions have been developed by Nemat-Nasser et al. (1978) by 
formulating the problem in terms of a singular integral equa­
tion with the usual Cauchy type singularity. 

In this paper we will consider the elasticity problem depicted 
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in Fig. 1; an infinite array of stacked internal cracks, uniform­
ly spaced apart at a distance h. The special case of an array of 
edge cracks (i.e., a = 0 in Fig. 1) will also be considered, with 
special attention devoted towards developing a Green's func­
tion which can be used to easily calculate the stress intensity 
factors which arise when the system of edge cracks is subjected 
to arbitrary crack surface tractions normal to the crack 
surface. 

Instead of taking the usual approach of formulating the 
problem in terms of a singular integral equation of the Cauchy 
type (a consequence of the somewhat artificial step of specify­
ing the unknown function in terms of the derivative of the 
crack surface displacements), an alternative approach will be 
followed in which the unknown function is simply taken to be 
the crack surface displacement. The hypersingular integral 
equation which results from such a formulation contains a 
singularity of order l/x2. Integral equations with such strong 
singularities have only recently become amenable to direct 
numerical solution (as opposed to reducing the equation to an 
equivalent Cauchy singular integral equation). Kaya and 
Erdogan (1984, 1987), have developed a numerical approach 
which utilizes the concept of singular integrals interpreted in 
the finite-part sense, a concept which was introduced by 
Hadamard (1923). In the present study, it was found that the 
finite-part interpretation of the integrals with strong 
singularities, which arise in this particular crack problem, 
leads to a very accurate and efficient method for numerical 
solution. 

2 Formulation of the Problem 

In addition to satisfying the two-dimensional equations of 
equilibrium and the elastic constitutive relationships, the solu­
tion to the problem depicted in Fig. 1 must also satisfy the 
following boundary and symmetry conditions 

axx(0,y) = 0 

rxy(.0,y) = 0 

(1) 

(2) 
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Fig. 1 Array of periodically spaced cracks in a half-plane 

v(x,nh)=0, (x<a,x>b), n= - c o , 

ayy(x,nh) = -p(x), (a<x<b), n= — 

Txy(x,nh)=0, « = - c o , 

where it's assumed that all the crack surfaces are subjected to 
equal and symmetric loading specified by p(x). 

The crack problem depicted by Fig. 1 can be conveniently 
formulated by applying integral transform techniques to the 
two-dimensional equations of elasticity. The resulting algebra 
is somewhat simplified, if first we develop the stress field for a 
single crack in the half-plane and then use superposition to ob­
tain the expressions for the multiple crack problem. Further­
more, the derivation of the single crack expressions are 
facilitated by using superposition to combine expressions for 
the uncracked half-plane and a cracked infinite space. For ex­
ample, the x and y components of displacement for the single 
crack problem can be written as 

u(x,y)=ul{x,y)+u2(x,y) (6) 

v(x,y) = vl(x,y) + v2(x,y) (7) 

respectively, where the superscript 1 refers to the infinite space 
with a single crack and superscript 2 indicates the contribution 
due to the half-space. In the same manner the stresses for a 
half-space with a single crack can also be expressed by 

ay (x,y) = 4 (x,y) + oy (x,y), {i, j:x,y) (8) 

Integral expressions are developed for the variables in equa­
tions (6)-(8) by direct substitution of the applicable Fourier 
transform into the two-dimensional equations of equilibrium 
and Hooke's law. After applying the symmetry condition rxy 

(x, 0) = 0 and the shear condition for a single crack rxy (0, y) 

= 0, the superposed equations for displacement (6)-(7) can be 
shown to have the form 

2 f00 / 1 - K \ 
u{x,y)= 1 (——+y)A(a)e- a ! / smax da 

7r Jo \ 2a / 

2 f°° / 1 + K \ 

7T J0 V 2p / 

2 P °° / 1 + K \ 
v(x,y)= \ ( by)A(a)e~aycosax da 

7r Jo \ 2a / 

where 

+ ( ( - + x)BU3)e-'ixsin(3y 
-K Jo \ 2/3 / 

K = 3 - 4c, for plane strain 

3 - " , 
-, for plane stress 

dp 

\ + v 

(10) 

(11) 

(12) 

and A (a) and B((3) are unknown functions which must be 
determined from the boundary conditions. With the 
displacements given by equations (9)-(10) it is not difficult to 
show that the components of stress are given by 

1 

2/x 
( - l+ay)A(a)e~aycosax da 

— [ ( l+/3x)f i ((3)e-< J j :cos^^ (13) 
•K J O 

•K J O 

2 

1 

^7 da 

(3) 

(4) J_ 
(5) 2ix 

-2 f °° 
avv = 1 (l+ay)A(a)e ^cosax 

IT Jo 

2 f °° 
-I- ( - l + ^ B ^ e - ^ c o s f t y c ^ 

7T JO 

ay A (a)e~aysmax da 

(14) 

- 2 
•K J O 

2 (•<*> 
Px 

7T Jo 
5(/3)e-/3xsin/Sy dp (15) 

where fi is the elastic shear modulus. 
If we define a displacement function in the following 

manner: 

V(x)=v(x,0 + )-v(x,0-) = 2v(x,0), (a<x<b) (16) 

V(x)=0, (x<a,x>b) (17) 

and apply displacement boundary condition (3), stress 
boundary condition (1), and invert the resulting expressions in 
equations (10) and (13); for the case of a single crack (i.e., n = 
0) we can obtain the unknowns A and B. Thus, it is 
straightforward to show that the y component of stress, in 
terms of the unknown crack opening displacement V(x), for a 
single crack is given by 

ir a fb f °° a 
* L = - \ V(t)dt\ (1 + a.v) cosat cosax e~ayda 

4;U Jff JO 1 + K 

+ f V(t)dt\°° ( - 1 + / 3 J C ) - ^ — ((3t-l)e^i+x>cos(3yd(3 (18) 
Jo J0 1 + K 

After substitution of the trigonometric identity 

1 

~2 
cosat cosax = ^^\cosa(t—x)+cosa(t + x) (19) 
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and evaluation of the definite integrals in equation (18), the 
perturbation in the y component of the stress field due to a 
single crack located at y = 0 can be expressed in terms of the 
crack opening displacement V(x) as 

K + l 
,(x,y)- J: V(t)G(t,x,y)dt (20) 

where G(t, x, y) is expressed by 

G(t,x,y) = 
(t-x)2-y2 (t + x)2-y2 

[(t-x)2+y2]2 [(t + x)2+y2]2 

2y2[?,(t-x)2-y2] 2y2[S(t + x)2-y2} 

[(t-x)2+y2]3 

2[(t + x)2-y2} 

l(t + x)2+y2]2 

l(t + x)2+y2]3 

-4(t + x)2[(t + x)2-3y2] 

l(t + x)2+y2]3 

\2tx[(t + xf-6y2(t + x)2+y4} 

l(t + x)2+y2]4 (21) 

The complete expression for an infinite array of cracks can 
be obtained from equations (20) and (21) by invoking super­
position. That is, the perturbation on the stress field along the 
line y = 0 due to an infinite row of cracks, is simply the in­
finite sum of contributions determined from equation (20) for 
values of y spaced apart at an interval h. Thus, by setting .y = 
nh in equation (21), summing on n from - oo to - 1 and from 
1 to oo, and adding these terms to the limiting expression ob­
tained from equation (20) as y — 0, we obtain the correct in­
tegral equation for an array of cracks. The integral equation 
for an infinite array of cracks differs from the single crack 
equation in that it has an additional Fredholm kernel as a 
result of the summation contributions. Due to symmetry, the 
summation of G from - o o , . . . , - 1 , l , . . . , o o can be 
reexpressed as twice the sum of G for n = 1, 2, . . . , oo. For 
the case of periodic spacing these infinite sums can be ob­
tained in closed form. Two identities which aid in the reduc­
tion of these sums are (Gradshteyn and Rhyzhik, 1965) 

1 

xL + rf 2x2 I 
irx coth i r x - 1 

- = — csch2 irx— 
1 

2X2" 

(22) 

(23) 
„^i {x2 + n2)2 

The closed form expressions which are needed to evaluate the 
sums arising out of equations (20) and (21) can be obtained by 
successively differentiating equations (22) and (23) and com­
bining intermediate expressions. 

After making the substitutions, 

y = nh (24) 

(t-x) 
h 

13 = 
(t + x) 

h 

(25) 

(26) 

in equations (20) and (21), evaluating all sums from 1 to oo and 
regrouping terms, the net perturbation along the line y = 0 
due to the influence of all cracks extending from - oo to + oo 
is 

K + l 
7T a = 

J a 
V(t)K2(t,x,h)dt (27) 

where 

— 2ir3a csch27ra coth 7ra-67r3/3 csch27r/3 coth 7T/3 

+ ( /32-o:2) 27r4csch27r/3 coth27r)3 + 7r4csch4ir/3—-j-1 J (28) 

12* - i2je i 
r + r\vU)dt 

(t + x)3 (t + x)Ai 

Evaluation of expression (20) lim yields 

r* r l - l 12* - 1 2 * 2 

Jo L (t-x) (t + x)2 

K + l 

2n 
(29) 

After combining equation (29) with (27), the integral equation 
for the displacement function V(x) can be expressed by 

V(t)dt [b V(t)dt (•* r 

+ K-,(t,x,h)\dt = 
- 7 T ( K + 1 ) 

2fi 
P(x) (30) 

where p(x) is the specified crack surface tractions, Kx is 

KM*)--
l 12* - 12x2 

- + - — + - (31) 
(t + x)2 (t + x)3 (t + x)4 

and K2 is given by expression (28). The symbol (4=) denotes 
that the integral is to be interpreted as a finite-part integral in 
the sense of Hadamard (Kaya and Erdogan, 1987). 

3 Solut ion of the Integral Equat ion 

For the case of internal cracks, the integral equation in (30) 
can be normalized between - 1 and 1 with the substitutions 

t (b-a) (b + a) 
t = r + 

(b-a) (b + a) 
x = s + 

b-a . 
V{t)=—^-V{r) 

The normalized integral equation in this case is 

'i V(r) 
§: i (r—s)2 L dr+ V(r)L(r,s)dr=p(s) 

with 

L(r,s) = {—^) (Kx(t,x) +K2(t,x,h)) 

P(s) 
K + l 

• T — P(X) 
2fx 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

The theory of finite-part integrals will not be explored in detail 
in this study. It is sufficient to simply state that a Cauchy prin­
cipal value integral can be written as the sum of two finite-part 
integrals and that direct differentiation of a Cauchy integral 
gives a finite-part integral (Kaya, 1984). For example, 

d ' (38) 
dx Jo t-X Jo (t-X)2 

Making use of relation (38) it is possible to determine the 
finite-part integral for a wide range of kernels. A finite-part 
integral of particular interest in this study is given by Kaya and 
Erdogan (1987) 

K2(t,x,h)=\\—V + -T-+3ir 2csch 27ra + 57r2csch2ir/3 V J^VAO 
h2 I a2 &1 J_i (t-x)2 

dt=-ir(n+\)Un(t) (39) 
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where Un (t) is the Chebyshev polynomial of the second kind. 
If we let 

V(r)=F(r)(l-r2)in (40) 

and expand F(r) in terms of a Chebyshev polynomial series of 
the second kind, it is possible to evaluate the resulting finite-
part integrals with the aid of equation (39). Thus, 

F(- D= 2> ; ( '+D( - D' 

J W = E «/('+!) 

(52) 

(53) 

and 

F(/-) =£>,£/,• (r) 

r N i 

(41) 

(42) 

For the case of edge cracks, i.e., when a = 0, the normal­
ized integral equation has the form 

* : • 

^Tdr+\ V(r)L(r,s)dr=p(.s) 
(r—s)1 '-

(54) 

with 

Of course the method is not restricted to expansions only in 
Chebyshev polynomials and, in particular, power series ex­
pansions seem to be especially convenient for many applica­
tions (Kaya and Erdogan, 1987). 

In equation (41) the o,'s are unknown coefficients, which 
once determined specify the crack opening displacement func­
tion V(r). Direct substitution of equation (42) into the in­
tegral equation (35) and evaluation of the finite-part integral 
given by equation (39) results in 

t x - V(t) 

L(r,s)=b2(Kl (t,x) + K2(t,x,h)), 

K+l 
p(s) = ~ir-~—p(x) 

2JX 
(55) 

As in the case of internal cracks, we can express V(r) by 

N 

V(r) r) V-r2) , 2 \ l /2 (56) 

where 

N r i 
X)fl, -T(I+1)£/ , (J ) +fl,{5) \=p(s) 

hi(s)=\ U;(r)L(r,s){\-r2Y/2dr 

(43) 

(44) 

Substitution of equations (56) into (54) leads to an expression 
similar to equation (45) for the evaluation of the unknown 
coefficients a,-. 

Mi. [/ ,(r)Vl-/-2 

dr 

Equation (43) can be solved by simple collocation. That is, we 
can construct N linearly independent equations for the N 
unknown «,'s by evaluating equation (43) at N station points 
Sj. The resulting system of equations for the solution of the 
d/'s is given by 

(r-Sj)
2 

+ j Q U,(r)L(r,Sj)-JT=72 rfr] =p(Sj) (57) 

N r i 
2 > ; l-irU+lWiis^+h^Sj) \=p(sj), 

y = o , i , . . . ,N (45) 

The difference between this expression and equation (45) is 
that a closed form expression for the finite-part integral in 
equation (57) is not known. Kaya (1984) has shown that we 
can take advantage of the identity (39) by rewriting equation 
(57) as 

where s/s, for example, can be determined from the roots of 
the Chebyshev polynomial of the first kind 

Tn+l(Sj)=0,Sj = cos(-^--^-),j = 0,l, ...,N (46) 

The stress intensity factors are defined by 

M dr 
U, ( r ) V l - r 2 

i (rsj)2 

1 C/,( - r ) V l - r 2 

Jo (rn 
dr 

V(t) k,(a) = (——Vim , 

kAb)-. ( ^ - ) l i m 
V(t) 

b yl2(b-t) 

(47) 

(48) 

(r+Sj)2 

+ Jo U^Kr^sfT^r2 dr] =p(Sj) (58) 

and thus the algebraic system of equations for solution of the 
o,'s if collocation is used, becomes 

Thus, once F{r) (equation (41)) is known, the stress intensity 
factors at either crack tip may be expressed as 

' " • - ( ^ r ) ^ " • 1 ) 

* i ( 6 ) = 
V K + 1 / 

F(l) 

(49) 

(50) 

(59) 

Since F(_ — 1) and F(\) are given by 

N N 

F ( - l ) = lim ^ f l ; y , W , F ( l ) = lim £* ,£ / , ( * ) (51) 
* - - ' /=o x~l ;=o 

respectively, the values of F(r) at either endpoint in terms of 
the a.-'s is 

r i 
^ f l , - * ( / + l)U,(Sj) +hi(sj) =p(sj), 
/ = 0 L J 

0 < j , . < l , y = 0,l,2, . . . ,7V 

where 

' W = L [- ^ I ' u + f//('-)i(/-^)lVT^72 dr (60) 
J 0 L {r -r S:) J 

Once the unknown a,'s are known for the edge crack problem, 
the stress intensity factor is determined from equation (48) 
after substitution from equations (55) and (56). Thus, for edge 
cracks the stress intensity factor is given by 

^ ) = (-^V)V5X>,(/+i) 
\ K + 1 / .- _ n 

N 

E 
i = 0 

(61) 
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4 Numerical Solution and Results 

When collocation is used for the solution of equations (45) 
or (59), the number of terms N, in the Chebyshev polynomial 
expansion, is equal to the number of collocation points Sj. It is 
not difficult to show that for large values of N, the system of 
equations defined by either (45) or (59) becomes badly ill-
conditioned. For example, the determinant of a typical system 
of equations from equation (59), for a 10th order Chebyshev 
polynomial expansion (TV = 11), is of 0(106). For a Chebyshev 
polynomial expansion of order 24 (N = 25), the determinant 
is of 0(10 -22). Since, in this study it was desired that stress in­
tensity factors be calculated for arbitrary loading, it was 
necessary to use a numerical algorithm which incorporated in­
formation at a sufficiently large number of load points Sj on 
the crack surface. Thus, to keep the order of the Chebyshev 
polynomial expansion relatively low, but still incorporate in­
formation from a greater number of load points than 
unknowns, the method of least squares was employed. 
Following the usual procedure for deriving the set of Normal 
Equations used in the least squares algorithm, the system of N 
x N algebraic equations which minimizes the square of the er­
ror for M sampling points is given by 

N M M 

E «/ ( D AuAm) = TiPjAkj' 
/=o v=o 

where 

k = 0,l,2, ,N 

A^-TrO+lWiis^+hiiSj) 

(62) 

(63) 

For the case of completely embedded cracks, the integration 
of the bounded kernel implied by equation (44) was handled 
numerically using Gauss-Chebyshev quadrature. The 
numerical solution of the N X N system of algebraic equa­
tions given by equations (62) results in a very accurate deter­
mination of the stress intensity factors as well as crack opening 
displacement (COD). However, for the case of edge cracks, 
the integral given by equation (60) requires greater effort to 
evaluate accurately. Rewriting equation (60) and temporarily 
excluding the portion of the kernel which remains bounded for 
all values of r and s, we obtain 

f1 r ( - 1 ) / + 1 - 1 ^ 12s 
Jo L ( / - J - f i 2 

(r + s)2 (r + s)2 (r + s)3 

•12s2 

•]«/, ,•(/•)(! -r2)U2dr (64) 
(r + s)4. 

which exhibits a singular behavior as both s and r 
simultaneously go to 0. For r = 0, evaluation of the integral in 
equation (64) yields a singular behavior of the form 

T r [ ( - i ) ' + 1 

S(S+1) 

1] 6(1+2?) 
~ ~ + s(l+s)2 

- 4 ( 1 + 3.9+3s2) ]sin[(/+l)^-] 
S ( l + , ) 3 • " - • ( 6 5 ) 

and thus we can improve convergence in the numerical evalua­
tion of equation (64) by adding and subtracting the singular 
behavior exhibited in equation (65). That is, 

•I r ( -1 ) '+ ' - 1 12s -12s 2 1 . 

-s)2 + (r + s)2 + (r + s)3 + (r + s)4\ 
I=L + r ' r (-!)• 

Jo L (r + i 

Tt / , ( / - )Vr^P - s in !"(*'+ l J -^- l l t f r 

(66) 

This rearrangement of terms satisfactorily improves the rate 
of convergence during numerical evaluation of equation (64), 
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Fig. 2 Stress intensity factors for a row of edge cracks subjected to 
uniform applied stress «0. Comparison with Bentham and Koiter. 

0 0.2 0.4 0.6 0.8 1.0 
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Fig. 3 Crack opening displacement for a row of edge cracks subjected 
to uniform applied stress «Q. 
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with the integral in equation (66) calculated using Gauss-
Chebyshev quadrature. 

Figure 2 gives the stress intensity factors for an array of 
edge cracks subjected to uniform loading a0. The normaliza­
tion parameter S is given by 

b 

b + h 

In this figure the results for an array of edge cracks is com­
pared with Benthem and Koiter's published results (Benthem 
and Koiter, 1973). It can be seen that over the entire range of 
possible crack spacing, the two results are almost identical. In 
generating the stress intensity factors it was found that an 
11-term Chebyshev series expansion was sufficient for highly 
accurate results. For example, the stress intensity factor for an 
edge crack with S = 0, i.e., h = t», was determined to be 
k/ag'ib - 1.121522. For comparison, the exact solution can 
be determined from the numerical evaluation of a closed form 
expression given by Koiter (1965) and is known to be k/o0\fb 
= 1.12152226. It is interesting to note that when S = 0.5, i.e., 
h/b = 1, the stress intensity factor k/a^Tb = 0.398662; a 
value which is only 35.5 percent of the maximum stress inten­
sity factor for a single isolated edge crack. In Fig. 3 the crack 
opening displacement (5), calculated from the mouth of the 
crack to the crack tip, is displayed for interacting edge cracks 
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Fig 5 Stress intensity factors at crack tip b, for an array of embedded 
cracks subjected to uniform applied stress a0. (t = b - a.) 

with different h/b ratios. Again, it can be seen that the overall 
effect of nearby surface cracks interactions is to greatly reduce 
the COD along the entire crack length. 

Figures 4 and 5 contain plots of stress intensity factors 
calculated for cracks subjected to uniform remote stress a0 

and located below the surface of the half-space. Note that for 
the embedded crack the normalized crack spacing parameter S 
is given by 

(b-a) 
S = —r —r (68) 

(b-a)+h 
In Fig. 4, the stress intensity factors are shown for the crack 
tip located closest to the free surface of the plane as a function 
of S with {b — a)/a = 1, 10, 100. Figure 5 contains a similar 
plot for the crack tip at the point of deepest penetration into 
the half-space. In both these figures the dashed line represents 
an approximate solution given by Benthem and Koiter (1973) 
for the case of a "stack" of cracks in an infinite space, i.e., 
the limiting case when a = °° for finite crack lengths. It is 
remarkable that this limiting case is so closely approximated 
when (b — a)/a = 1. This means that the half-space free sur­
face has little effect on the stress intensity factors when the un­
broken ligament length is as small as one crack length. In com­
paring Fig. 5 to Fig. 4 it can be seen that the crack tip located 
at the point of deepest penetration in the half-space is relative­
ly insensitive to the crack length/ligament length ratio for S > 

-0.5 0.0 0.5 

( 2 x - b - a ) / l 
Fig. 6 Crack opening displacement for a row of embedded cracks sub­
jected to uniform applied stress <r0. 

t=(_2e_) V(s) 

0.25. However, at the crack tip nearest to the free surface (Fig. 
4), the effect of the crack length to the unbroken ligament 
length ratio (Jb — a)/a is more pronounced, with larger dif­
ferences between the stress intensity factors for different (jb — 
a)/a ratios seen over a much wider range of crack array spac­
ing. Figure 6 contains plots of the COD 5 for embedded cracks 
with (b — a)/a = 10 and various values of crack spacing. For 
the case of the isolated embedded crack {h/(b — a) = oo),the 
COD is noticeably nonsymmetric for this value of (b — a)/a. 
With decreasing distance between interacting cracks (h/(b — 
a)), the COD becomes smaller in magnitude, has a "flatter" 
slope along the crack axis, and appears increasingly 
symmetric. 

It is possible to generate the results for concentrated wedge 
force loading applied on the crack surface at s = Sj by setting 
the right-hand side of the integral equation (54) to 

p(s). 

IP 

° /+ i •V-i 
0 s = Sj, i-jtj 

(69) 

where P represents the concentrated wedge force. By sequen­
tially applying unit wedge force loading to the entire crack sur­
face, it is possible to generate a numerical Green's function for 
the stress intensity factors. In a strict sense, the quantities 
calculated by using equation (69) represent the response to a 
crack surface traction distributed on a small area around .? = 
Sj rather than a concentrated wedge force acting at s,-. In any 
case the numerical approximation of the concentrated force 
loading rapidly converges to a unique solution for the Green's 
function with an increasing number of abscissa load points Sj. 
Figure 7 is a plot of the numerically generated Green's func­
tions for the stress intensity factors at the tip of an edge crack. 
The function G(s) is given by 

G(s)- (70) 

and for different h/b ratios represents the stress intensity fac­
tor resulting from concentrated force loading at a given value 
of s (s = x/b). The numerical evaluation of equation (64) 
becomes increasingly difficult for very small values of s, i.e., 
when the unit loading is applied close to the crack mouth, due 
to the singularity which arises when both r and s simultan­
eously go to 0. Thus, the limiting values given in Fig. 7 for 
G(0) were obtained by extrapolating a least-squares curve fit 
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Fig. 7 Edge crack Green's functions for stress intensity factors. 

the negative stress intensity factors are only useful wedge force 
solutions if after superposition with another stress field the 
resulting stress intensity factor is positive. For nonconstant 
stress fields given by o(s) the stress intensity factor can be 
determined by superposition from 

1 C1 G(s) 
Vft Jo V T ^ 

a(s) ds (71) 

For values of h/b ~ 0.65 and smaller, the contribution to 
the stress intensity factor due to concentrated force loading at 
the crack mouth is negligible. This can be seen clearly in Fig. 
8, which plots the stress intensity factor due to concentrated 
force loading located at the crack mouth as a function of the 
periodic crack spacing (S is given by equation (67)). For wedge 
loading of the crack mouth the magnitude of the stress inten­
sity factor decreases rapidly as the spacing between the surface 
cracks decreases. When the value of h/b is between approx­
imately 2 and 0.65, the stress intensity factor due to wedge 
loading is negative. Smaller values of h/b (S > 0.6) yield very 
small contributions to the stress intensity factor. 
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Fig. 8 Stress intensity factors due to concentrated force loading 
located at crack mouth 

polynomial derived from the numerical values of G over the 
entire range x/b for a given h/b ratio. It is interesting to note 
in Fig. 7 that for certain small values of h/b the stress intensity 
factors due to concentrated force loading close to the crack 
mouth have become negative. This indicates that for these par­
ticular values of h/b, wedge force loading at the crack mouth 
results in compressive stresses close to the crack tip. Of course 
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Cumulant-Neglect Closure Method 
for Nonlinear Systems Under 
Random Excitations 
The validity of the cumulant-neglect closure method is examined by applying it to a 
system for which an exact solution is available. A comparison of the results indicates 
that the Gaussian closure technique usually leads to a mean-square versus excitation 
strength curve which follows the same general shape as that of the exact solution but 
has substantial errors in some cases. The 4th order cumulant-neglect method is 
found to be inapplicable and to predict erroneous behavior for systems in certain 
parameter ranges, including a faulty prediction of a jump in response as the excita­
tion varies through a certain critical value. On the other hand, for systems in other 
ranges the 4th order cumulant-neglect closure method predicts the mean square 
response quite well. These two parameter ranges are delineated in the paper. The 6th 
order cumulant-neglect closure method is also examined, leading to similar 
conclusions. 

1 Introduction 

There are two popular closure methods for studying the 
statistical properties of the responses of stochastic nonlinear 
systems. The first one is the method of non-Gaussian closure 
(see Crandall, 1985, for example, and references therein). The 
idea of the method is to assume a non-Gaussian probability 
density function with adjustable parameters for the response 
and to use the moment relations derived from the system equa­
tions to obtain equations for the unknown parameters. The 
resulting probability density function can then provide ap­
proximate response statistics. The choice of trial density func­
tions is of course open and important. As shown by Crandall 
(1985), when an inappropriate choice is made the approximate 
solution becomes worse as the order of the method goes 
higher. The second is the method of cumulant-neglect closure 
(Wu and Lin, 1984; Ibrahim, 1985). The method simply 
neglects the cumulants of system variables above certain order 
in order to close the infinite hierarchy of the equations govern­
ing the statistic moments of system variables. It has been 
shown by Wu and Lin (1984) that for certain problems this 
method is more versatile than the method of non-Gaussian 
closure and that, when the external excitation is dominant it 
gives better approximations as the order of the method is 
higher. However, only a limited range of parameter values is 
considered in Wu and Lin (1984). The general question of the 
validity of the cumulant-neglect closure method remains open. 

It is understood that both methods essentially put con-
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straints on the response statistics. As such, it is important to 
know whether the methods yield reasonable approximations 
to the true solutions and whether more constraints bring ap­
proximations closer to, or to cause them to deviate further 
from the true solutions. A mathematical proof of convergence 
of the method for general nonlinear systems is difficult and 
not available. What we propose to do is a case study on a class 
of systems. 

In the paper, we study a stochastic nonlinear system which 
was originally studied by Dimentberg (1982) and which has an 
exact analytic solution for the stationary probability density 
function. We first present the exact solution by Dimentberg. 
Subsequently, we study the system by the method of Gaussian 
closure and the cumulant-neglect closure method with 
cumulants retained up to the fourth order. The purpose is to 
find in what way these methods of closure are adequate or in­
adequate. For the cases where the fourth order cumulant-
neglect method is inadequate we study the sources of dif­
ficulties which lead to the inadequacies and give a qualitative 
assessment of the ranges of parameters in which the method is 
useful. Finally, we briefly study the sixth order cumulant-
neglect method. 

2 Exact Solution 

Consider the following nonlinear system (Dimentberg, 
1982) 

>2 

x + 2ax[l+r](t)] + (31x\x2 + [-4-] 
f(0, /3,>0, a>0 

+ 02x[l+«/)] 

(1) 

where TJ(0, £(0 and f(0 are independent zero-mean Gaussian 
physical white noises in the sense of Gray and Caughey (1965) 
and 
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E[r,(tMt + T)] = Z?„5(r) 

ElWMt+T)] = £ > J 5 ( T ) (2) 

Let y = x, the stationary joint probability density function 
p(x, v) is governed by FPK equation 

dp n2 dp d 
v —— = ft2x — — + • 

dx dv dv 

d2 

[ [ 2 a ( l -aDJv + l3lv(x2+ - ^ - ) ] p ] 

+ Vi—T[(4a2Dvv
2 + Q4Dsx

2 + D{)p]. 
dv 

If 

Q2Di=4a2Dv 

then the equation (3) has an exact solution: 

/ , "2 

exp 

p(x,v) = C-

("+*'+Tp-) 
S-«0 

where 

O, 
Q4£>£ 

oo f« co 

2 a 

fi2^, 

c- LJ 
exp[-g(*+-g-)] 

-dxdv. 

(3) 

(4) 

(5) 

(6) 

(7) 

It can be shown from equation (5) that 

E{x2) = -^E{v2). 

Introducing a transformation 

x = rcos<p v = Q,rsm<p, 

we can obtain following results 

/•exp( — fir2) 
p(r) = 2-KCU 

(x + r2) 2\S-x0 

£ ( ; r ) = ViE(rl) = ' / 2 T C Q I ; — j — dr 
Jo {K + rf-Kl) 

C 
Jo (K + 

exp( - /3 r ) 
dr. 

(8) 

(9) 

(10) 

(11) 

(12) 

When /3>0 and K ^ O , the stationary statistic moments of any 
order exist for an arbitrary 5 and there is no bifurcation possi­
ble in this case. 

An interesting case is when /3>0 and K = 0. K = 0 implying 
f(0 = 0, the system is only under parametric excitations. Equa­
tions (11) and (12) become 

E(x2)=Vi TTCQI 
Jo 

rl Sexp(-I3r)dr 

!

oo 

/ - 6 exp(- f3r ) t f r . 
o 

(13) 

(14) 

Replacing C i n equations (13) by (14), we have a rather simple 
expression: 

1 r(2-<5) 1 
E(x2)-- Kl-8) . (15) 

2j3 T ( l - 5 ) 20 
The conditions for the existence of integrals in equations (13) 
and (14) are, respectively, 

5 < 2 , 5 < 1 . (16) 

Together, the condition for the existence of normalization 
constant C and E(x2) is 

5 < 1 . (17) 

It is easy to check that (17) is also the condition for the ex­
istence of statistical moments of any order of the system. 
Moreover, 6 = 1 is the condition of bifurcation. When 5 > 1 , 
equation (15) is not valid. This suggests that the trivial solu­
tion exists and is stable. The stationary statistical moments of 
all orders are zero. In particular, E(x2) = 0. So we have 

E(x2)--

0 

0 

1 

"2/3 
( 1 - 8 ) 

5 > 1 

5 = 1 

6 < 1 

(18) 

Equation (18) shows that , as 8 varies across the bifurcation 
point, there is no j ump in E(x2). It can also be shown that 
there is no j ump in any other moments . 

3 Cumulant -Neg lec t Closure M e t h o d s 

The Ito stochastic differential equations for the Markov 
vector (x,v) can be written down from equation (3). Let xx =x, 
x2 = v, then 

dxx = x2dt 

dx2 = (-2ax2-(3lx
2x2 

0, 
x\ - Q2xx )dt + 2a2D• x2dt 

n2 A2 

+ {*,<x2Dnx\ + fi4D5x
2 +DiY

AdW{t) 

(19) 

where W(t) is a unit Wiener process, 2a2Dnx2 is the drift cor­
rection term of Wong and Zakai (1965) 

Let 

mv=EtfpQ (20) 

where E(x\x^> is stationary mixed moment of (/+y)th order. 
We are only interested in stationary solutions. From equations 
(19), we derive the equations of stationary moments up to the 
4th order. 

e.3 
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Fig. 1 Stationary mean square value of the response versus fl for K = 0: 
(a) equation (18), the exact solution; (b) equation (31), Gaussian closure; 
(c) equation (41), the fourth order method; (d) neglected branch of equa­
tion (37) 
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m01=0 

v2 (2a2Dv-2ct)mm-n2mlQ-Plm21 
U2 m03=0 

m02-tt
2m2Q + (2a2D -2a)mn -/?,«? 

~¥~ '"13 m „ = 0 

(8a2Z>, - 4a)/w02 - 2/3,m22 - 2 - ^ - m04 - 2U2mx 

+ QAD(m20+D{ = 0 

m2l=0 

2m12 + (2a2Z>, -2a)m2l -/3,m41 —-f- m 2 3 -Q 2m 3 0 = 0 

w03 + (8a2£), - 4a)m12 - 2/3,m32 - 2 —-^- /w14 - 2f22m21 

+ n4Z)£w30+i? rw10 = 0 

(3 
(18a2Z>, -6a)m 0 3 - 3/3,m23 - 3 — i - m05 - 3Q2m12 

+ 3fl4Z){w21+3Z)j./?201=0 

m3, =0 

3m22 + (2a2Dv-2a)m3l -/3,m5 , 
fl2 m3 3-f t2m4 0 = 0 

2ml3 + (Sa2Dv - 4a)m22 - 2j81/n42 - 2 - ^ i - mu 

+ Q*DS mm + Dtm20 = 0 

mM + (18Q:2Z?, - 6a)m13 - 3/3, w33 - 3 — j - w,5 
Q2 

-3Q2m22 + 3fi4Z>t/K31 +3D f /K H =0 

(32a
2D, - 8a)w04 - 4/3,m24 - 4 - ^ - m06 -4Q 2 m l 3 

+ 6n4Dsm22 + 6D{m02 = 0 

(21) 

(22) 

(23) 

(24) 

'04 

mn 

m22 

= 3mg2 

mmm3 

m20m02 + 2m 
10w12 — 

(26) 

w31 = 0 

Put equations (25) and (26) in equations (21) and (22), we have 

mw = m30 = ml3=ml2 = 0 

mQ2 = " 2 ™ '20 

(27) 

£> 
8/3, / ^ - (8a2A, + O2Di - 4a)m20 ~ ^ - = 0. (28) 

O2 

When 4a.2D„ = il2Dt, we have 

8/3/wio - •2(2-5)m2 0-/c = 0. (29) 

Special cases. 
1. When Dv=D( = 0 and /3, >0 , from equation (28) we 

have 

= 0 or m20 = 
Q2Di-4a 

The first one is the trivial solution, while the second one gives 
the well known bifurcation condition by Gaussian closure (Wu 
and Lin, 1984; Ibrahim, 1985; Ariaratnam, 1980): 

Q2Z>?=4a. 

2. When j3, = 0, Dn = D^ = 0 and Dt = 2irS0, then equation 
(28) gives the exact linear solution 

i rSn 

' " 2 0 ~ 2aQ 2 ' 

3. When 4a2Z>1) = filD{, K = 0 and /3>0, we have from 
equation (29) 

1 
m20 = 0 or m2 4/3 

(2-5). (30) 

Notice that when K = 0 (Df = 0), the trivial (identically zero) 
solution always exists and its stability can be ascertained by ex­
amining its bifurcation into the nontrivial solution. Equation 
(30) shows that the bifurcation condition is 5 = 2 and 

"0 5>2 

5 = 2 (31) 

4/3 
(2-5) 5<2 

3.1 Gaussian Closure. Let cumulant functions of x, and 
x2 be denoted by X„(x,- , x, , . . . ,x,- ). In the method of 
Gaussian closure we set the cumulants, corresponding to the 
moments in equations (21) and (22) of order greater than and 
equal to three, equal to zero in order to close the hierarchy of 
moment equations at the second order. Then these moments 
are expressed in terms of the first and second order moments. 
Use the formulas of cumulant functions in (Ibrahim, 1985), 
for example, we have the following relations after using equa­
tions (21) and (22) 

(25) 

™03 

m2i 

ml2 

mw 

= 

= 

= 

= 

0 

0 

m02ml0 

3mwm20-

~\ 

-2m]0 J 

Once again, there is no jump in m20 at bifurcation point. 

3.2 The 4th Order Method of Cumulant-Neglect 
Closure. For the remainder of the paper we take /3>0. Con­
sider now the 4th order cumulant-neglect closure method. In 
this method, in the same spirit as in the method of Gaussian 
closure, we set the cumulants, corresponding to the moments 
of order 5 and 6 in equations (23) and (24), to zero to close the 
hierarchy of the moment equations at the order 4. This leads 
to 

K(xixxh xin) = 0, 

« = 5,6; (i,,/2 /„)*(1,1, . • . ,1). (32) 

From equations (21) to (24) and (32), one can show that 

mio = mol=mn=ml2 = m21=m31= m30 = m03=0 

m05 = w,4 = m23 = m32 = m4l=m5l= 0. 
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In general mn^Q. However, when 4ot2Drl •• 
shown that m13 = 0 and 

mm = 02m,n 

m„ = 

fi2Z?{ it can be 

(33) m04 

3Q2 

3Q4(24l3m2
20 + K)m20 

36(3m20 + 2 5 - 6 

Substituting (33) into (22)3, we obtain the equation for m20 

96(t3m20y-36(2-5)Wm2O)2-[14(3K 

+ 2(2 - 5)(5 - 3)]03mM) - (5 - 3)0K = 0. (34) 

Once m20 is determined by equation (34), m02 can be com­
puted from equation (33),, m22 from (33)2, and m04 from 
(33)3. However, since m04 should be nonnegative, it is seen 
from (33)3 that for nontrivial solutions there is a constraint on 
m20 

/3w220>(3-5)/18. (35) 

3.2.1. Purely Parametric Excitation K = 0. To proceed 
further, let us first examine the case K = 0 for which the 
analysis is simple and transparent. When K = 0, the external 
forcing is absent and the excitation is entirely parametric. In 
that case we have 

m20 = 0 or m20 = 
18(2-5)±V324(2-5)2 + 192(2-5)(S-3) 

96(3 

(36) 

The solution m20 = 0 corresponds to the trivial solution of 
identically zero response which is always possible in this case. 
The nontrivial solutions for m20 are obtained from equation 
(36). It is readily seen that there are real solutions for m20 only 
if 

324(2 - 5 ) 2 + 192(2 -5)(5-

This condition in turn requires 

3)>0. (37) 

5<-~—or5>2. (38) 

However, for 5 > 3 , the two real solutions are both negative 
and therefore are not valid ones for m20 • For 2 < 5 < 3, there is 
one positive real solution for m20, but its value violates the 
constraint equation (35) and hence is to be ruled out. Conse­
quently, there are real and valid nontrivial solutions for m20 

only in the range 5 < (6/11). In this range there are positive real 
solutions for m2Q. But, it can be shown that the solution 
associated with the negative square root decreases as the 
strength of the excitations X>f increases. It is thus physically 
not acceptable. This branch of the solution is shown in Fig. .1 
by the dashed line. Summarizing the results, we have for the 
case K = 0 

of Gaussian closure and by the 4th order method, where R is 
defined as: 

R = -
1 Q2Df 

2 5 - 1 4a 

The bifurcation conditions in terms of R are the following 

R = l (exact) 

R= 1/3 (Gaussian closure) 

R = 11 (the 4th order method, 

not a bifurcation but a jump) 

As can be seen from the Fig. 1, the solution by Gaussian 
closure has large error consistently for all i? > 1/3. The 4th 
order method gives a better approximation for R > 11 and the 
wrong solution for 1 <R< 11 and a faulty jump in m20. It is 
interesting to indicate why this happens. 

For the 4th order method, the condition (32) gives following 
moment relations besides some trivial ones: 

m06 = 15m02mO4-30m^ 

m42 = m02m40 + 6m20m22-6m02ml0 

m24 = m20m04 + 6m02m22-6m20ml2 

(40) 

The exact relations corresponding to equations (40) can be ob­
tained explicitly from the exact solution (5) when K = 0 

5fi2 

m„ = 

(-4-H 
2/3Q2V~T7' 

1 

1 / 8 \ 
mn 

(41) 

and 

mM=-
3fi4 

0-4-)- (42) 

Comparing equations (40) and (41), one can see that the condi­
tion (32) imposes nonlinear relations on moments. It is 
understood that these nonlinear constraints are the causes of 
the inequalities (35) and (37) which in turn result in the wrong 
bifurcation condition and the faulty jump in moments at 
8 = 6/11 (R= 11). 

Applying equations (41) to (21) to (24), we find, as might 
have been expected, that some of the equations become iden­
tities while others become the exact relations of moments such 

mm= < 

0 

0.2727 

5>-

P 
18(2 - 5) + V324(2 - 5)2 + 192(2 - 5)(5 -T) 

96/3 

5 = 

5<-

11 

6 

IT 
6 

IT 

(39) 

As readily seen from equation (39), there is a jump in m20 as 5 
varies across the point 5 = 6/11. 

A Discussion. Shown in Fig. 1 are the curves of (/3 X m20) 
versus R of the exact solution and the solutions by the method 

Q2f = 3m, 

m04 = 3Q2m22 

Q2 

2(3 (-4) m-,, 

(43) 

Equations (41), (42), and (43) show that the moments of any 
order of the system are linearly related and of a non-Gaussian 
nature. The method of cumulant-neglect closure, on the other 
hand, requires the moments above certain order to satisfy 
some nonlinear relations; this is where the solution by the 
method deviates from the exact solution. When the order of 
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0 .2 

Fig. 2 Invalid parameter domain of the fourth and sixth order methods 

the method becomes higher, higher-order nonlinear constraint 
relations on moments are introduced. The higher-order 
nonlinear relations may introduce more constraints like equa­
tions (35) and (37). It is difficult to know whether such higher 
order constraints make the approximate solutions converge to 
the exact solution. This specific case K = 0 considered here, 
however, clearly shows that the constraints introduced at the 
fourth order level actually make the method invalid and bring 
about a faulty solution for a range of the system parameters. 

3.2.2. The General Case K^O. Next, let us consider the 
general case K ^ O . Here what we need is to find all the real and 
positive solutions of m20 from equation (34) which also satisfy 
the constraint equation (35). These solutions will be referred 
to as meaningful solutions. A detailed calculation for this task 
yields curve 1 in Fig. 2. In this figure, area C+D is a region in 
the /3K - R parameter plane where there exist meaningful solu­
tions. Area A + B of the figure is a region where there is no 
meaningful solution because the solutions are either complex, 
real but negative, or violating (35). 

The neighborhood near point p on the R axis with R = 0.2 
needs some special comments. The R coordinate axis, or K = 0, 
is a special case. As discussed earlier, when K = 0 there is the 
trivial solution for all positive values of R. The nontrivial solu­
tions exist, however, only for R> 11, according to the fourth 
order cumulant-neglect method. As soon as K deviates from 
zero, meaningful solutions with small values of m20 appear for 
i?-values less than approximately 0.2. 

Figure 2 implies that it is inappropriate to use the fourth 
order cumulant-neglect method for systems with parameters 
lying in region A+B. For systems in region C+D the method 
will yield meaningful solutions. It is then important to know 
how good are the solutions of the method for these systems. 
Here we again compare the results against the exact solutions. 
Some of the calculated results are shown in Figs. 3-6. They are 
for (3K = 0.1, 0.2, 1.0, and 10, respectively. It is interesting to 
observe from these figures that if a system is located in area 
C+D of Fig. 2 and not too near the boundary of the area, 
then the predicted mean square of the response is a quite good 
approximation to the true value. The cases considered by Wu 
and Lin (1984) fall in the area C + D (with i? = 0.05); hence, 
they have found good agreement between the results from the 
4th order cumulant-neglect method and the true solutions. 
This is consistent with the findings of this study. For the 

0.! 

8.4 

exact solution 

Gaussian closure 

4th order method 

6th order method 

Fig. 3 Stationary mean square value of the response versus fl for 
K = 0 . 1 , /8 = 1, |3K = 0.1 
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Gaussian closure 

4th order method 

/ 

i i 

r ^ - s r s - ^ ^ ~ ~ 

1 1 

Fig. 4 Stationary mean square value of the response versus R for 
it = 0.2, /3 = 1,/SK = 0.2 

fourth order method, besides the curve shown in each of Figs. 
3-6, there exists also a second branch with much lower /3m20 

values. These are not considered in the above discussion. A 
further study is needed if we wish to have a more rigorous 
basis for excluding them. 

3.3 The Sixth Order Method of Cumulant-Neglect 
Closure. Motivated by the results of the fourth order 
method, we now study the sixth order method. By keeping the 
moment equations up to the sixth order, we have to solve 27 
equations together with 15 nonlinear relations for the 
moments of seven and eight orders. It has been observed that 
under the condition (4), both the Gaussian closure and the 
fourth order method give the following result. 

nij: = 0, if either / ory is odd. (44) 

which is in agreement with the exact solution. It can also be 
shown that there is a branch of the stationary solutions by the 
sixth order method for which equation (44) is true. We intend 
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0.8 

a.6 

0.0 

exact solution 

• Gaussian closure 

4th order method 

6th order method 

0 . 0 8 . 5 1.0 1 .5 2 . 8 2 . 5 

Fig. 5 Stationary mean square value of the response versus H for K = 1, 
/3=1,/3K = 1 

2.8 

8.5 

exact solution 

Gaussian closure 

4th order method 

6th order method 

8 . 8 
8 . 5 I .8 I .5 2 . 0 2 . 5 

Fig. 6 Stationary mean square value of the response versus R for K = 1, 
/3 = 10, |3/c=10 

to find and examine such a branch of solution. With equation 
(44) and the condition (4), we obtain following three equations 

mm = 630mj0 - 42Ow2
0m40 + 35m2

40 + 28m20mm. (47) 

From equations (45) and (47), we obtain the equation for m20 

a0(t3m2o)4 + «i 03w2o)3 + a2(Pm20)
2 + a3(Pm20) + a4=0 (48) 

where 

a0 = 288 

a, = -144(2 -5 ) 

a2 = ( 2 - 5 ) ( 4 2 - l 75) -56/3/c 

a3 = - ( 1 1 . 7 5 5 - 2 6 . 5 ) ( 3 K (2 - 5)(3 - 5)(4 - 5) 
4 

aA = - U l 5 / 3 K - ( 3 - 5 ) ( 4 - 5 ) ] 0 K . 
8 

Notice that all the relations in equations (46) are in agree­
ment with exact ones. From equations (45), one may also 
derive two constraints on m20 to make m40 and mm positive. 
As in the case of the fourth order method, a comprehensive 
numerical study for the meaningful solutions of equation (48) 
is carried out in the /3K - R parameter plane. The result is curve 
2 in Fig. 2. The meaningful solutions are chosen out of several 
branches of the solutions of equation (48) strictly based upon 
comparison with the exact solutions. Thus area B + C in Fig. 2 
is a region where no meaningful solution exists because the 
solutions are either complex, real but negative, or real and 
positive but of the value which remains small for all excitation 
strength, or decreases as the excitation strength increases. 
Area A +D is a region where there exist meaningful solutions. 

3.3.1. Comparison with the Fourth Order Method. It is 
interesting to discuss the features of the cumulant-neglect 
closure methods revealed in Fig. 2. Area A in Fig. 2 is the 
region where the 4th order method is invalid but the sixth 
order method is valid. In this region one can expect to improve 
the approximate solutions of lower order methods by using the 
sixth order method. Area C is the reverse of Area A. In area 
C, the sixth order method is invalid but the fourth order 
method is valid. This suggests that in area C, one should stop 
at the fourth order method because the higher order method 
may not give better approximations. Area B is the region 
where both the fourth and sixth methods are invalid. It seems 
to suggest that the non-Gaussian closure methods are inap­
plicable in area B. Here, it is interesting to note from Figs. 3-4 
that in the area B, the Gaussian closure method, while it does 
not give accurate results, does yield a qualitatively correct 
response pattern. Area D is the region where both the fourth 
and sixth order methods are valid. In the region, the sixth 
order method gives better approximations than the fourth 
order method if the parameters are located far away from the 
boundary of the invalid domain. All the features discussed 
thus far are clearly displayed in Figs. 3-6. 

2 (2-S)m 2 0 -

3MW20 + 2 ( 3 - 5 ) W 4 

3m4n + K = 0 
12 

Pm60 = 0 

16 
5/cw40 + 2(4 - 8)m60 —— (3mm = 0 '40 

and the moment relations 

mn = fl2«20 

--Q6mw 

0 2 Q4 

™42 = "T" m60<m24=~j-m60,md6 

n2 304 fi6 

m62 = -=- mS0,m44=—- ms0,m26=— mS0,mm = Qsms 

4 Conclusion 

(45) A nonlinear system under random parametric and external 
excitations is studied with the method of Gaussian closure and 
the fourth and sixth order cumulant-neglect closure methods. 
The approximate solutions are compared with an exact 
analytic solution. It is shown that for the fourth and sixth 
order cumulant-neglect closure methods one can determine 
two regions in the parameter plane. In one region the methods 
are invalid and give faulty results. For the other region the 
methods give meaningful solutions and, in fact, give fairly 
good approximate solutions in most instances. 

This is merely a case study on one class of systems. It seems 
to indicate that the cumulant-neglect closure method is a very 
useful tool, but it also suggests that the validity of the method 
needs verifying when it is applied to general nonlinear systems 

(46) under random excitations. One way of verifying is to check the 
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results obtained by the cumulant-neglect closure methods with 
direct simulation. Another way is to use the statistic 
hypothesis testing technique to establish the guideline of 
validity of the method. This is, however, a future research 
topic and can not be covered here. 
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Integrals of Linearized Differential 
Equations of Motion of Mechanical 
Systems; Part 1: Linearized 
Differential Equations 
Part I of this paper deals with relationships between integrals of a set of nonlinear 
differential equations and integrals of equations obtained from such a set by a pro­
cess of linearization. The terms "total linearization," "reduction," and "partial 
linearization" are introduced, a theorem is stated and proved in connection with 
each of these, and the use of each theorem is illustrated by means of an example. In 
Part II, the theorems are applied to differential equations of motion of mechanical 
systems. 

1 Introduction 

The subject of this paper is introduced most easily by 
reference to a simple example. Figure 1 shows a mechanical 
system S consisting of two particles, Ps and P2, each of mass 
M, and two light, rigid rods, Rx and R2,

 e a c h °f length L. Rx 

and R2 are connected to each other by a revolute joint and a 
linear torsion spring of modulus k at P2, and R2 is connected 
by means of a revolute joint at O to a vertical shaft that is 
made to rotate at a constant angular speed Q. 

If «, and u2 are defined as qx and q2, respectively, where qx 

and q2 are the angles between the vertical and Rl and R2, 
respectively, and dots denote time-differentiation, then all 
motions of S are governed by the four first-order differential 
equations: 

< 7 i = " i (1.1) 

(1.2) 

(1.3) 

ul+u2cos(ql-q2) = Q2cl(sl + s2)-u
2,sin(ql -q2) 

-{k/(ML2)](qi-q2)-{g/L)sx 

i^cosOy, -q2) + 2u2 = ti2c2(si + 2s2) + u2sin(q x -q2) 

+ {k/(ML2))(ql-q2)-2{g/L)s2 (1.4) 

where s, and c, denote sin qt and cos qt (i = 1,2), respectively. 
These equations cannot be solved in closed form. Hence, to 
obtain a description of the motion of S that takes place subse­
quent to an instant at which w,, u2, qx, and q2 have specified 
initial values, one resorts to numerical integration. In this way 
one can generate results such as, for example, those 
represented by the two curves labeled qx and q2 in Fig. 2 or, 
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equivalently, those reported in columns 2 and 3 of Table 1, 
which apply if g/L = I s - 2 , ML2 = 1 kg m2, k/(ML2) = 
1.27289 s"2/rad, Q2 = 0.69773 rad2 s"2 , and, at t = 0, w, = 
u2 = 0, qx = 23 deg and q2 = 30 deg. 

To check on the validity of results obtained by the means 
just described, one can take advantage of the fact that equa­
tions (1.1)-(1.4) possess the integral 

G(ui, u2, qx, q2) = C, aconstant (1.5) 

where the function G (the Hamiltonian of S) is given by 

— \u] + 2u\ + 2ux«2costa, -q2)-Q,2(s\ + 2s2. + 2siS2)j G = -

1 
2 ML2 (qi-q2)

2-4~(cl+2c2) (1.6) 

Fig. 1 Mechanical system 
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Table 1 

1 

t 

sec 

0.0 

1.0 

2.0 

3.0 

4.0 

5.0 

6.0 

7.0 

8.0 

9.0 

10.0 

2 

"1 
deg 

23.0 

34.9 

24.2 

37.0 

27.2 

40.1 

30.1 

41.9 

30.6 

41.0 

2B.4 

3 

'2 
deg 

30.0 

22.5 

31.1 

24.6 

33.7 

27.6 

36.3 

29.3 

36.8 

28.4 

34.7 

4 

G 

-3.0071 

-3.0071 

-3.0071 

-3.0071 

-3.0071 

-3.0071 

-3.0071 

-3.0071 

-3.0071 

-3.0071 

-3.0071 

5 

'1 
deg 

-10.0 

2.0 

8.51 

4.7 

- 5.1 

8.2 

- 2.2 

10.0 

- 1.8 

8.8 

- 4.3 

6 

"2 

deg 

0.0 

-7.5 

1.39 

-4.9 

4.6 

-1.7 

7.3 

0.0 

7.6 

-1.1 

5.3 

7 

G 

Km 

-2.9759 

-2.9739 

-2.9736 

-2.9717 

-2.9716 

-2.9732 

-2.9736 

-2.9759 

-2.9741 

-2.9740 

-2.9718 

8 

G 

m 

-3.0062 

-3.0062 

-3.0062 

-3.0062 

-3.0062 

-3.0062 

-3.0062 

-3.0062 

-3.0062 

-3.0062 

-3.0062 

9 

^1 

deg 

- 7.0 

12.5 

- 6.9 

12.7 

- 6.6 

12.9 

- 6.5 

13.1 

- 6.5 

13.0 

- 6.6 

10 

"2 
deg 

30.0 

22.5 

31.3 

25.0 

34.6 

28.4 

37.6 

30.4 

38.0 

29.1 

35.4 

11 

G 

-3.0068 

-3.0081 

-3.0064 

-3.0075 

-3.0054 

-3.0066 

-3.0044 

-3.0061 

-3.0042 

-3.0064 

-3.0051 

To this end, one incorporates in the computer program used to 
carry out the numerical integration of equations (1.1)-(1.4) 
the evaluation of G as given by equation (1.6), and determines 
whether or not the value thus found stays constant to an extent 
compatible with the accuracy of the numerical integration 
scheme being employed. In column 4 of Table 1, the value of 
G generated in this way is seen to remain constant to five 
significant figures. The same result is reported in Fig. 2 as the 
straight line labeled G. 

Particular solutions of equations (1.1)-(1.4) can be found 
by setting w, = u2 = 0 and letting ql and q2 be constants such 
that 

fiV.Cs, + s2)-[k/(ML2)Kqi-q2)-(g/L)s1=0 (1.7) 

Q2c2(sx+2s2)+[k/(ML2)](ql-q2)-2(g/L)s2 = 0 (1.8) 

where i,- and c,- denote sin <?, and cos qt (i = 1, 2), respective­
ly. For example, with g/L, ML2, k/(ML2), and O2 as before, 
these equations are satisfied with qx = 3 3 deg, q2 = 30 deg. 
Suppose now that, to study motions differing only slightly 
from that corresponding to such a particular solution, one in­
troduces perturbations ul,u2,q{, and q2 as «,- = uh qt = qt — 
q, (i = 1, 2), substitutes into equations (1.1)—(1.4), and then 
linearizes in the perturbations and their time-derivatives. This 
yields the equations 

<7i="i (1-9) 

'q2 = u2 (1.10) 

w, + «2cos(^! - q2) = fl2 ^ (c 2 - si - sxs2)q{ + c, c2q2j 

-[k/(ML2)](qx-q2)-(g/L)cxqx (1.11) 

; = Q2[, 

(1.12) 

u,cos(?, - q2) + 2u2 = Q2 \cx c2qx - {sxs2 - 2cf + 2s\)q2 

+ [k/(ML2)](.qx - q2) - 2(g/L)c2q2 

which, being linear, can be solved either in closed form or by 
numerical integration. Using the same parameter values and 
initial conditions as before, one obtains the curves labeled qx 

and q2 in Fig. 3, as well as the entries in columns 5 and 6 of 
Table 1; and, evaluating G after replacing H, with «,- and qt 

with <?, + q, (i = 1, 2) in equation (1.6), one is led to the curve 
labeled G in Fig. 3, and to the numerical values recorded in 
column 7 of Table 1. Both show that G fails to remain cons­
tant . However, this does not mean that «,• and <?, (/ = 1, 2) 
have been evaluated incorrectly. It simply indicates that equa­
tion (1.6) is not an integral of equations (1.9)—(1.12). To find 
such an integral, one may proceed as follows. In equation 
(1.6), after replacing «, with u, and g, with q, + qt (i = 1, 2), 
expand each trigonometric function of qt in a Maclaurin 
series, and then drop all terms of third or higher degree in «, 
and /o r q,- (i = 1, 2). Denote the resulting function of uh q,, 
and q, (i = 1, 2) by G. Then the equation 

G 
( N-m) 

n 

q i . q 2 

(deg) 

-3.00C-

0.5-

42.0 

38.0 

34.0 

30.0 

260 

22.0 

TS" 4.0 8.0 10.0 

0.0 2.0 8.0 4.0 6.0 
time (sec.) 

Fig. 2 A solution of the differential equations 

10.0 

(N-m) 

2.9 

3.0 

f 
^ 

2.0 8.0 10.0 

% i <l2 
(deg) 

4.0 6.0 80 

time (sec.) 

Fig. 3 A solution of the linearized differential equations 

G=C (1.13) 

where C is a constant , is an integral of equations (1.9)—(1.12). 
The validity of this contention is confirmed by the plot of G 
versus t, shown in Fig. 3, and by the numerical value of G at 
various instants of t ime, recorded in column 8 of Table 1. 

The foregoing observations lead rather naturally to the 
following question: can one always construct an integral of a 
set of linearized equations of motion by proceeding as in the 
above example? It is one of the objectives of this paper to 
answer this question. Before doing so, however, let us briefly 
examine the following situation. Suppose that the spring con­
necting R) and R2 is so stiff that one may expect qx to be near­
ly equal to q2 throughout all motions of S. Under these cir-
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cumstances, one may wish to replace ux with u2 + "i > and qx 

with q2 + <7i, in equations (1.1)—(1.4), and then linearize in 
«!, qx, and their time-derivatives, which leads to a set of four 
partially linearized, but nevertheless nonlinear, differential 
equations; and, to test the validity of a numerical integration 
of these equations, one can attempt to make corresponding 
substitutions in equation (1.6), drop terms of degree three or 
higher in w, and qx, and then see whether or not the function 
G thus formed remains constant as time varies. Results of 
such a numerical integration are recorded in columns 9 and 10 
of Table 1, and the associated values of G appear in column 
11, which reveals that G = C, a constant, is not an integral of 
the set of differential equations under consideration. Thus, 
one is led to wonder whether or not it is possible to derive an 
integral of a set of partially linearized equations of motion 
from an integral of the associated set of nonlinear equations 
of motion and, if so, how one might proceed in order to attain 
this goal. In Part I we answer both this question and the one 
raised earlier for a class of differential equations arising in 
dynamical analyses. We state and prove three theorems in the 
sections that follow, and illustrate the use of each theorem by 
means of an example. In Part II we apply the theorems to dif­
ferential equations of motion of mechanical systems. 

2 Total Linearization 

Let x(t) denote an n x 1 matrix whose elements, 
j ; , , . . . ,x„, are functions of a scalar, independent variable t, 
and let F(x, t) stand for an n x 1 matrix whose elements 
F , , . . . ,F„ are functions of xu . . . ,x„ and t such thatF(0, 
t), denoted by F, vanishes for all t, that is, 

F 4 F ( 0 , f ) = 0 (2.1) 

Furthermore, require x to satisfy the differential equation 

x=F (2.2) 

where the dot denotes differentiation with respect to t\ and let 
G(x, t) denote a scalar function of xlt . . . ,x„ and t such 
that, whenever x satisfies equation (2.2), then 

G = C, a constant (2.3) 

Under these circumstances, equation (2.3) is called an integral 
of equation (2.2), and G is referred to as an integral generating 
function or, for short, an IGF, for equation (2.2). 

To produce what we call the totally linearized form of equa­
tion (2.2), we introduce x(t), an n x 1 matrix whose elements 
x,, . . . ,x„ are functions of t; define an n x n matrix dF/dx 
as 

dF 

~dx~ 

dx. 

dFn 
dxY 

dx„ 

9Fn 

dx„ 

and use an overbar to denote evaluation of dF/dx at x = 0 [as 
in equation (2.1)]. The totally linearized form of equation 
(2.2) is, by definition, the equation 

A dF „ 
x = —— x 

dx 
(2.5) 

Finally, we let G(x, t) denote the scalar function defined as 

(2.6) 
- . A - dG , 
G(x,t)£G + ^r—x 

dx 

where dG/dx is the value at x = 0 of the n x 1 matrix dG/dx 
defined as 

dG A r dG 

dx dx. 

dG 
dx„ 

(2.7) 

G is called the totally linearized form of G. 
The total linearization theorem asserts that G is an IGF for 

equation^ (2.5)^ if G is an IFG for equation (2.2). In other 
words, G = C, a constant, is an integral of equation (2.5) if 
equation (2.3) is an integral of equation (2.2). 

To prove this theorem, we begin by differentiating G with 
respect to t, which yields1 

dG dG 
•F+ = 0 dx (2.2) dt 

(2.8) 
(2.3) 

Next, differentiating equation (2.6) with respect to t, we 
obtain 

~dG 1PG „ ~dG • 
Q = + „ . x + ——x 

(2.6) 3f dtdx dx 

dG - d2G „ dG dF „ 
F + ^ r ^ X + —z ; X dx 

- ( -

dtdx dx dx (2.5) 

d2G dG dF 
+ 

(2.1) dtdx dx dx 

and, after defining d2G/dx2 as 

d2G 

> 
(2.9) 

d2G 

d2G A 

dx2 ~ 

dX\ d*! 

d2G 

d^d.*! 

dx, dx„ 

d2G 

to„3x„ 

(2.10) 

note that differentiation of equation (2.8) with respect to x 
and then setting x equal to zero produces 

d2G - dG 
• F+-dx2 dx dx 

dF d2G 
- + -dxdt 

= 0 
(2.8) 

(2.11) 

The first term of this equation vanishes by virtue of equation 
(2.1), and the remaining two terms are the coefficient of x in 
equation (2.9). Consequently, 

G = 0 
(2.9) (2.11) 

(2.12) 

(2.4) which means that G is an IGF for equation (2.5). 

3 Reduction 

The reduced form of G is a function G(x, t) defined as 

G(x,t)^G + ^—xT d2G 

dx2 (3.1) 

where G and d2G/dx2 are given by equations (2.6) and (2.10), 
respectively. The n x n symmetric matrix whose /th row is 
(dG/dx) (d2F/dXidx) is denoted by (dG/dx) (¥f/dx2)\ that 
is, 

Numbers beneath signs of equality or terms of an equation refer to cor­
responding equations. 
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dG d2F 

dx dx2 

dG 

dx 

1)G 

d2F 

dx,dx 

¥F 

and define H(y, z, t) as 

H(y,z,t)±G( 
(3.2) 

,0 (4.4) 

dx ax„3x 

The reduction theorem asserts that , when G is an IGF for 
equation (2.2), then G is an IGF for equat ion (2.5) if and only 
if 

~dG 
(3.3) dx dx2 

Finally, use aii overbar to denote evaluation at y = 0, so that , 
for example, H = H(0, z, t)\ and l e ty ( t ) be an ;' x 1 matrix. 
Then we refer to the equat ion 

(4.5) 

= 0 

The proof of this theorem involves the first time-derivative 
of G and the second derivative of equat ion (2.8) with respect 
to x. Now, 

/ + 

J+ 

dl 

dy 

~dl 

-y 

9 
dy 

and to the function H(y, z, t) defined as 

G = G + 
(3.1) 

= 0 
(2.12) 

-r(* 
d2G 

I ' 9F 
2 V dx 

• x+x' 

d2G 

d3G 

dtdx2 •x + x' 
d2G 
dx2 ') 

dx2 

(2.5) 

+ X< 
a3G 

dtdx2 x + x' 
d2G dF 

dx2 dx 
(2.5) 

' ) 

or, equivalently, 

1 'dF 

2 V dx 

d2G 9 3G d2G dF' 

dx2 dtdx2 dx2 dx > 

Differentiating equat ion (2.8) with respect to x gives 

T d2G dG 
F . , + -dx2 

dF d2G 
- + ^ - = 0 

dx dx dxdt 

(3.4) 

(3.5) 

(3.6) 
(2.8) 

and, setting x = 0 after differentiating this equat ion with 
respect to x, one obtains with the aid of equat ion (2.1) 

(3.7) 
dF 

dx dx2 

d2G d2G 
- + - dx2 dx 

dF dG 
- + - dx dx2 

d2F d 3 G 
- + . „ . = 0 dx2dt 

Comparing the left-hand member of equat ion (3.7) with the 
expression within the parentheses in equat ion (3.5), one sees 
that G = 0, which means that G is an I G F for equat ion (2.5), 
if and only if equat ion (3.3) is satisfied. 

4 Partial Linearization 

Let / be an integer smaller than n\ define j as 

and let y and z be an / x 1 and a y x 1 matrix, respectively, 
such that 

(4.1) 

x = (4.2) 

Also, let I{y, z, t) and J(y, z, t) be an / x 1 and a j x 1 
matrix, respectively, such that 

F= (4.3) 

H(y,z,t) <kH+-
dH 

17 -y (4.6) 

as & partially linearized form of equat ion (2.2) and a. partially 
linearized form of H, respectively. 

The. partial linearization theorem asserts that , when G is an 
IGF for equat ion (2.2), then / / I s an I G F for equat ion (4.5) if 
and only if 

-T d2H 
1 ^~df~ 

= 0 

and 

dJ d2H (dJ d2H \ T
 n 

• + ( - ^ — ) = 0 
/ dJ d'H \ _ 
V dv dzdy ) dy dzdy V dy dzdy 

To prove this, we note first that 

H 

(4.7) 

(4.8) 

I = -
(4.6) 

dH 

dz 

dH 

dz 
z + -

d dJ 

V+ dy 
(4.5) 

dH 

dt 

>> 

+ (zT 

dH 

dt 

dH 
+ 

dy 

d2H 

dzdy 

w 
- ( / + . 

- + -
d2H ' 

dtdy , 

T 

- j - dJ +y ~w 
(4.5) 

~dj >) 

)y+-
dH . 

By 

d2H 

y (4.9) 

d2H 

(4.5) 

so that H = 0 for all y if and only if 

dH - dH dH -
J+ — + ——/=0 dz dt dy 

and 

dH dJ -T d2H d2H dH dl 
- + J ——— + ——•— + dz dy dzdy dtdy dy dy 

= 0 

dtdy 

(4.10) 

(4.11) 

(4.12) 

dJ d2H 
and — r-7— is skew-symmetric, that is, dy dzdy 

d/ d2H 

\ dv dzdv / 
, (4.13) 

dy dzdy \ dy dzdy 
We shall now show that equation (4.11) is satisifed 

whenever G satisfies equation (2.8), and that equation (4.12) 
may be replaced with equation (4.7). To these ends, we 
observe that 

dH r dG dG "I 
-r- = I T - • • • -r- ( 4 - 1 4 ) 

dy (4.4) L to, (42) dxt J 

and 
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dH 

~9z~ (4.4) 

dG 

• dX:, , 
(4.2) 

dG 

dx„ 

whence 

BG 
dx - [ 

(2.7) 

dH 

(4.14) 

dH 

dz 
(4.15) 

Hence, equation (2.8) can be rewritten 

r dH dHl r I 1 dH 

dy dz 
(4.16) 

-][",-] J 
(4.3) 

+ dt 
= 0 

(4.15) 

(4.16) 

(4.17) 

(4.4) 

Now, when/ = 0, this becomes equation (4.11), which means 
that the latter is satisfied whenever G satisfies equation (2.8). 
Additionally, differentiation of equation (4.17) with respect to 
y yields 

[ [ • 
d2H ! d2H 

dy2 dydz niir 
dH dH 

dy \ dz 

a/ 

dj 

~dy~ 

d2H 

dydt 
= 0 (4.18) 

or, equivalently, 

-T d2H -r 
I . „ +J 

d2H dH dl dH dJ d2H 
.+ = o dy2 ' " dzdy dy dy dz dy dydt 

(4.19) 

which makes it possible to replace equation (4.12) with equa­
tion (4.7). 

5 Examples 

The function G (x,, . . . ,x6) defined as 

G 4 ( X , + l)2 +x\ + x2 + 2(x4 + 4)2 + 3x2 + 4X2
6 (5-1) 

is an IGF for the set of differential equations 

xl=x2x6-x1x5, x2 = (x4 + 4)x 3 - (x , + l)x6 (5.2) 

x 3=(x, + l )x 5 - (x 4 +4)x 2 , x4 = - x 5 x 6 / 2 (5.3) 

xs = 2(x4 + 4)x6/3 , x6=-(x4 + 4)xs/4 (5.4) 
and the totally linearized form of these equations is the set of 
equations 

x \ = 0 , x2 = 4 x 3 - x 6 , x 3 = x 5 - 4 x 2 (5.5) 

x 4 = 0 , xs = 8x6/3 , x6=-x5 (5.6) 

while the totally linearized form of G is 

G = 2x! + 16x4 + 33 (5.7) 

In conformity with the total linearization theorem, G is an 
IGF for equations (5.5) and (5.6), a fact that is easily esta­
blished by noting that 

G = 2 i , + 16i 4= 0 + 0 (5.8) 
(5.7) (5.5) (5.6) 

Since G as given in equation (5.1) contains no terms of 
degree higher than the second, the reduced form of G is given 
by 

G = (x, + l)2 + x\ + x\ + 2(x4 + 4)2 + 3X2. + 4x1 (5 -9) 

Referring to equation (3.2), one obtains 

dG 

dx 

d2F 

dx2 

" 0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2 

0 

0 

0 

0 

-2 

0 

0 

0 

0 

0 

0 

0 

0 

0 

- 2 

0 

0 

- 8 

0 

2 

0 

0 

- 8 

0 

(5.10) 

Hence, the requirement imposed by equation (3.3) is violated, 
and the reduction theorem leads one to conclude that G is not 
an IGF for equations (5.5) and (5.6). 

Finally, consider the set of four equations 

X!=x2 , x 2 = - s i n x^Xjeos x ,+2) / (2 -cos 2 x , ) (5.11) 

x3=x3x4 , x4 = sin x,(x2 + cos x1)/(2-cos2x1) (5.12) 

and suppose that these are to be linearized in x, and x2, but 
not in x3 and x4. Referring to equations (4.2) and (4.3), and 
noting that i = j = 2, one finds t h a t / , = xu y2 = x2, z, = 
x3, z2 = x4, and 

/= 

yi 

-sin.y1Q'2cos v, +2)/(2-cos2.y1) 

ZlZ2 

(5.13) 

(5.14) 
sin y\iy\ + cos ^ ! ) / (2 -cos 2 j , ) 

Furthermore, G, defined as G = x2 + 2x4 is an IGF for equa­
tions (5.11) and (5.12); H, formed in accordance with equa­
tion (4.4), is given by H = y2 cos yx + 2z2\ and H, I, and J 
satisfy equations (4.7) and (4.8). In accordance with the par­
tial linearization theorem, H, here given by H = y2 + 2z2, 
must thus be an IGF for the partially linearized form of equa­
tions (5.11) and (5.12), that is, for the equations 

Pi=y2< P2 =-2J>i, i\=ZiZ2,z2=yx (5.15) 

And, indeed, 

H=y2 + 2z2 = -2y1+2yl=0 (5.16) 
(5.15) 
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Integrals of Linearized Differential 
Equations of Motion of Mechanical 
Systems; Part II: Linearized 
Equations of Motion 
Theorems derived in Part I are here applied to differential equations of motion of 
mechanical systems. The theorems are reformulated in terms of variables appearing 
in dynamical equations of motion, and their use is illustrated by means of an 
example. 

1 Introduction 

Systems of linear differential equations deduced by a pro­
cess of linearization from the nonlinear differential equations 
governing the behavior of a mechanical system play an impor­
tant role in many engineering analyses (see, e.g., Kailath, 
1980). This paper shows how one can construct integrals for 
such systems of linear differential equations of motion by 
making use of available integrals of the associated nonlinear 
equations of motion. 

The present work draws heavily upon Part I. Indeed, it con­
sists of the application of material from Part I to the field of 
dynamics. This leads to theorems which furnish analytical 
tools especially well suited for dealing with motions of 
mechanical systems. 

In Part I it is shown how one can construct integrals for 
linearized forms of the differential equation (12.2)1 when this 
equation possesses an integral. In what follows, we show that 
the differential equations of motion of any simple, 
nonholonomic system can be cast in the form of equation 
(12.2), and we correlate the variables and functions appearing 
in the equations of motion to x and Fin equation (12.2). Next, 
we appeal to the three theorems of Part I to formulate 
theorems involving the variables that appear in the differential 
equations of motion. Finally, we illustrate the use of this 
material with an example. 

2 Equations of Motion 

Consider a simple, nonholonomic system S (Kane, 1985) 
possessing P degrees of freedom, N (N>P) generalized coor­
dinates ql, . . . ,qN, and P independent generalized speeds 

'Equations numbers preceded by " I " refer to equations numbered cor­
respondingly in Part I. 

Contributed by the Applied Mechanics Division for publication in the JOUR­
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itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by ASME 
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« ! , . . . ,uP. A set of equations of motion of S consists of TV 
kinematical equations and P dynamical equations. To show 
that these can be cast in the form of equation (12.2), we refer 
to Kane (1985), Sec. 2.12, where N (not necessarily indepen­
dent) generalized speeds ul ,uN are defined as linear 
combinations of the time derivatives of N generalized coor­
dinates. Solving for the latter, we have [Kane, 1985, equation 
(2.14.5)] 

^ = E Wsrur+Xs (s=l, ,A0 (2.1) 

where Wsr and Xs are functions of qx, . . . ,qN and t. Simple, 
nonholonomic constraints are introduced as m linear relations 
of the form [Kane, 1985, Eq. (2.13.1)] 

J2Akrur + Bk (k = P+\, ,N) (2.2) 

where P&N-m. Here 
. ,qN and /; and ux 

and Bk are functions of 
. ,uP are independent general­

ized speeds. Substitution from equations (2.2) into equations 
(2.1) leads to expressions relating qlt . . . ,qNtoul uP. 
Specifically, after defining Dsr and Es as 

Dsr^Wsr+ £ WskAkr 
k = P+l 

N 

ES^XS+ £ WskBk 
k = P+\ 

- (s=\, . . . ,N;r=l, . • • ,P) 

(2.3) 

we obtain from equations (2.1)-(2.3) 

• = i,D„ur + E, (s=l,. . .,7V) (2.4) 

These are the kinematical equations, and, since Dsr and Es are 
functions of qu . . . ,qN and /, they have the form of equa­
tion (12.2). 
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The dynamical equations can be deduced from the relation­
ship 

Kr+K*=0 (r=l,. . . ,P) (2.5) 

where Kr is the rth nonholonomic generalized active force, 
and K* is the rth nonholonomic generalized inertia force. By 
definition (Kane, 1985, Sec. 4.11), the latter is given by 

Such a motion is possible if and only if2 

EMi, • • • ,QN,t) = 0 (s=\,...,N) (2.17) 
(2.4)(2.15)(2.16) 

and 

Yr{qu . . . ,qN,Q, . . . ,0,0 = 0 (r= 1, . . . ,P) (2.18) 

K*= - Yjmi*
pi.vp (r=l ,P) (2.6) 

i = i 

where apf is the acceleration of the ;th particle P, of S, m-, is 
the mass of P,, vp is the rth partial velocity of P, (Kane, 1985, 
Sec. 2.14), and v is the number of particles in S. Now, a.p> is 
given by [Kane, 1985, equation (5.6.10)] 

p 

a*/ = £ (ifius + v?iu,) + vfi (/= 1, . . . ,v) (2.7) 
s = l 

where vf/ and vf< are functions of ^ j , . . . ,9N and ?, and dots 
over vf/ and vf< denote time differentiation. Hence, from 
equations (2.6) and (2.7), 

1 (2.4)(2.15)(2.16) 

Accordingly, we let 

xs=qs-qs (s=i,.. . ,N) 

XN+r =Ur ( / • = ! , P) 

(2.19) 

(2.20) 

p 

E 
J = I 

^*= - L | Af rA+£ r(4i> • • • >^N. «i. • • • >"/»') 

( r = l , P) (2.8) 

where L r and Mra are defined as 

V P 

LA- E trnW'^Us- E " i / v f " ^ ' ( r=l , • . • ,P) 
/ = ! j = l 1=1 

and 

M^J^mtfi-vfi (r,s=l,...,P) 

(2.9) 

(2.10) 

and define SD ,̂ S^, and "y, as 

T)sr(Xi, • • • ,xN,t)^Dsr(xx+qu . . . ,xN + qN,t) (2.21) 
(2.19) 

&s(Xi, . . . ,xN,0^Es(xl + < ? , , . . . ,xN + qN,t) (2.22) 
(2.19) 

<yr(x1, . . . ,xN+P,t)^Yr(Xi+ql,xN + qN,xN+u . . . ,xN+P,t) 
(2.19) (2.20) (2 .23) 

whereupon the kinematical and dynamical equations lead to 
p 

xs = Qs = E 3V* w + r + 8 , ( 5 = 1 , . . . ,N) (2.24) 
(2.19) (2.4) r = l (2.21)(2.20) (2.22) 

xN+r = «r = %r ( r = l , . . . ,P) (2.25) 
(2.20) (2.14) (2.23) 

Hence, letting 

F,(x,, . . . ,xN+PA D » „ * * + , + S, (5= 1 ,A0 (2.26) 
p 

E 
so that 

Mrs=Msr; Det(MJ>0 (r,s=l, . . . ,P) (2.11) i W * i , • • • ,xN+P)^r (r= 1, . . . ,P) (2.27) 

The generalized active force Kr is defined as [Kane, 1985, 
equation (4.4.1)] we have 

Kr*£vP,.Ri (r=l,...,P) 
/ = i 

(2.12) 

where R, is the resultant of all contact and body forces acting 
on P,. Treating R, as a function of qu . . . ,qN, uu . . . ,uP 

and f, we thus find that Kr can be expressed as a function of 
the same variables; and substitution from equations (2.12) and 
(2.8) into equations (2.5) yields 

x, = Fs ( 5 = 1 , . . . ,7V) 
(2.24) (2.26) 

XN+r = pN+r V = l > • • • i") 

(2.25) (2.27) 

(2.28) 

(2.29) 

J^Mrstis=Lr~Kr (/•=!, . . . ,P) (2.13) 

which can be solved for iir (r= 1, . . . ,P) to obtain 

ur=Yr(qu . . . ,qN,uu . . . ,up,t) (r=l, . . . ,P) (2.14) 

These are the dynamical equations cast into the form of equa­
tion (12.2). 

Before we can apply the theorems stated in Part I, we must 
identify the quantities x, F, and G that appear in equations 
(12.2) and (12.3). To this end, we first consider the require­
ment imposed by equation (12.1) and define a nominal motion 
as one such that 

qs = qs , a constant (5=1 N) (2.15) 

« r = 0 (/•=!, . . . ,P) (2.16) 

(2.30) 

with 

F , 4 F , ( 0 , . . . ,0,t) = 0 + Es(Ql ,qN,t) = 0 
(2.26) (2.22) (2.17) 

C * = l , A 0 

and 

FN+riFN+r(0, . . . ,0,0 = 
(2.27) 

= Yr(q{, . . . ,qN,0 . . . ,0,0 = 0 (r=l, . . . ,P) (2.31) 

(2.23) p (2.18) 

Numbers beneath signs of equality or terms of an equation refer to cor­
responding equations. 
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Finally, we note that, when I(qx, . . . ,qN,ux, . . . ,up,t) is an / = C, a constant (3.11) 
IGF for equations (2.4) and (2.14), then G(xu . . . ,xN+P,t), ig a n i n t e g r a , o f e q u a t i o n s ( 2 4 ) a n d ( 2 . 1 4 ) i a n d w h e n e q u a -
defmed as t i o n s ( 3 5 ) a n d ( 3 6 ) a r e s a t i s f i e d ; t h e n 

G(xu . . . ,xN+P,f)=3(xx + < ? ! , . . . , / = C, a constant (3.12) 
(2.19) 

is an integral of equat ions (3.3) and (3.4). 
xN + qN'xN+i' • • • <xN+P,i) (2.32) The reduction theorem of Pa r t I comes into play when H, 

(2.20) the Hami l ton ian of S, is an I G F for equat ions (2.4) and (2.14). 
To show th i s , we first recall tha t T(qlt . . . ,qN, 

is an IGF for equations (2.28) and (2.29). Now we are in a uu . . . ,uP,t), the kinetic energy of S, is given by [Kane, 
position to reformulate the three theorems of Part I in terms 1985, equation (5.5.6)] 
of the variables and functions appearing in the equations of 
m 0 t i ° n ' T=M(qu . . . ,qN,t)+ £ > , ( ? „ . . . ,qN,t)ur 

r = l 

3 Total Linearization and Reduction D „ 
1 

Considering mot ions such that +~^~LJ 2^^rs(li, • • • ,qN'0urus (3.13) 

<7, = <7. + <7s (s=l,...,N) (3.1) 
_ „ . _ . p . ., „ where Mrs is defined in equa t ion (2.10), and tha t , if 

ur-ur ( r - i , . . . ,n (5.Z) F ( ? i > ^ ^ stands for the potent ial energy of S, then 
where qs and ur are t ime-dependent per turba t ions , we H{qx, . . . ,qN, uu . . . ,up,t) can be written [Kane, 1985, 
substi tute qu . . . ,qN, uu . . . ,up from equat ion (3.1) and equat ion (7.22)] 
(3.2) into equat ions (2.4) and (2.14), expand all functions of j P P 
the per turbat ions in power series, and d rop all terms of second H(qx, . . . ,qN,ul, . . . ,up,t)=V+——-'^l 2 ^ M „ w r u s - M 
and higher degree to arrive at the totally linearized equat ions 2 r=\ s=i 
of mot ion ,? ,,>. 

p N
 S P 

q= J^Dsrur+ X) S—Qi (s = I, • • • ,N) (3.3) Hence, when / / i s an IGF for equations (2.4) and (2.14), then 
r=\ ;=i dQi it follows from equations (2.19) and (2.20) that 

G(xu . . . ,xN+P,t), defined as 
N d F P BY 

"r= Yl ^ ' Qs+ Z / 3 ' "k (r=l, . . . ,P) (3.4) r ( fi & MY 4-n 
7~\ dqs ^ ouk iA-*i> • • • ,XN+P,l)=H(Xl +qlt . . . , 

where, as before, xN + qN,xN+l, . . . ,xN+P,t) (3.15) 

Es=Es(qi, • • • > W ) = 0 (s=l, . . . ,N) (3.5) 
is an I G F for equat ions (2.28) and (2.29). Next , we define V, 
31 l r e , and91 las 

(2.17) 

and 

Yr = Yr(qx qN,0, . . . , 0 , 0 = 0 (/•= 1, . . . ,P) (3.6) (2 

(2.18) 

V(xu . . . , W ) = f(*i+<7i, • • • ,xN + qN,t) (3.16) 
(2.19) 

In view of equat ions (12.6), (13.1), (2.19), and (2.20), the 4 . . 
learized form of I and the reduced form of / a r e . resnective- J l c r S (* i , • • • ,XN,t) =Mrs(Xx + qx, . . . ,XN + qN,t) (3.17) linearized form of / and the reduced form of / are, respective­

ly, 
N Ii . A di 

(2.19),(3.13) 

V~* 01 „ \ - l 01 A 
J=I+L^r1s+L-^—-ur (3-7) SlZC*,, xN,t)^M(xl+qu.. . ,xN + qN,t) 

5=1 °qs r=\ our 

(3.18) 
(2.19),(3.13) 

+ tt^-uA) 0.8) ° = ^ + 4 - 5 S ^ ^ - - ^ (3-19) 
r _ i , _ , OU.6Ur / (3.151,(3.14) (3.16) f3.17M2.20) (3.18) 

1 " " 

r=l s=l ""r""s 

Moreover , if j? , , . . . ,xN+P are defined as 

xs^qs (s=l,...,N) (3.9) a i ^ 
dG I dG dG dG dG 

xN+M ( r = l , ...,P) (3.10) dx - | ^ . . . dxN ^ ^ • • • dxN+p | 

then it follows from the definitions given in equat ions 
(2.21)-(2.13) and (2.26)-(2.27) tha t equat ions (3.3) and (3.4) 
can be represented by equat ion (12.5) with n=N+ P. Similar- P ^ ^ ^ -^ 
ly, equat ions (3.7) and (3.8) correspond t o equat ions (12.6) = — . . . 0 . . . 0 (3.20) 
and (13.1), respectively. Consequent ly , the total linearization (3.i9)L d*, dx{ dxN dxN -——J 
theorem of Pa r t I , applied in conjunct ion with equat ions (2.4), P 
(2.14), (3.3), and (3.4), leads t o the following conclusion: 
w n e n Moreover , d2F/dx,dx can be found as follows: 
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dx. 

dFN 

9FW 

dx, 

dFi dFt 

dxN oxN+j 

dF„ dFN 

dFN+P dFN+p 

dF, 

dxN 

dF* 

dF 

dx 

dX[ 

dFN+l 

dx{ 

dx N 

dFN+l 

dxN 

dXN+l 

dFN+l 

oxN+l 

"XN+P 

9FN+l 

dxN+P 

dF» 

dxN+[ 

(3.21) 

dF 

~~dx~ (3.21),(2.26),(2.27) 

d£>lr d&{ 
xN+r + " 

ri dx. 

y\ dT>Nr 

LJ - x^ 
dxl 

dxx 

dx{ 

dx. 

dXy 

y» 33>lr 

= 1 U*N 

98 

dxN
 XN+r + ^T "» 30, 

y , d£>Nr d&N 

Lj a„ xN+r ~T~ ""A 
9xN 9x„ 

9xw 

dx, N+l 

JTUP 

dXs,+ 

», 

dxN+F 

(3.22) 

92F 

9xcax (3.22) 

f 92SD.r 
*N+r + 

xN+r + 

a2iy<p 
9xs9X! 

9 2 S, 

3 2 S * 
dx„dx. 

922Dlr 9 2 S, 32D„ 

9 j f . t 9 ^ r= l v*sUAN 

A d2T>Nr d2&N 9£>M 

dx,dX\ r=l UASUAN 
dxsdxN dxs 

d2yl 

3x,3xw 

d2yP 

dxsdxN 

d2 <y t 

9X,9XA, 

a2yP 

dx. 

d£>N 

dx. 

32<Mi 

3x r 3x w . 

d2cUf 

dx,dxN. 

(3.23) 

• -,N) 
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d2F 

dxN+rax (3 22) 

3 P l r 
9 x i 

3x, 

a2U 

a2<yfl 

3*w 

9xN ' 

SXN+rdXi 

0 . . . 0 

0 . . . 0 

a 2 u 
dxN+rdxN+P 

d2cyP 

dxN+roxN+P 

(/•=!, . . . ,P) (3.24) 

Hence, substitution from equations (3.20), (3.23), and (3.24) 
into equation (13.3) yields: 

~~ aim /dV 

\dxl dx -) dxsdxr 
- + . . . + 

dv asm\ a2sN 
dxN' dx,dxr 

= 0 
OXN wvyy - • " • j ' ~ v r 

( V = l TV) _ (3.25) 

dV lm\d£>Nr_ 

(/•=! P;s=l, . . . ,N) (3.26) 

/a*v aan \ asplr /_ 
Va*, dx, / dx, ' V< v a*N a x N -

,P;s=l, . . . ,N) 

or, in view of equations (2.21), (2.22), (3.16), (3.18), and 
(2.19), 

dV dM\ d2Ek 

3<7AT d1k ' ^qrdqs 

= 0 («, /•=! . . . ,N) (3.27) 

N / 
t _ 1 N 

dV 8M\ dDkr 

dqk dqk) dqs 

= 0 ( / -=1 , . . . ,P\ s=\, . . . ,N) 

(3.28) 

and, accordingly, replacing equations (2.4) with 

Qs = Qs (s=l,...,N) (4.2) 

we consider motions such that 

Qs = Qs + Qs (s=l, . . . ,iN) (4.3) 

ur = ur{r=\, . . . ,ip) (4.4) 

where iN and ip are integers smaller than TV and P, respective­
ly. Next, we rewrite equations (2.4) and (2.14) as 

Qs = Qs(s=l,...,iN) (4.5) 

ur=Yr{r=l, . . . ,iP) (4.6) 

Qs = Qs(s = iN+l, . . . ,N) (4.7) 

ur=Yr(r=iP+l, . . . ,P) (4.8) 

and substitute 9 , , . . . ,q,N,uu . . . ,uip from equations (4.3) 
and (4.4) into equations (4.5)-(4.8). Finally, we expand func­
tions appearing in these equations in power series in all pertur­
bations, and drop terms of second or higher degree to obtain 
the following partially linearized equations of motion: 

•N 

and now we can apply the reduction theorem to assert that , 
when 

i / = C , a constant (3.29) 

is an integral of equations (2.4) and (2.14), and when equa­
tions (3.5) and (3.6) are satisfied, then 

H= C, a constant (3.30) 

where H is defined similarly to / i n equation (3.8) (with H 
analogous to / i n equation (3.7)), is an integral of equations 
(3.3) and (3.4) if and only if equations (3.27) and (3.28) are 
satisfied. 

A special case of frequent interest arises when S is a 
holonomic system, that is, P = N, and when 

ur = qr ( r = l , ...,N) (3.31) 

Then, in accordance with equations (2.4), 

Dsr = 5sr,Es = 0 (s,r=l ,N) (3.32) 

and equations (3.27) and (3.28) are satisfied automatically. 
Under these circumstances, H is guaranteed to be an IGF of 
the totally linearized equations of mot ion. 

4 Partial Linearizat ion 

Defining Qs as 

aa 
>p 

i = &+E-^*,+ E-2r-*/(*=!. 
BQ, 

;=i d1, 

•N 

/=i a<7; 

dU: 

& 3Yr 

dU, 
u, (/•=!, 

'N 
dQs 

>N 

•P 

h+E 
du. 

iij (s = iN+l, 

. „ p a r , . ^ dYr , 
ur=Yr+ L^—<li+ L/^— Ui(r=iP+ 1, dq, 3U: 

,iN) (4-9) 

,'j>)(4.10) 

• ,N) 

(4.11) 

• ,P) 

(4.12) 

where overbars denote evaluation at qs = qs (s=l, . . . ,iN) 
and ur = 0(r= 1, . . . ,/p). The partially•linearized form of / is 

•N 
dl 

f=I+ ^ a 

•p 

(4.13) 

Q,= T,D„Ur+Es (S=l,...,N) (4.1) 

i=l 

Moreover, if x1, . . . , . ? , • , , are defined as 

xs^qs(s=l, . . . JN) (4.14) 

xiN+r = ur(r=\, . . . ,ip) (4.15) 

then it follows from the definitions given in equations (4.1), 
(2.21)-(2.23), and (2.26)-(2.27) that equations (4.9)-(4.12) can 
be represented by equation (14.5) with 
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Fig. 1 System S 

i='N + ip (4.16) 

(4.17) 

(4.18) 

n^N+P 

yU.Qi, • • • >QiN\Ui> • • • <uiJT 

Z^[c/iN+i, • • • .9N1«I> + I . • • • >"p]r 

ikQi, • • • ,QiN\Ylt • • -,Ylp]
T 

J = [QiN + i< • • • 'QwYip + i* • • • >Yp] 
Similarly, equation (4.13) corresponds to equation (14.6). 
Consequently, the partial linearization theorem applied in 
conjunction with equations (4.2), (2.14), and (4.9)-(4.12), 
leads to the following conclusion: when 

/ = C, a constant (4.19) 

is an integral of equations (4.2) and (2.14), then 

/ = C, a constant (4.20) 

is an integral of equations (4.9)-(4.12), if and only if 

be easier to check directly whether or not equation (4.19) is an 
integral of the partially linearized equations than to use equa­
tions (4.21) and (4.22). 

5 Example 

Figure 1 shows a system S consisting of two bars, ,£, and 
B2, each of mass Mand length L. At point Px, 5 , is connected 
by means of a revolute joint and a linear torsion spring a, of 
modulus k{ to a vertical shaft that is made to rotate at a cons­
tant angular speed fl; and Bi and B2 are connected to each 
other at point P2 by a revolute joint and a linear torsion spring 
o2 of modulus k2. 

If Wj and «2
 a r e defined as qx and q2, respectively, where q{ 

and q2 are angles between the horizontal and Bl and B2, and if 
a{ and a2 are undeformed when q\=q2 = 7i72 rad, then all mo­
tions of S are governed by the four first-order differential 
equations (see Fig. 1 for R) 

? i = « i (5-1) 
q2 = u2 (5.2) 

4 1 1 
-—-«! + — cosfa, -q2) i i2 = - — sinO?! - q 2 ) u \ 

- Sl ( — R/L + — c, + — c2) Q2 - (*, /ML2)qx 

+ {k2/ML2){q2 -q0- -jig/Lfa 

1 1 
— cos(<72-<?[)«,+ — sin(q2 • ? i ) " i 

(5.3) 

[& . . . Q,N\YX . . . Yip] 
d2I 

~dqj 

d2I 

d2I d2I 

dciidqiN dqidUi 

d2I d2I 

duipdqi ' duipdqiN duipdux 

(4.21) 

d2I 

dq^duip 

82I 
= 0 

(4.21) 

bqx 

38/w+1 

dQ •N 

du. 

d"iP 

dYP 

dq{ 

dYP 

dq •N 

9YP 

dui 

du. 

d2I 

9 ^ + 1 ^ 1 

d2I 

dqNdqx 

Wl 
dUiP + id<li 

d2I 

duPdqi 

d2I 

dQiN+JUi, 

d2I 

•p 

dqNdu, 

d2I 

3"/P + i9",> 

d2I 

duPduip 

(4.22) 

where S is a skew symmetric matrix and where overbars denote 
evaluation at qs = qs {s = 1, . . . ,iN)mdur = 0(r=l ip). 
Since equations (4.21) and (4.22) cannot be simplified, it may 

s2(R/L + Cl + — c2
SJQ2-(k2/ML2)(q2-qi) 

-~{g/L)c2 (5.4) 
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where g is the local gravitational acceleration and s, and c, 1 „ _ 1 _ . \ » ~|_, r, //, / f r2\i/-- A I 
denote sin ^ and cos <?,(/= 1,2), respectively. + — cos2<?2 + — c, c2 J <?2 J 0 -\k2/(ML )](q2-qO 

The Hamiltonian of S, given by 

/ / = A „ 2 + J _ „ 2 + c o s ( g 2 _ g i ) „ | M 2 _ [ _ L ( c 2 + c i ) + ^ - f e / ^ 2 < 7 2 (5-12) 

To construct an integral of this set of equations, we 
+ (R/L I * c 12+ f/?/f + r +—!— r ^ 2 I n 2 substitute from equations (5.8) into equations (5.5) and then 

2 \ ' 2 V J expand//in a power series in «(, M2, ̂ i , ?2> thus obtaining 
H=H0+Hl+H2 (5.13) 

+ (k1/ML2)q2 + (k2/ML2)(q2-ql)
2 + (g/L)(3sl +s2) w h e r e ^ c o n t a i n s s o l e i y t e r m s 0f degree i in uu u2, qu q2, 

(5.5) with 

is an IGF for equations (5.l)-(5 4); that is, the equationH=C ff = A /J_ ^ / L + A ^ + _ L c - \ f i 2 + [^/(MZ,2)]^ 
where C is a constant, is an integral of equations (5.l)-(5.4). ' (. \ 2 3 2 / 

Particular solutions of equations (5.1)-(5.4) can be found 
by setting Ui=u2=0 and letting qx and q2 be constants such / / ; W T 2 W / ; A ^ . 3 / „ / r^- ~b 

•?, (~Y R/L + X C_1 + ~T CV ° 2 + lki/(MZ/2)1^' + 2 f - y - *2 (JUL + CX+— C2)fi2 + [k2/(ML2)](q2 -q{) 

-[V(ML2)](<j2-<7i) + -^-(*/Z.)c,=0 (5.6) + ^ - f e / L ) c 2 ] & (5.14) 

4 
1 / 2 \ a n d 

— j 2 (* /L + c, + — c2 j f i2 + [k2/(ML2)Kq2 -q,) 4 1 f 1 
H2 = —u]+—u\ + cos(q2-q{)U\U2-\^(-cos2qlq 

+ —fe /L)c 2 = 0 (5.7) 
cos2q2qj)——\R/Lci + —- cos2q1jq

2i-(R/Lql 
where s,- and c, stand for sin #, and cos q, (i=\,2), 
respectively. . . 

To study motions differing only slightly from those cor- + c-,c2 + cos2^,)gf - | (R/L + c{)c2 

responding to such particular solutions, we introduce pertur- 2 L 2 
bations uj and qt by setting 

Ui^u^q^qj + cii 0=1,2) (5.8) + — cos2^ 2 J^ +5 I i 2 9 ,^ 2 ]n 2 + \kx/(ML2)\q\ 

in equations (5.1)-(5.4) and then linearize in the perturba- / 3 1 \ 
tions. This yields, with the aid of equations (5.6) and (5.7), the + [k2/(ML2)](q2-ql)

2+g/L(—— sxq]—— .?2<72) 
linear differential equations 2 / 

(5.15) 

(5.7), 
i that 

equations (3.27) and (3.28) are satisfied (see equations (5.1) 

<7i = «! (5.9) 
x . . . . Noting that / / ! vanishes by virtue of equations (5.6) and (5.7), 
^2 = "2 ( • ) that the system under consideration is holonomic, and that 

_jL z j i + _ L c o s ( ^ ] _ ̂ ) ^ 2 = _ IYJL R/LCX + — cos2<j, a n d (5-2))> w e n o w t a k e advantage of the fact that H is an IGF 
3 2 L\ 2 3 for equations (5.1 )-(5.4) to express an integral for equations 

, j (5.9-(5.12)as 

+ -r-clc2Jql—^-i1i2^2J02-[A:1/(ML2)](71 / / 2 = C, a constant (5.16) 

where H2 is given by equation (5.15). 

wwwm-to+^g/m* (5.ii) References 

1 i 1 A T 1 , / l . Kailath, T., 1980, Linear Systems, Prentice-Hall, New Jersey, p. 59. 
COS(<7! —q2)ux -I U2 = — —— SlS2ql + (—— R/L62 Kane, T. R., andLevinson, D. A., 1985, Dynamics: Theory and Application, 

2 3 L 2 \ 2 McGraw-Hill, New York. 
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Eigenproperties of Nonclassically 
Damped Primary Structure and 
Oscillator Systems 
The calculation of the combined eigenproperties of a nonclassically damped struc­
ture and a supported equipment is of practical interest. Herein an approach is 
developed whereby these properties can be obtained, in terms of the eigenproperties 
of the structure and equipment, without a conventional eigenvalue analysis of the 
combined system. The eigenvalues are obtained as the solutions of a nonlinear 
characteristic equation, easily solvable by a simple Newton-Raphson scheme. Once 
the eigenvalues are known, the corresponding eigenvectors can be obtained from 
closed-form expressions. The approach can also be used effectively to obtain exact 
eigenproperties for very light as well as very heavy equipment supported on 
structures. 

Introduction 

The problem of the dynamic response of equipment or in­
ternal structures attached to massive structures, also referred 
to as primary structures, is of practical importance in struc­
tural dynamics. The proper functioning of certain equipment 
when the structure is subjected to dynamic forces is essential in 
facilities like power plants, hospitals, chemical factories, etc. 
Other physical systems where the response of mounted equip­
ment or secondary systems is of interest are vehicular struc­
tures, where guidance and control devices must always remain 
operational and thus require a careful design. 

If the system response is to be obtained through modal 
analysis, the modal properties of the combined structure and 
equipment system must be obtained. Some problems, 
however, may arise when the combined system is analyzed to 
obtain its eigenvalues and eigenvectors. For very light equip­
ment, the combined system matrices may be ill-conditioned 
due to the large differences in the numerical values of the 
equipment and structure mass and stiffness properties. Fur­
thermore, the combined analysis, though maybe possible with 
increased computational precision, becomes impractical in the 
design situation where several alternative locations and pro­
perties for the equipment need to be considered, each requir­
ing the solution of a large eigenvalue problem. For example, 
for the generation of seismic floor response spectra incor­
porating equipment-structure interaction effects, such 
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repeated analysis will be required with different characteristics 
of the oscillator placed at different locations. Thus the ap­
proach in which such repeated large eigenvalue analyses can be 
avoided and the individual modal characteristics of the struc­
ture and equipment can be used to obtain combined properties 
are preferred. 

For light equipment, perturbation methods have been pro­
posed by Sackman and Kelly (1979), Sackman et al. (1983), 
and Suarez and Singh (1986) to obtain the eigenproperties of 
the combined system. Alternative approaches based on the 
synthesis of modes, which can be used with light as well as 
heavy equipment, have also been proposed by the authors 
(Suarez and Singh, 1987a and 1987b). In all of these works, 
however, the supporting structure was assumed to be classical­
ly or proportionally damped (Caughey, 1960). There are cer­
tain important cases where the primary system must be re­
garded as nonproportionally damped. This is usually the case 
when the primary system is composed of two or more com­
ponents with widely different energy dissipation char­
acteristics. 

In this paper a method is presented to obtain the exact com­
plex eigenproperties of a nonclassically damped structure sup­
porting a single degree of freedom oscillator. The eigenvalues 
are obtained as the solution of a simple nonlinear equation 
with real coefficients. The corresponding eigenvectors are 
calculated from the closed-form expressions once the eigen­
values are known. To implement this method it is only 
necessary to know the complex eigenvalues and eigenvectors 
of the primary structure and, of course, the natural frequency, 
mass, and damping ratio of the equipment. 

Eigenproperties of the Combined Structure-Equipment 
System 

It is assumed that the damped eigenproperties of the 
primary structure are available. For a primary system, mo-
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delled as an n degree of freedom system with stiffness matrix 
[Kp], damping matrix [CJ , and mass matrix [Mp], the 
damped eigenvalues A,- and eigenvectors </>j are obtained as a 
solution of the following eigenvalue problem (Meirovitch, 
1980): 

~ Mp 

L ° 

0 

-KP\ 
4>j = \j 

"0 Mp~ 

[MPCP\ 
+/-J: 1, .In (1) 

These eigenvalues and eigenvectors occur in complex con­
jugate pairs. Also, the upper half of the eigenvector can be 
written as a product of the eigenvalue and the lower half. 
Thus, we can partition the (2nx2rt) eigenvector matrix as 
follows 

[*»] = 
Ukp UAp 

U U 
(2) 

where the matrix [17] is a submatrix composed of the last n 
rows and first n columns of [$p]; [A^] is a diagonal matrix 
whose elements are the eigenvalues A,-; and a bar over a quanti­
ty denotes its complex conjugate value. If the modal shape 
vectors are normalized with respect to the matrix on the right-
hand side of equation (1), the orthonormality condition of the 
eigenvectors give: 

ApU
TMpUAp-U^KpU=Ap 

UTMp UAp + Ap U
TMp U+ UTCpU=I 

ApU
TMpUAp- UTKpU=Q 

(3) 

UTMp UAp + Ap iFMp U+ UTCU= 0 

Analogous damped eigenvalues and eigenvectors can be de­
fined for the oscillator. For an oscillator of mass me, stiffness, 
ke, and damping constant ce, we define the following (2x2) 
eigenvalue problem 

[M] = 
~ Mp 0 " 

0 me 

\[K\ = 
~ Kp 0 " 

L o o J 
+ k„v yT (10) 

Matrix [C] is of similar form as [K] and is obtained by replac­
ing [Kp] by [Cp] and ke by ce in equation (10). Assuming that 
the oscillator is attached to the Kth degree of freedom of the 
primary system, vector v is 

v r = [ 0 , . . . , 1 , . . . , - 1 ] (11) 

where the nonzero entries are at the Kth and wth locations. 
The eigenvalue problem associated with the combined 

system (8) is as follows: 

M 

0 

0 " 

-K 
*J=PJ 

' 0 M ] 

M C 
ij\j=l, . . . ,2m (12) 

It is desired to obtain the combined system eigenproperties 
4>j and pj. However, we would like to avoid a direct solution 
of equation (12) and would prefer to obtain these eigenproper­
ties in terms of the known eigenproperties of the systems 
defined in equations (1) and (4). To achieve this objective we 
introduce the following transformation in equation (12) 

fj = lWj: 
Tt t, 

*J 

where the submatrices [Tu] and [Tt] are 

[Tu] = 
UAn 0 

o 4>exe 

•AT,] = 
U 0 

0 4>e 

(13) 

(14) 

We then premultiply the resulting equation by [T\T and obtain 
the following transformed eigenvalue problem 

\AMj=Pj[B\+j;j=l, ,2m (15) 

where 

me 

0 

0 
+>j=\-

0 m„ 
^ . ; y ' = l , 2 (4) 

from which we obtain the equipment eigenvalues and 
eigenvectors, in terms of the equipment (undamped) natural 
frequency u>e - ~4ke/me, and critical damping ratio /3e = 
ce/(2meo)e), as follows 

\*i =K2=K= -Peue + 'u, ,VT=|82 

Vs,=<>T
S2 = {<t>e\, 4>e] 

(5) 

(6) 

For the equipment also we normalize the eigenvectors with 
respect to the matrix on the right-hand side of equation (4), 
and thus get 

1 - / 

2Vwewe(l-(3^)1 / 2 (7) 

The properties described in equations (3) also hold for this 
case if we substitute [A^] by \e and [U] by 4>e. 

We now examine the combined structure and equipment 
system. The equations of motion for the combined system 
subjected to the dynamic excitation ¥(t) can be written in the 
state vector form as follows: 

= F ( 0 (8) 

where z is the state vector 

zT=[xTxT] (9) 

and x is the displacement vector of the combined system of 
dimension m = n+\. The matrices [M] and [K] are 

M 0" 

0 K 
z + 

' 0 M ' 

M C 

•A\\ Al2 

_ Al2 Ayi 

;[B\ = 

Bn B\2 

_ B\i 5 n . 
[A] = 

with 

Au = TlMTu -TfKTf, Al2 = T^Mf, - TfKT, 

Bn = TfMTu + TZMTg+TfCT,; 

Bl2 = TjMfu + 1%Mtt + TJCT, 

(16) 

(17) 

(18) 

Using the definitions of [M], [C], and [K] from equations (10), 
and the orthogonality properties listed in equations (3), it can 
be shown that the above submatrices become 

[Au] = [Ac]-ke[Nl]; [A12]=-ke[N2] 

[Bn] = [I]+ce[Nl]; [Bl2[ = ce[N2] 

(19) 

(20) 

where 

[Ac] = 
~ Ap 0 

0 \e 

; [N, ] = 
-4>ea 

xT 0 

[N2]--

<XT=[<t>„ + K,l, 'n+K,2< ,<l>n+K,n] 

(21) 

(22) 

and <j>n+KJ is the (n+K)th element of the /th eigenvector of 
the primary system <£,-. With the substitution of equations (19) 
and (20), the eigenvalue problem (15) can now be expressed as 
follows 
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[[A] - ke[DMj =Pj[[I\ + ct[DXWj\ j= 1, . . . ,2m (23) 

where 

[A]= . ;[D]= _ . (24) 
Ac 0 " 

0 Ac 

;ID} = 
N, N2 

„N2 Nx 

The eigenvalue problem (23) is in such a form now that with 
some simple algebraic manipulations it can be expanded to 
define its characteristic equation by a simple closed-form 
equation. For this, we rearrange the terms of equation (23) 
and obtain 

\PjI-mj=~ (ke + cePj)[DUj (25) 

The matrix on the left-hand side of equation (25) is a diagonal 
matrix, and thus can be easily inverted to give the following 

^=-(ke + cePj)\r 8, „ ] - ' [ £ % (26) 

where the diagonal elements 5,- are defined as 

&t=Pj-\; &i+m=Pj-\'> ' = 1 > • • • ," (27) 

5m =Pj - K\ 82m = Pj~K (28) 
Furthermore, from the definition of [D] in terms of [N^ and 
[N2], we note that it is possible to express this in terms of the 
products of two vectors as follows: 

[D] = [vv
T-v,iT] (29) 

where 

- = ( « 7 

e,0T, 4>e) 

S) 

(30) M r = ( 0 r , 

The nonzero elements of iiT are at the mth and 2wth locations. 
We now substitute equation (29) into (26), and premultiply 

by vT and obtain 

*T*j=- (ke + CePj)vT[- 6, - j - 'O . t>Ttj-n Mj) (31) 

We also denote the last vector product in the parenthesis of 
equation (31) by 0. This vector can be expanded as 

0 r =[/* HT1>j]T = (.0 0CA, . . .0, . . .<£CA) (32) 

in which the only nonzero elements </>eA and <f>eA are in the 
mth and (2w)th rows. The term A is defined as: 

& = <t>ei'mj + 4>ei'2mj (33) 

Realizing that we are free to normalize an eigenvector any way 
we choose, here we adopt a rather uncommon but simplifying 
normalization of the eigenvector fy such that vT^j — 1. With 
this normalization and some rearrangements we now obtain 
the following for equation (31): 

- ^ { i v J - V - Z h J i s ] " . - . -, ^ - - . -, „ ,- (34) 
ke + cepj 

The right-hand side of equation (34), involving the product of 
vectors with a diagonal matrix, can be easily expanded to give 
the following: 

(=1 0/ X °m 
0 e +" • > + 

1 
ke +pjce 

= 0 (35) 

Substituting for 5m and v from equations (28) and (30), we 
obtain 

'Pj- ,-K' 
A + -

1 

ke +p,ce 

- = 0 (36) 

With Xe and <j>e defined as in equations (5) and (7), it is 
straightforward to show that 

*? 1 1 

Pi­ rn e pf + 2Peu>ePj+ul 
(37) 

We note that all the terms in equation (36) except A and the 

combined system eigenvalues Pj are known. However, A can 
also be expressed in terms of the unknowns Pj as follows. We 
note that equation (31), with the normalization vTipj = 1 and 
/} defined by equation (32), can also be written as: 

1 
r- s,. Wj+p=v (38) 

ke+pjce 

From the wth and (2w)th rows of the above set of equations 
we obtain 

Pj-K 
ke + cepj 

Pj-K 
ke + cep. 

(39) 

(40) 

We solve equations (39) and (40) for \}/mj and famj m terms 
of A and substitute in equation (33) to obtain the following: 

A = {ke + cePj) ( — ^ - + - ^ V ) (1 + A) 
\Pj-K Pj-KJ 

(41) 

Utilizing equation (37) in equation (41) and solving for A, we 
obtain 

We^ePj + <4 

P) 
(42) 

With equations (37) and (42), equation (36) now becomes 

2fieo)ePj + u)2
e 1 

- = 0 (43) 
5,- p) + 2Peoiep] + wepj 2Peo>epj + o>; 

The summation over 2m terms in the above equation can be 
written as a summation over n complex and conjugate terms as 
follows 

2m 

ffl. E-^-E 
OiPj + b; 

8, - + -
1 

ffi pj + CjPj + dj pj + 2PeaiePj + i 
(44) 

i = i 

where 

a,- = 2/neReal(i'?); 6,-= -2meReal(v}\) 

c,= -2Real(X,);rf /=IX ; l
2 

Substituting equation (44) into equation (43) and with some 
simplifications, we finally obtain the following characteristic 
equation: 

(45) 

w=t^^t 1 1 

i=lp] + CiPj + di ' 2(3ewePj + io2
e pj 

(46) 

This equation is defined in terms of the known eigenproper-
ties of the primary system and equipment. The only unknown 
is pj. The solution of this characteristic equation will provide 
the combined system eigenvalues Pj. This equation can be 
solved by any standard iterative technique. We find the simple 
Newton-Raphson technique quite adequate for solving equa­
tion (46). Initial values for the roots of this equation, required 
in the Newton-Raphson iteration process are provided in Ap­
pendix I. 

Combined Eigenvectors 

Once the first m roots of f{pj) are found, the eigenvectors 
can be obtained directly from equation (38). For each pJt 

equation (42) defines A, which in turn defines /3 through equa­
tion (32). Thus knowing /J and v, the eigenvector ipj can be ob­
tained from equation (38) as 

tj=(ke+Pjce)r 5,- J " ' ( / J -? ) (47) 

Recalling equation (32), we can simplify equation (47) to ob-
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tain the closed-form expression for the elements of this 
eigenvector as: 

^ij=- (ke + cePj)—\-\ ; = ! , . . . , « 
Pj~\ 

(48) 

Tpi+mj=-(ke + cepj)- y = l , . . . ,m 
Pj-h 

The values of the remaining elements of this eigenvector ipm, j 
and '/'2m,; a r e a l s° obtained from equation (47), by 
substituting from A from equation (42) and vm and v2m from 
equation (30), as follows: 

t pj + 2PewePj + w2
e 4>e 

tm,j=(ke + CePj)-
Pj Pj-

W2m,j— \Ke + cePj I 7 T^ 
Pj Pj~K 

(49) 

The remaining m eigenvectors can be obtained with: 

*Pi,j + m=ii + m,j _ ' = 1 m 

ti + m,j + m=$i,j ' j=l m 
(50) 

The solution of the characteristic equation (46) and equa­
tions (48)-(50) provide a complete solution of the eigenvalue 
problem (23) without going through a conventional, computa­
tionally expensive, eigenvalue analysis. This efficiency is of 
special significance where repeated analyses with different 
oscillator characteristics are required to be performed, such as 
in the process of generation of seismic floor response spectra 
which are used as inputs for design of equipment supported on 
primary structures. 

The eigenvectors can be rendered orthonormal with respect 
to the matrix in the right-hand side of equation (23). It can be 
shown that this normalization is achieved by multiplying them 
by the complex constant 

f j ^ - ' y ] , ^ , ) - (51, 
^ L Pj J ;=.l 

For light equipment with the mass ratio less than 1/10, the 
eigenvalues calculated from the equations provided in Appen­
dix I are very accurate. In such a case one may not want to 
refine these estimates any further by solving equation (46). For 
heavier equipment, however, such refinements are necessary 
but can be easily carried out by simply solving equation (46) by 
a Newton-Raphson scheme with the help of the initial 
estimates of the roots of the equations given in the appendix. 
As for the calculation of the eigenvectors, equations (48) and 
(49) can still be used with no numerical difficulties for light as 
well as heavy equipment. 

If one is interested in evaluating the limiting value of the 
eigenvector elements for the case of me = 0, equations (71) 
and (12) can be used. It is straightforward to show that in such 
a case of me = 0, 

Table 1 Damping matrix of the nonclassically damped 
primary structure 

20.0 - 4 . 0 - 0 . 4 - 0 . 1 -0 .08 -0 .06 

ICp 

SYMM 

9.0 - 4 . 0 - 0 . 3 - 0 . 2 -0 .15 

8.0 - 4 . 0 - 0 . 3 - 0 . 2 

7.0 - 2 . 0 - 0 . 6 

5.0 - 3 . 0 

4.0 

X108 [Kg/sec] 

k6 

k5 

k4 

k3 

k2. 

kl 

\\\ 

kQ m 
e e 

•^.w. 
XJ_ g Cl 

ce 

sX^ 

m6 

m5 

m4 

m3 

'"l 

"X^NN 
Fig. 1 A six degrees of freedom primary structure with oscillator 

that the lower and upper halfs of the original system eignvec-
tors are: 

I y = l , . . . ,m (54) 

where the superscripts u and I refer to the upper and lower 
halves, respectively. Substituting for ip" and i/<j from equations 
(48) and (49), and with [Tt] defined by equation (14), we ob-

hj= 

0 

(2|3ecoeXy + cog) (X) + 2Peo>e\j + cog) 

a)lvj\j(\j + 2f}eae) 

; i*j, i=\, . . .2m,j=l, 

i=j,j=l, . . . ,n 

,m 

(52) 

which when normalized according to equation (51) will give tain the following closed-form expressions for the elements of 
j , _g ,ry. the lower part of the original system eigenvectors: 

Equation (53) implies that the original eigenvectors of the 
structure and equipment will remain unchanged, an obvious 
conclusion. t _ 

To obtain the eigenvectors i£,- of the original system from v,+m-J 
the eigenvectors of the transformed system \ph we use the 
transformation of equation (13). It is straightforward to show I mePj 

(ke + cepj)6J'£ 

ke + cepj 

ekPj+fk 

PJ + C/cPj + dk 
' = 1 , . . ,n 

(55) 
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Table 2 Complex eigenvalues of the primary structure 

Eige 

No. 

1 

2 

3 

4 

5 

6 

nvalues of primary system 

Real 

-0.2923 

-3.7472 

-7.2993 

-11.7546 

-11.7583 

-12.1126 

Imaginary 

23.8724 

61.5101 

97.1178 

132.5499 , 

153.0566 

170.3976 

Table 3 Eigenvalues of the combined damped structure-oscillator 
system. Undamped oscillator frequency = 23.87 rad/s—Mass ratio = 
1/2. 

Eigenvalue 
No. 

1 

2 

3 • 

4 . 

5 

6 

7 

I n i t i a l 

Real 

-0.2184 

-0.3242 

-3.7434 

-7.3007 

-11.7768 

-11.7791 

-12.0584 

Eigenvalues 

Imaginary 

20.3492 

28.6534 

61.7358 

97.1200 

132.6637 

153.3001 

170.6659 

Final E 

Real 

-0.1830 

-0.3831 

-3.7565 

-7.3009 

-11.7888 

-11.8112 

-12.0989 

genvalues 

Imaginary 

20.0146 

28.2502 

61.7378 

97.1199 

132.6584 

153.2927 

170.6761 

number of 
I t e r a t i o n s 

4 

4 

3 

3 

4 

4 

4 

Table 4 Eigenvalues of the combined damped structure-oscillator 
system. Undamped oscillator frequency = 40.0 rad/s—Mass ratio = 1. 

Eigenvalue 
No. 

1 

2 

3 

4 

5 

6 

7 

I n i t i a l 

Real 

-0.3590 

-0.8381 

-3.4283 

-7.1231 

-11.7759 

-11.7834 

-12.0566 

Eigenvalues 

Imaginary 

18.7342 

43.6057 

67.2862 

99.2579 

133.2061 

153.5581 

170.6857 

Final 

Real 

-0.1996 

-0.8169 

-3.7923 

-7.2265 

-11.8177 

-11.8305 

-12.0810 

Eigenvalues 

Imaginary 

20.2035 

42.1339 

66.6982 

99.4323 

133.2468 

153.5939 

170.7184 

Number of 
I terat ions 

4 

4 

4 

4 

4 

4 

4 

where the constants ek andfk are: 

ek=2 R e a l ( I / l t K t ) ; / * = - 2 Real(t/,^,X,) (56) 

in which Ujk is the (/', k)t\i element of matrix [17]. If necessary, 
the elements of the upper half of the eigenvector can be ob­
tained from the second part of equation (54). 

It can be shown that when the eigenvectors fy are rendered 
orthonormal with respect to the matrix on the right-hand side 
of equation (23) with the help of the constant in equation (51) 
the eigenvectors 4>j of the original system will be orthonormal 
in the following sense 

0 M 

M C 
$j = hjj\ i,j=\, • • • ,2m (57) 

Once the eigenproperties of the combined system are 
known, the response of the system described by equation (8) 
can be obtained for any arbitrary forcing function. 

An Example Problem 

A six degree of freedom primary structure modelled as a 

2 4 

2 1 

18 

15 

12 

9 

6 

3 

-

-

-

s-0 

c — -

<0 

_ - o 
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o 

IMSL / 

o / 

/ 

Proposed Method 

\ & °-
—o- °— 

1 1 1 1 

21 26 31 36 41 4 6 

NUMBER OF DEGREES OF FREEDOM, m 

Fig. 2 Comparison of CPU time taken by the proposed approach and 
direct eigenvalue analysis on IBM 3090, class VI, super-computer 

shear building shown in Fig. 1 is considered to present some 
numerical results. Its mass and stiffness properties are: kl = 

•(, = 7 / 1 0 A : , : AW, 5xl0uN/m;AV3 = kA = 4/5A:1;fc5 

AM4 = 5/7 mx;ms = m6 = 4/7 mi. 
ft-2 - J A i u i > / i n , «,3 

= AA?2 = 7 X 10 7 k g ; AA7 

The nonclassicality of damping in the structure was intro­
duced by arbitrarily selecting a damping matrix. The damping 
matrix used in the calculations is shown in Table 1. The com­
plex eigenvalues of the primary structure obtained with these 
structural parameters are shown in Table 2. 

Table 3 shows the case when an oscillator is attached to the 
fifth floor with mass equal to 1/2 of the supporting floor 
mass. The equipment natural frequency is tuned to the first 
frequency (modulus of the damped eigenvalue) of the primary 
system. The equipment damping ratio is 0.01. Columns 2 and 
3 show the initial approximations to the eigenvalues obtained 
according to Appendix I, and columns 4 and 5 show the final 
values obtained by solving equation (46). The number of itera­
tions required to achieve a desired accuracy in a straightfor­
ward Newton-Raphson root finding scheme are given under 
column 6. The final values are identical up to 12 significant 
figures to the values obtained by a direct application of a con­
ventional eigenvalue-solver subroutine applied to the com­
bined system represented by equation (12). Similar results are 
shown in Table 4 for an oscillator of mass equal to the floor 
mass, supported on the top floor, but not tuned to any struc­
tural frequency. Again when compared up to 12 significant 
figures, the final values are identical to the values obtained by 
a direct eigenvalue analysis of equation (12). 

To demonstrate the computational efficiency of the pro­
posed approach, several cases of primary structure and equip­
ment systems with increasing number of degrees of freedom 
were analyzed. The complex eigenproperties of these systems 
were obtained by the proposed characteristic equation ap­
proach as well as by a direct solution of the algebraic eigen­
value problem by a standard IMSL subroutine. The CPU time 
taken by the two approaches, on an IBM 3090 Class VI Super­
computer, is plotted against the number of degrees of freedom 
of the system, m, in Fig. 2. It is seen that the CPU time taken 
by the proposed approach increases linearly with the degrees-
of-freedom with a rather flat slope. The CPU time taken by 
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the direct eigenvalue analysis, on the other hand, is seen to in­
crease approximate as m3. Thus the difference in the CPU 
time taken by the two methods increases as m increases. It is 
also noted that the CPU time difference shown in Fig. 2 is for 
only one oscillator with a given set of parameters. If it is 
necessary to consider several oscillators with different fre­
quency and damping characteristics (for example in genera­
tion of seismic floor response spectrum), this difference in 
computation cost can be very large indeed. Furthermore, the 
differences shown in Fig. 2 are for a Class VI computer; for an 
earlier generation computer or microcomputers the difference 
in CPU time will be even larger. 

Conclusions 

An efficient approach is developed for calculating the com­
plex eigenproperties of a combined system, composed of a 
nonclassically damped primary structure and an oscillator, in 
terms of the eigenproperties of the individual systems. The 
eigenvalues can be obtained as a solution of a nonlinear 
characteristic equation by a simple Newton-Raphson scheme. 
The initial estimates of the eigenvalue required in the Newton-
Raphson scheme are provided. Once the eigenvalues are 
known, the calculation fo the eigenvectors is straightforward; 
the closed form expressions are given for calculating the 
eigenvectors elements. These eigenproperties can be used in 
any linear response analysis for an arbitrarily varying forcing 
function. 
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A P P E N D I X I 

The roots of the function/(/?), equation (46), can be ob­
tained with any complex roots-finding technique 
(Householder, 1970). In particular the common Newton-
Raphson method was found to be very convenient because of 
its simplicity and quadratic convergence rate. It is well known 
that the main drawback of the Newton-Raphson method is 
that it requires good initial approximations of the roots. 
However, for our case, these approximations can be obtained 
by solving the eigenvalue problem (23) by a perturbation 
technique (Suarez and Singh, 1987c). 

As shown by Suarez and Singh (1987c), two different cases 
must be considered: (1) when the complex equipment eigen­
value Xe is not close to any primary structure eigenvalue, and, 
(2) when both eigenvalues have equal or nearly equal 
numerical values. It is shown that for case (1), the eigenvalues 
of the combined system can be approximately obtained by the 
following expressions 

^=^m^et^l!idi
 (/2) 

For case (2) when the equipment eigenvalue \ and one of the 
structure eigenvalues, say the fth, are such that the following 
condition is satisfied 

IX f -XJ 1 , , , , 
2 < — me\vt\ \4>t\ (13) 

the fth and mth eigenvalues are given by the following 
equations 

Pi = Af + -y-[<5>v - meaijv((2(t>e + v,) - 2fieo>eme<t>ev(\( + meu>4
ect>2

eo] 

(74) 

Pm =\-\—y[S^e + " i j U ? ^ , + v() + 2Peweme4>evtht + meu
4

e4>ea 

(15) 
where 

6=1-A- (/6) 
K 

E ffjXf + bj 

With these initial estimates, the convergence of the Newton-
Raphson method has been quite fast. 
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Recursive Simulation of Stationary 
Multivariate Random 
Processes—Part I 
A unified approach is presented in determining autoregressive moving average 
(ARMA) algorithms for simulating realizations of multivariate random processes 
with a specified (target) spectral matrix. The ARMA algorithms are derived by rely­
ing on a prior autoregressive (AR) approximation of the target matrix. Several AR 
to ARMA procedures are formulated by minimizing a frequency domain error. 
Equations which can lead to a convenient computation of the ARMA matrix coeffi­
cients for a particular problem are given. Finally, the features of the various pro­
cedures are critically assessed. 

Introduction 

Over a period of several years significant interest has 
developed in the techniques of signal processing and spectral 
analysis in particular (Kay and Marple, 1981). The fields of 
application are numerous. These techniques are applicable 
both to system identification and system response simulation. 
Historically, the system identification applications preceded 
the system response simulation. However, with the advent of 
numerical quadrature techniques and the inevitability of 
nonlinear behavior of many engineering systems, the simula­
tion problem has received rapidly increasing attention. 

Within the scope of structural dynamics applications, 
significant efforts have been devoted to the problem of 
simulating realizations of a random process which are com­
patible with a specified (target) spectrum. (Mignolet and 
Spanos, 1987). The generation of these time histories for 
multivariate random processes has traditionally been achieved 
by relying on the superposition of several harmonic com­
ponents with random phases (Shinozuka, 1970, 1972). Recent­
ly, new and computationally more efficient algorithms based 
on the development of multiple input-multiple output 
autoregressive (AR) and autoregressive moving average 
(ARMA) discrete systems have been suggested by Spanos and 
Hansen (1981), Samii and Vandiver (1984), Samaras et al. 
(1985), and Spanos and Schultz (1985 and 1986). These efforts 
reflect the feasibility of adapting system identification techni­
ques (Mullis and Roberts, 1976; Gersch and Liu, 1976; Wang 
and Fang, 1986) to system simulation techniques. Further­
more, they illuminate some of the intrinsic features of their 
applicability to vibration problems. 
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In the present series of articles a unified approach is 
presented for developing ARMA simulation algorithms which 
are based on a prior approximation of a target spectral matrix 
by the response of an AR discrete dynamic system to white 
noise excitation. Existing procedures are briefly reviewed and 
new ones are presented. Further, the properties of these pro­
cedures are thoroughly analyzed. Finally, their applicability is 
exemplified by considering spectra of a variety of natural 
processes. 

The first part of this series focuses on the formulation of 
various procedures. The system of equations leading to the 
determination of the ARMA coefficients are derived through 
the minimization of frequency domain errors. The interrela­
tionships and advantages of these procedures are investigated 
as well. 

In the second part, the procedures are further analyzed by 
assessing the matching of the auto and cross-correlations of 
the target and the simulated processes. Further, properties 
such as stability and invertibility are investigated. Finally, im­
plementation aspects of these procedures are reviewed and ex­
amples of applications are given. 

Autoregressive Approximation 

The ARMA synthesis procedures described in the ensuing 
section require that the target process be first approximated in 
terms of an autoregressive process. For this reason and for the 
sake of completeness, the determination and the properties of 
an AR system are reviewed. 

An n-variate autoregressive (AR) process Y of order m is a 
discrete stochastic vector process whose rth sample can be 
computed from the m previous ones in the following manner 

Y f = - £ i 4 t Y r _ t + B 0 W f (1) 

where Ak and B0 are real n X n matrices. The symbol W 
denotes an «-variate band limited in the interval [-cob, co6] 
white noise vector process. The autocorrelation matrix of W is 
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E[WiyVt
j] = 2o>bIn8u, (2) 

where E[.] and [.p are the operators of mathematical expecta­
tion and transposition. The symbols /„ and Sy denote the n x 
n identity matrix and the Kronecker delta, respectively. The 
sampling period T and the cutoff frequency ub are related 
through the Nyquist relation 

7T 

T= . (3) 

Clearly, the process defined by equation (1) can be considered 
as the response vector to white noise excitation of a multi-
degree-of-freedom discrete dynamic system. Its transfer func­
tion matrix in terms of ^-transform notation is 

H(z)=D,(z)B0, 

where 

D(z)=In+ J}A kZ" 

(4) 

(5) 

The spectral matrix of Y is given by the equation 

SYY (co) = H*{ei"T)H^ (ei"T) (6) 

where [.]* designates complex conjugation. 
Given an arbitrary spectral matrix SYY (co) (target), the AR 

simulation problem involves the determination of the coeffi­
cients Ak and B0 so that SYY(w) is close in some sense to 
SYy (co). It has been shown (Hannan, 1970), that a meaningful 
measure of the error is 

£AR=^— P \B;lD(e>«T)Q(co)\2do (7) 
Zoib J -ub 

where g(co) is a causal transfer function such that 
SYY(co)=Q*(co)Qt(co). (8) 

The symbol I U\ signifies the Euclidean norm of an arbitrary 
matrix U of elements utJ. That is, 

n n 

\U\2 = tr(U*lP)=^^uiJufj. (9) 

Introducing the autocorrelation function of the target process 

RYY(k)=E[Yr\l+,]=["* SYY(co)e*^co (10) 
J -ab 

it is readily shown that equation (7) can be rewritten as 

^AR=^—tr\B-i(1£ ^AkRYY(k-l))AUB-U (11) 

where A0 = I„, and the symbol (• " t ) denotes the transpose of 
the inverse of a matrix. The minimum error is obtained when 
the coefficients Ak satisfy the following equations (Yule-
Walker equations) 

i?YY(0+ Y^AkRYY(k-£) = 0 (=1, (12) 

The matrix B0 is obtained by equating the total "energies" of 
the target and AR processes. That is, 

P D-*(e>,*T)B0BiD-Heio'T)do>= P SYY(co)rfco (13) 
J -Ub J -G!b 

RYY(0) = RYY(0). (14) 

From equation (1) it is readily shown that the autocorrelation 
function of the AR process satisfies the following recurrence 
relation 

*W(Q+ T,AkRm(k-e)=B0RYW(o *=o, ±1, ±2, 

where RYV/ is the input-output crosscorrelation function 
defined by 

flyw(Q = 0 t>Q (16a) 

RYVI(() = 2ubB0 (=0 (166) 

min(m, — 0 

i?YW(Q=- 2 ] AkRYV/(k + ?) «0 (16c) 
* = i 

It is readily seen that equations (12), (14), and (15) admit the 
solution 

RYY(k)=RYY(k) k = 0,l, . . . ,m. (17) 

It will be shown in Part II that this solution is unique. The 
matrix B0 is then obtained from equations (15) and (166) 

BoBi=—}RYY(.0)+l^AkRYY(k)\. (18) 
2«>6 l * = i ) 

Note that the right-hand side of this equation must be positive 
definite. This relation does not yield a unique solution for B„. 
Indeed, it can be seen as a set of n(n + l)/2 independent 
nonlinear equations in the n2 elements of B0. It can be shown 
(Mignolet, 1987) that the quality of matching of the target 
spectral matrix by the AR and the subsequent ARMA approx­
imations is independent of the form chosen for B„, as long as 
equation (18) is satisfied. To ease the computations, B„ is 
assumed to be lower triangular so that it is obtained through 
the Cholesky decomposition of equation (18). 

It should be noted that the corresponding minimum value of 
eAR, always equal to n, does not provide a readily discernible 
measure of the quality of the AR approximation over the en­
tire interval [-ub, ub]. Such a measure can, however, be in­
troduced. It is proposed to monitor the closeness of the 
matrix B0 to its asymptotic, m = oo, form. Specifically, 
since 

= det (B 0 #)-exp[—j ' /r[log SYY (co )]«/«] (19) 

decreases monotonically to zero as m — oo (Hannan 1970) it 
reflects in a natural manner the quality of approximation by 
becoming equal to zero when the spectral matching is exact. It 
should be noted that if 

2co = — oo, 

then 

( * tr[log SYY (u)]da 

det(B0) -~ 0 as m^ oo. 

(20) 

(21) 

If, in addition to satisfying equation (20), SYY (co) is such that 

det(SYY(co))^OonQ E [ - w 6 > ub] (22) 

then 

det[D(e>"T)] = 0 almost everywhere on fl (23) 

This can be seen from the following equivalent form of equa­
tion (18) 

2"bB0B0 = 
-ab 

D*(eiaT)SYY(a1)DHe'0'T)do3. (24) 

(15) 

That is, the AR spectrum possesses densely spaced poles on 
the circumference of the unit circle of the complex domain, so 
that the spectrum of any finite AR approximation involves a 
series of peaks modulated by a small value of det B0. This 
phenomenon and related problems have already been noted in 
the context of univariate simulation (Spanos and Mignolet, 
1986). 

The AR system is a special case of the ARMA class of 
systems whose transfer function is a rational function of z~'. 
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Clearly, the transfer function of an ARMA system has both 
zeros and poles and offers the most versatility in generating 
recursively realizations of random processes with specified 
spectral matrices. Several procedures of determining low-
order ARMA approximations by relying on an initial high 
order AR approximation of a given spectral matrix will be 
discussed in the ensuing sections. 

Autoregressive Moving Average (ARMA) Approxima­
tion—Original Spectral Matrix 

Preliminary Remarks. An rt-variate ARMA (p, q) process Y 
is a discrete random vector process whose rth sample can be 
obtained from the previous ones in the following manner 

^ 0 Y r = - 2 > * Y r - * + 2 > < W , _ , (25) 

where W is defined by equation (2). The process Y can also be 
considered as the output of a multi-degree-of-freedom discrete 
dynamic system whose transfer function matrix is 

H(z)=D-l(z)N(z) (26) 

with 

D(z)=J}Akz-* (27) 

and 

N(z)=t^B^'-
f=0 

(28) 

The following relations involving the input-output crosscor-
relations RYW W a n d the output autocorrelations RYY (k) are 
readily established 

p Q 

YiAkRnlk-i)=YlBfi\w(i-t) » = 0, ± 1 , ±2 , . . . (29) 
k = 0 f=0 

and 

/?«w(-/)=0 ;<o 
mm(i,p) 

£ AkRYW(k-i)=2ubBi j = 0, 
k = 0 

(30c) 

. ,q (306) 

min(/,jP) 

£ AkR^,(k-i)=Q 
A: = 0 

i>q. (30c) 

For simulation, the corresponding spectral matrix 

Sn(u)=H*(,ei»T)Hi(ei<"T) (31) 

must represent a good approximation of a target expression 
SYY (to). The quality of the matching of SYY (to) by SYY (w) is 
quantified by the error 

e=-J—rb \D(ei«T)Q(u)-N(ei«T)\ldo>> (32) 
2cob i -oib 

where Q{to) has been defined by equation (8). Two procedures 
to determine the coefficients Ak and Bt by minimizing e under 
various conditions are presented. These procedures will be 
subsequently recognized as special cases of a general class of 
solutions. 

First, Q(u) is approximated as 

Q(o)=HAR(e*'T), (33) 
where HAR(eiaT) is the transfer function of the AR system 
determined previously. 

Equation (32) can then be rewritten as 

e = tr(E), (34) 

where 

E = -
2oj b v , t = o ;+o ^ } . — r\ ; i r\ 

k = 0 f=0 

£ £ W*, (k-i)A\ + 2ub £ Bfifi, (35) 
I—n Q—(\ n_n J 

P Q 

LI 
* = 0 f=0 

and 

RYW(k) HAR{^T)e~'k"Td^ (36) 

is the input-output crosscorrelation of the AR system; it is 
readily computed by using equations (16o)-(16c). 

Auto Cross-Correlations Matching Procedure (ACM). This 
procedure involves a constrained minimization of e with 
respect to the coefficients Ak and B,. Clearly, the minimiza­
tion of e with respect to Ak and Be for all values of k and ( 
would yield the trivial solution with 

Ak=B, = 0 k = 0, . . . ,pande=0, . . . ,q. (37) 

Thus, a nonhomogeneous constraint must be added to the 
problem. An obvious choice is 

A0=I„. (38) 

The minimization of the error requires setting the derivatives 
of e with respect to Ak(k = 1, . . . ,p) and Bf(£ = 0, . . . ,q) 
equal to zero. This condition yields the following set of linear 
equations 

P Q 

'£AkRYi(k~i)-'£BtRYV/(i~e) = 0 i=l,...j, (39) 
«r = 0 f=0 

and 
m'm{i,p) 

2a>Afl,= £ AkRYW(k-i) i = 0 , l , . . . , $ . (40) 
k = 0 

Combining equations (35) and (38)-(40), the corresponding 
minimum value of e becomes 

^min " A - ^ m i n / > (41) 

where 

£ m i n = - ^ f £ ^ * * W ( * ) - 2 > f K W ( - 0 l . <42> 
L^b ^k = 0 1=0 J 

The choice expressed by equation (38) is convenient but ar­
bitrary and might not give an absolute minimum for e. 
Another possibility is 

1 

2oib 

RYW(0). (43) 

Then, the optimal coefficients Ak and Bt can be computed 
by setting the derivatives of e with respect to Ak (k = 
0, . . . ,p) and5p(/ = 1, . . . ,q) to zero. The following equa­
tions are obtained 

p i 

2 ^ * * * * ( * - ' ) - £ ^ * W ( ' - 0 = o ; = o , . . . ,P (44) 
«r = 0 (=0 

and 
min(/,/7) 

2o)6JB,= £ AkRYW(k~i) i=\,...,q. (45) 
Ar = 0 

Note that the matrix B0 appears only when / = 0 in equation 
(44). Thus, the systems (39)-(40) and (44)-(45) are identical ex­
cept in the / = 0 case. A solution of the form 
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Ak=A0A~[Ak=A0Ak k = 0, . . . ,p (46) 

B( = AoA-iBl = A0Bl t=\,...,q (47) 

to equat ions (44)-(45) is then possible . T h e u n k n o w n A 0 is 
readily ob ta ined by satisfying equa t ion (44) for i = 0. Namely 

Ao I £ AkRn (k) - £ 5fi?W(-Q.] =BoR\w(0). (48) 

Taking into account equations (42) and (43), equation (48) can 
be rewritten as 

A0(Em^+B0Bl)=B0Bl (49) 

The cor responding m i n i m u m value of e is emin = tr(Em{n), 
where Emia is readily ob ta ined f rom equa t ion (35) 

1 
Emin =BnB\—_— £ AkRiw(k)Bl 

2OJ 
(50) 

'b k = 0 

Combining this expression and the causality condition, equa­
tion (16a), yields 

-(In-A0)B0Bl (51) 
It will be shown in Part II that the preceding procedure 

yields an ARMA process which exhibits certain auto-cross cor­
relation matching properties with regard to the target process. 
This observation accounts for the proposed abbreviation, 
ACM. 

Power Order Matching (POM) Procedure. N o t e the 
similarity between e as defined by equa t ion (32) a n d the error 

1 
eF-- 2u>, 

00 

-\ lF(co)- Yi C„e-J"»T\2du (52) 

which is involved in the Fourier representation of an arbitrary 
matrix function F(w) in terms of its coefficients C„. In fact, 
from equation (40), the parameters Bt appear as the Fourier 
coefficients of D(ei"T) HAR {eiwT). Note also that coefficients 
corresponding to positive powers of eiuT vanish due to the 
causality of D(e>"T) HAR (e"" r). On the basis of this remark, 
an alternative ARMA synthesis procedure can be conceived. It 
treats N(e'"T) as a Fourier approximation of _D(e"jr) 
HAR (e/o'r) of highest order possible/? + q, whose coefficients 

Bq+i - • • • = B q + p - 0 . (53) 

In other words, AK are selected so that D(ei"T) HAR (e>'*T) has 
Fourier coefficients of order q + 1 to q + p equal to zero, and 
Bt are selected so that D(e''*T) HAR(eiaT) and N(ei"T) have 
identical Fourier coefficients of order 0 to q. For the previous 
interpretation to hold, the coefficients Bt must vary in­
dependently so that the traditional nonhomogeneous con­
straint, equation (38), is enforced. 

It is readily shown that the coefficients Ak and Bt must 
satisfy the following equations 

min(p,0 

£ AkRiyi/(k-Q = 2ubBt 1=0 ,q (54) 
*r = 0 

and 
min(p,Q 

£ AkR^(.k-l) = 0 i=q+l, q+P (55) 
k=a 

The error associated with this procedure can be computed 
from equation (52) as 

1 
£ i£,v?*w(*-i)i 

4 w b t=q + p_+\ Ar = 0 

(56) 

This procedure can equivalently be considered as a minimiza­
tion of e, defined by equation (32), subject to the constraints 

specified by equations (38) and (55). Thus, using equations 
(35) and (54), the corresponding minimum value of e can be 
rewritten as 

1 
l0>b k=o

 L L / = o 

-£**w(fr-W[j. (57) 
f=o J J 

Note that the equivalence of the two forms (56) and (57) is 
readily shown by relying on the identity 

1 °° 
^YY (k) = -— £ # Y W ( - f ) « l w ( -A:-Q for all k. (58) 

2ub f =0 

It will be shown in Part II that the preceding procedure 
yields an ARMA system whose transfer function can be ob­
tained from the corresponding description of the AR system 
by equating the coefficients of powers of z~l. This observa­
tion accounts for the proposed abbreviation, POM. 

Generalization. In this section a general class of procedures 
including as special cases ACM and POM is introduced. 

A class of ARMA systems synthesis procedures can be ob­
tained by minimizing e as defined by equation (32) under the 
constraints 

and 
min(p,f) 

£ AkRiw(k-C) = 0 (=q+l q + i 

(59) 

(60) 

Clearly, if r = 0 no constraint of the kind specified by equa­
tion (60) is to be satisfied, and the traditional ACM procedure 
is represented. Further, the POM procedure is derived for r = 
P-

The problem can be restated as the minimization of 

e = e + —tr\ £ £ AkRiw(k-l) A, (61) 
Wb ^t = g+l L A = 0 J J 

with respect to the coefficients Ak and B, with the exception of 
A0. In minimizing <T it is readily found that the associated n 
x n Lagrange multiplier matrices A, and the matrices Ak and 

Bt are solutions of the system of equations 
p q 

£ AkRn (*-/)- Y, BtR\w(i-?) 

+ £ A,LRYW (/-£) = 0 (62) 
= 9+1 

/ = ! , . . . ,p 

min(p,() 

£ AkRiv/(k-t) = 2ubBl 1=0, ...,q (63) 

with equations (59) and (60) appended. The corresponding 
minimum value of the error is 

where Emm is the symmetric matrix 

\ r JL JL 

(64) 

/ — n D_ / I 2co b *•• k = 0 

q + r 

£ A]R\w(-i)}. 
=7+1 . J 

(65) 
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Autoregressive Moving Average (ARMA) Approxima­
tion—Inverse Spectral Matrix 

Preliminary Remarks. Clearly, the transfer function matrix 
of an ARMA (p, q) system exhibits the interesting property 
that its inverse is also the transfer function of an ARMA (q, p) 
system. Thus, alternative ARMA approximation procedures 
based on the inverse transfer function can be obtained as duals 
of the previous ones. 

In this section, the quality of the ARMA approximation will 
be measured by the error 

5= P \N(ei»T)Q-l(u)-D(e''*T)\2dw. (66) 

q . m + min(f,/) 

E W ( E Au-£l-) 

= T,AkA-i i = 0,...,q. (76) 

The resulting minimum value of the error <5 is readily com­
puted as 

5min = "-(Amin) (77) 

where 

Amin—A0A0 B0B0 A0A0—In—B0B0 . (78) 

Auto/Cross-Correlation Matching Method. This procedure 
is based on the minimization of 5 with respect to the 
parameters Ak and Bf subject to the nonhomogeneous 
constraint 

The two sets of coefficients can be computed from one 
another, as in the approach based on the original spectral 
matrix, by noting that equations (75) and (76) admit the 
solution 

B0=B„. 

Equation (66) can be rewritten in the form 

8 = tr(A), 

where 

q q , /H + min(f,0 . 

A = E E B&' ( E Au_Jl_,)B;tB] 
1=0 i = 0 w = max((,/) 

p mm(q,k) 

~ E E E
tB~xAk -i

Ak 
k = 0 1=0 

(67) 

(68) 

•Ak=B0B-lAk k=l ,p 

B, = B0B-lBt 1=0, q 

provided that 

(79) 

(80) 

E Bfio ' ( E Au-tAl) - E *iA\ = /«- (81) 

This condition can be rewritten in terms of Amin and Amin as 
follows 

J B A 1 A m i n = Amin. (82) 

p min{q,k) p 

E E AkAl_tB^B}+EAkAl 
k = 0 1=0 k = 0 

(69) 

It is readily shown that the minimum of <5 is attained when the 
matrices Ak and Bt are solutions of the following system of 
equations 

Power Order Matching (POM) Method. This ARMA 
system synthesis procedure involves the minimization of 5 as 
defined by equation (66) with respect to the coefficients of 
D(e/t"T). The coefficients of N(e>uT) are such that equation 
(67) is satisfied and 

and 

min(q,k) 

E 
f=0 

B,BC 

q , /« + min(f,/) 

2>A"( E 
f=0 x « = max(f,i) 

P 

= E 

- ' A 
> ™-k~t~ 

Au-(AU 

AkAk-i 

The corresponding minimum 

where 
<1 

• Ak k-= 0, . 

• • ,' 

value of 5 is 

&min = tr(Amin) 

/ m p 

AP+I = 0 J = l , • • • ,q. (83) 

,P (70) 
It is readily shown that the coefficients Ak and Bt must satisfy 
the following equations 

m\-a{q,k) 

E B,B^,Ak_,=Ak k = 0, . . . ,p 
(=max(Q,k—m) 

(84) 

Amin = E BsB~l ( E Au_tAl) - E AkA\. 

(71) 

(72) 

(73) 

and 

As previously, a modified approach based on imposing a con­
straint on AB can be developed. In fact, the value of Ag will 
equal the value A0 of the previous approach. Using equation 
(70) for k = 0, this requirement is equivalent to 

A0=A0=I„. (74) 

The equations for the coefficients Ak and Bt are then de­
rived by setting equal to zero the derivatives of 5 with respect 
toAk(k=l,...,p) and Bt (1=0,... ,q)\ one obtains 

mm{q,k) 

E BtB-'Ak_t = 0 k=p+l ,p + q. (85) 
f=max(0,/t-m) 

Note that taking into account equation (67), equation (84) for 
k = 0 renders equation (38). Next equations (85) are solved to 
yield the values of the parameters Bt. Finally, the coefficients 
Ak are computed by relying on equations (84). The corre­
sponding value of the error can be computed as in the pro­
cedure involving the original target matrix, 

&mm = tr(Amin), (86) 

where 

Ami„= E ( E 
k=p + q+\ f=max(0,Jt-m) - ' ) 

min(q,k) 

f=0 
Bfi~'Ak_t = Ak k=\, ,P (75) 

( E BfciAky\ (87) 

and 
Postmultipyling equations (84) and (85) by RyW(k — i) and 
summing over k from 0 to / yield 
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/ min(q,k) 

£ £ B(B~lAk__(R^(k-i) 
k = 0 f - m a x ( ( U - m ) 

• mi n (i,p) 

£ AkR^{k-i) 
(fc = 0 

(88) 

or 
min(/,g) 

_/ 
= 0 

min(m,/—0 

L B&1\ £ ^ y w [ W - ( / - f ) ] 

min(/',p) 

£ AkRiw(k-i). (89) 

Relying on equations (16), these equations can be rewritten 

min((',/7) 

£ AkR<iv/{k-i)=2wbBi i = 0, 
Ar = 0 

(90) 

and 

min(/,/j) 

X] / 1 ^ Y W ( ^ - ' ) = 0 / = tf+l, . . . ,p + q (91) 

which are identical to equations (54) and (55). Thus, the POM 
original spectral matrix and inverse spectral matrix ap­
proaches yield the identical systems. 

Generalization. The two ACM and POM procedures for the 
inverse spectral matrix can be seen as particular cases of the 
general class of algorithms obtained by minimizing 

1 r W /J 
S=-— \N(e>"T)B0

lD(e>»T)-D(e'0,T)\2do> 
2u>b J ~wb 

m'm(q,k) 

£ £ BfB^Ak_t A J 
' k=p+l (=max(0,k~m) 

(92) 

with respect to the ARM A coefficients Ak, Bt and the 
Lagrange multipliers A^. Imposing the nonhomogeneous con­
dition specified by equation (67), it is readily shown that the 
unknown coefficients are solutions of 

m + min(f,/) y . m i l i u i i ^ i , ! / . 1 1 1 1 1 1 ^ , 1 1 1 

L W 1 £ Au-A-i)- £ 
H = max{f,i) 

min(p + r,m + i) 

min(p,m + /) 

k = i 
^k^-k-i 

i t ^ 

Ar - max(p-§- 1,/) 

/ = 1 , . . . ,q 

m\n(q,k) 

£ BtB^Ak^0 £=/?+!, 
P=max(0,& — m) 

(93) 

,/> + '• (94) 

with equations (67) and (84) appended. The corresponding 
minimum value of 5 is 

= tr(AmJ (95) 

where 

q . m . min(/v«) 

Amin = £ BtB~ ' ( £ ^ B - ^ I ) - £ AkA\ 
0—ft \ .. _o ' i— n 

min(/7-}-r,m) 

+ £ 
k=p+\ 

K\A\. (96) 

Critical Assessment 

Comparison of Original and Inverse Spectral Matrix Pro­
cedures. The described procedures which are based on the in­
verse spectral matrix, have some computational advantages 
over the corresponding procedures which rely on the original 
spectral matrix. Specifically, the original ACM and POM pro­
cedures require the solution of a set of p X n equations, while 
their inverse counterparts involve systems of size q X n. Note 
that since the first approximation of the target process is pro­
vided by a pure autoregression, q is expected to be lower or 
equal to p. In addition to the reduction of the linear system 
size, it can be seen that the recursive computation of the 
crosscorrelations by means of equations (16) is not required. 
When selecting the appropriate procedure, original or inverse 
spectral matrix, for a particular problem, the POM procedure 
requires the solution of only min(p, q) x n simultaneous 
equations. 

Comparison of the A„ or B0 Constrained ACM Procedure. 
It can be shown from equations (49) and (51) that the errors 
£min and emin satisfy the inequality (Mignolet, 1987) 

*mta - e"mln - " - [ ^ m i n ^ m t a + B X ) " ' ^ m i n l & 0 . ( 9 7 ) 

That is, the improvement of the B0 constrained procedure 
over the one retaining A0 = /„, namely lmin - emin, is a se­
cond order term in Emin. Thus, when a good matching, emin — 
0, is obtained, the two procedures give almost identical results. 
If, however, the A0 based procedure is not satisfactory, the 
alternative procedure represents an improvement quantified 
by tr[Emjn(Emin + 5 0 5 „ ) _ 1 Emin]. Note that a similar relation 
between the errors Amin and Amin corresponding to the inverse 
spectral matrix procedure can be derived. 

In the context of simulation, the quality of the matching 
between the target and the approximate spectral matrices can 
be better described by the "visual" error eb defined as 
(Mignolet, 1987) 

•b=~\rb \A^[D(^T)Q(o>)-N(ei»T)]\2do>} 

i max 
col <o) ; 

i z r V r M 0 l 2 ) . (98) 

It can be shown (Mignolet, 1987) that the values eb and eb 

corresponding to theA0 a n d 5 0 constrained procedures satisfy 
the inequality 

e„ - e6 = 0 tr[EminE-l(Emin - £min)] >0 . (99) 

where 

0 = max l £ > - V u r ) l 2 = max \D~\e'uT)A0 I2. (100) 
Iwl < u ^ Iwl <w^ 

That is, the B0 constrained procedure yields a larger visual er­
ror than the one which is based on constraining A0. Thus, in 
the context of the present procedures, there exists a trade-off 
between an absolute minimum of e and a small value of eb as 
defined by equations (32) and (98), respectively. 

Concluding Remarks 

The simulation of a multivariate random process with a 
specified (target) spectral matrix as the output to white noise 
input of autoregressive (AR) and autoregressive moving 
average (ARMA) discrete systems has been studied. The con­
tributions of this investigation may be summarized as follows. 

1. A meaningful measure of the quality of the matching 
between the target and the AR spectra was introduced by 
equation (19). Furthermore, the analysis of this relation called 
attention to the existence of some pathological target spectra, 
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namely those satisfying equations (20) and (22). Therefore, 
given an arbitrary spectral matrix, it should not unreservedly 
be assumed that a reliable AR approximation can always be 
constructed. This point has been demonstrated in the context 
of ocean waves spectra by Spanos and Mignolet (1986). 

2. Two procedures, ACM and POM, for determining the 
coefficients of an ARMA approximation from an initial AR 
approximation were presented. They are applicable either in 
connection with the target matrix or with its inverse. The set of 
equations for the unknown ARMA coefficients was derived 
through the minimization of a frequency domain error subject 
to a certain set of constraints. Further, it was shown that the 
two procedures are special cases of a general minimization 
procedure. 

3. It was shown that the spectral matrices of the various 
ARMA and^ AR systems depend on B0 only through the 
product B0B0. Thus for computational convenience, B0 can 
be taken as the lower triangular matrix satisfying equation 
(18). 

4. The arbitrariness of the standard choice of the 
nonhomogeneous condition, A0 = I„, was pointed out. An 
alternative procedure based on a constrained B0 was 
developed. The set of equations for the remaining coefficients 
was obtained through the minimization of the same frequency 
error. It was proved that the minimum of this quantity in the 
case of the new procedure is lower or equal to the corre­
sponding value for the standard procedure. A quite efficient 
algorithm to compute the corresponding sets of ARMA coeffi­
cients from one another was given. 

5. Attention was called to the computational advantages 
of the POM procedure over the ACM procedure in terms of 
the size of the system of linear equations which must be solved 
to determine the requisite ARMA coefficients. 
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Recursive Simulation of 
Stationary Multivariate 
Random Processes—Part II 
Stability and invertibility aspects oftheAR to ARMA procedures developed in Part 
I in connection with simulation of multivariate random processes are addressed. A 
general criterion is proved for this purpose. Furthermore, several properties regard­
ing the matching of the correlations at various time lags of the target and the 
simulated processes are shown. Finally, the reliability and efficiency of the discussed 
procedures are demonstrated by application to spectra encountered in earthquake 
engineering, offshore engineering, and wind engineering. 

Introduction 

In the first part of this series the usefulness of efficient 
algorithms for simulation of realizations of multivariate 
stochastic processes with specified (target) spectral matrices is 
discussed in context with random vibration analyses of multi-
degree-of-freedom systems. Various procedures for determin­
ing appropriate autoregressive moving average (ARMA) 
algorithms are presented. All of the presented ARMA pro­
cedures are based on a prior AR approximation of the target 
spectral matrix. Equations for the unknown matrix coeffi­
cients of the various algorithms are obtained through the 
minimization of frequency domain errors. These equations 
can be readily used for a particular practical problem. In this 
regard a critical assessment of the features of these procedures 
is provided as well. 

In this part of the series, the various procedures are ex­
amined from the perspective of stability and invertibility of. 
the generated ARMA system, and the auto and cross-
correlations matching properties of the target and the 
simulated processes. Further, some implementation aspects 
are discussed. Finally, the reliability and the efficiency of these 
procedures are demonstrated by producing ARMA approx­
imations of physical processes encountered in various struc­
tural dynamics applications. 

In order to avoid needless duplication, all equations marked 
by an asterisk in this part will refer to the equations with the 
same number given in Part I. 

Stability and Invertibility 

Preliminary Remarks. Ensuring stability of the discrete 
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system which is associated with a particular simulation 
algorithm is of fundamental importance. Indeed, it is a 
necessary condition for the stationarity of the system 
response, that is, of the time series generated. In the case of an 
ARMA system, stability is ensured if and only if the poles of 
the transfer function, defined as the roots z, of 

detrX^**-*l=0 (1) 

have a modulus smaller than one. Clearly, the computation of 
Z-, from equation (1) can represent a burden, especially for 
large values of the products x n. A more practical criterion 
is, therefore, desirable. In the following a sufficient condition 
for the stability of the ARMA system obtained by the 
generalized original matrix method will be established. It is 
based on an extension of a theorem on the Lyapunov equation 
(Mullis and Roberts, 1976). The condition is applicable to the 
ARMA systems developed by the ACM and POM procedures, 
as well as to the AR systems. 

Note that the ARMA algorithms obtained by using the 
original spectral matrix can be interpreted as duals of the 
algorithms obtained from the inverse spectral matrix. Thus, 
the ensuing mathematical developments can be applied, as 
well, to examine the invertibility of the latter algorithms. 

Two Auxiliary Block Matrices. The matrices K and K' with 
(u, i) n x n block elements defined by the equations 

^ » / = ^ Y Y ("- ' ) — 
1 <?-! 

2o> 
£ Riw(u-e)R-iUi-0 

b f=0 

u,i = 0, . . . ,p-\ 

1 q 

K;d=Rn(u-i)-—- Y^RWIU-ORYU'-O 
Z c o 6 f=0 

u,i = 0, . . . ,p 

(2) 

(3) 

are crucial in the forthcoming proof. Thus, their properties 
are first presented. 
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It is readily seen from their definition that the matrices K 
and K' are symmetric. That is, 

K=lO (4) 

K'=k"<. (5) 

Next, note that K is the covariance matrix of p random vectors 
Z,-, each of n components. That is 

KKl=E[Zuz]]u,i = 0, . . . ,p-\, (6) 

where 

« = 0 t=q+\ 

= 2o>bEmin5i0 i = 0, . . . ,p. 

Then, it is readily shown that 

and 

,p-l; « = 0, . . . ,p-l 

^ t , — A c 
1 q — u ~ 1 

2uh 
£ Rivi-Wr- (7) 

[KAXa=K{u+i)a+ £ /?*w(«+l-flA,« = 0, , 
f=i?+i 

for « = 0, . . . ,p - 1 and any given value of r. 
Thus, AT is at least positive semidefinite. The pathological 

case, det K = 0, will not be considered here. With this restric­
tion, the matrix K is positive definite. 

The previous reasoning can be repeated to show that K' is 
also positive semidefinite. From the definition of the matrices 
K and K', equations (2) and (3), it is clear that 

Kui=K'ui + ^—#YW("-<7)^YW('-<7) " . ' = 0, . . . ,p-l 2wb 

(14) 

(15) 

,P-1. 

(16) 

Furthermore, it can be proved that 

[AKAi]ui = K'ui + Lm -2ubEmin5u0&i0 u,i = 0, 

where 

T q+r 1 T r i 1 
Lui=\ D A ^ O ' - Q 5u0+ L **w(«-flA, fi 

~l=q+l (•=?+! 

, P - 1 (17) 

(18) 

and 

Kui - ^ ( u + i ) ( / + i ) " . ' - 0 , , P - 1 . 
Equations (5) and (9) imply that 

K' 
K, K-, 

(8) 

(9) 

(10) 

Finally, equation (17) can be rewritten as 

[AKA1]ui = Kui + Lui - 2whEm;„d,in8i( obJ^mmuu0ui0 

RyVi(u-q)R<ill(i-q) (19) 

where Kl and K2 are n x n and np x n matrices, respectively. 

The Companion Matrix. The companion matrix A of an 
ARMA (p, q) system with leading coefficient A0 = In is the 
square block matrix defined as follows 

A\ —A2 
/„ 0 
0 /„ 

0 

0 
p~\ 

0 (11) 

0 0 . . . / „ 0 _ 
Using the Frobenius-Schur formula for determinants, it is 
readily shown that the eigenvalues X, (/' = 1, . . . ,n x p) of 
the matrix A are solutions of the equation 

det [XXx-1 = 0. (12) 

2co4 

by relying on equation (8). 

Stability Criterion. The derivation of a sufficient stability 
criterion will be based on the following theorem. 

If the block matrix 

G = [F,AF, . . . ,Ap~lF] (20) 

is nonsingular and there exist symmetric matrices K and C, 
with K positive definite and C positive semidefinite (possibly 
zero) such that 

K=A KAl+yFF* + C (21) 

for some y > 0, then the eigenvalues of A all lie within the 
unit disk of the complex plane. 

The proof of this theorem for A and F being p x p and p x 
1 matrices, respectively, appears in Mullis and Roberts (1976). 
Its extension to A and F being np x np and np x n matrices, 
respectively, is straightforward and will not be presented here. 
It should, however, be noted that the matrix AMR appearing in 
that article is related to the one defined by equation (11) 
through the equation 

AMR = QAQ* (22) 

where 

Upon comparing equations (1) and (12), it becomes obvious 
that the poles of the ARMA transfer function are the eigen­
values of A. 

Next the matrices A, K, K' are combined to yield additional 
results. First, eliminating the coefficients B( from equations 
(62*) and (63*) yields 

p r l q i 2 > J ^Y («-/)-_— J>«W(K-O/?*£(;-0 
K = 0

 L Lwb 1=0 J 

Q = 
o . . . /„ 
0 . . . 0 
/„ . . . 0 

(23) 

+ £ AjR t;<i-0 = O 

Clearly, such a transformation does not alter the values of the 
eigenvalues of the matrix A. 

Introduce first the square root EU2 of the error matrix such 
that 

Define the following block matrices 

^ I = [ « Y W ( - < 7 ) > • • ,R^(p-q~l)V 

It 

(24) 

(13) for / = 1, . . . ,p 

where according to equation (26a*), the crosscorrelations 7?yw 

are zero for positive lags. Further, combining equations (3), 
(13), and (65*) gives 

F2 = [E\,i,0,. . . ,0V 

Gy = [FuA FX,A2FU 

G2 = [F2,AF2,A
2F2, 

Also introduce the matrices 

„4"->F2]. 

(25) 

(26) 

(27) 

(28) 
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C, = 2o>bF2Fl + OIF1F\-L 

C2 = atF2F*2+-^-FlF\-l 
2wh 

where L is the matrix with blocks defined by equation (18), 
and the scalars a, yx, y2 satisfy the equations 

1 

(29) Indeed, only the first 2n rows of a F2F2 - L may be linearly 
independent. The following ones are linear combinations of 

(30) the rows n + 1 through In. The inclusion of l/2uA FlFl can 
increase the rank of C by at most n. 

Clearly, the matrices C{ and C2 can be written in the form 

C=alFlF\ + a2ElE\M-UE\-EllP (39) 

7 i = -2oib 

72 = 2co6-a. (32) 

Clearly, equation (19) can be written in either of the forms 

K = AKAJt+ylFlF\ + Ci (33) 
or 

K = A KA^+y2F2Fl + C2. (34) 
Upon applying the aforementioned theorem to equations (33) 
and (34), and noting the equality of the poles of the transfer 
function to the eigenvalues of A, one obtains the following 
sufficient criterion for the stability of the ARMA system. 

If, for either triplet (G,, C,, 7,) or (G2, C2, y2), det G ^ 0 
and there exists a value of a such that C and 7 are a positive 
semidefinite np x np matrix and a positive scalar, respec­
tively, then the ARMA system whose coefficients are com­
puted from equations (59*), (60*), (62*), and(63*) is stable. 

I t should be noted that the nonsingularity of G2 is 
equivalent to 

det(£m i n)*0 (35) 

which is computationally easier to check than d e t ^ ) ^ 0. 

(31) where M, Eu and U are the following block matrices and 
block vectors 

M = 
£m 

Em 

£i = [/„,0, fiV 

(40) 

(41) 

and 

tf=[( E Ajtfvw (-<>)). 
I=g+l 

( E AJ/?*;(P-*-D) 
l=q+l 

(42) 

and a ^ are appropriate scalars assuming different values for 
C, and C2. The eigenvectors of C can be written as linear com­
binations of the column vectors of Fu Eu and U, the coeffi­
cients of which are the blocks of eigenvectors of the 3n x 3« 
matrix C 

C= 

^F\EX 

a2£{ MF, - UFX a.2E\MEx - lPEx 

-E\Fi ~EE, 

aiF]U 

a2E\MU-lPU. 

-E\U 

(43) 

AR System. The previous mathematical development can be 
repeated to treat the stability of the AR system as a special 
case. The criterion still holds provided that 

7 ? Y W W = 0 for all A: (36) 

and 

^min ~ "o"o- (37) 
The corresponding K matrix is positive semidefinite. 

Assuming again that det K ^ 0 and taking (G, C, 7) to be (G2, 
C2> 72)) t n e criterion simply reduces to the nonsingularity of 

ACM Procedure. In the special case of the ACM procedure, 
the previous criterion can be further simplified. Indeed, if no 
additional constraint is enforced, r = 0 and L = 0. The 
positive semidefiniteness of Emin implies that the choice 0 < a 
< min (2co6, l /2u 6) yields C1( C2 positive semidefinite and 
7i> 72 > 0- Thus, the criterion reduces to det (G,) ^ 0 or det 
(£min) ^ 0. Note from equation (46*), that the denominators 
of the ARMA transfer functions obtained by the procedures 
based on constraining A0 or B0 are proportional. Thus, the 
corresponding ARMA systems have identical stability 
characteristics. 

POM Procedure. Clearly, the stability of the ARMA system 
derived by the POM procedure can be analyzed by relying on 
the general criterion and selecting r = p. 

Practical Verification of the Stability Condition. The 
computational complexity of the verification of the positive 
semidefiniteness of C can be reduced by noting that the rank 
pc of C is at most 3«. Specifically, 

pc<[max(3, jp)]x«. (38) 

Moreover, the eigenvalues of Care the 3« nonzero eigenvalues 
of C. Thus, a condition sufficient to ensure stability is the 
positive semidefiniteness of C. 

A Consequence of Stability. Note that if the developed 
ARMA system is stable, the equation 

K=AKA^ + Q (44) 

has a unique solution K for every np x np matrix Q. This can 
be proved by relying on a general stability theorem (Kailath, 
1980). In particular, there is one and only one matrix K solu­
tion of equations (33) or (34) for every matrix L and vectors Fx 

and F2. 
Next, the matrices K2 and Kt are computed by combining 

equations (5), (9), and (14) in the form 

p-i 

KL = — 

KL 

E ^«+i^«(/-i)- E AJKYW('-Q'=1. • 
« = 0 t=g+\ 

^min" E ^U-O-LAJC^. 

• • ,P 

(45) 

(46) 
= 7+1 

Finally, K' is_obtained from equation (10). Thus, for any 
given matrices £m i n , A, and i?YW (/ - l) there exists a unique 
solution K' to equation (14). 

This conclusion applies also in the case of the AR system 
and implies that equations (12*) and (14*)-(16*) admit only 
the trivial solution given by equation (17*). 

Invertibility. As it was alluded to at the beginning of this 
section, the invertibility of the ARMA systems derived 
through the inverse spectral matrix can be deduced from the 
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previous developments by permuting the roles of Ak,p and 
Bt,q, respectively. 

Time Domain Analysis 

Crosscorrelation Matching—Original Spectral Matrix. The 
two generalized procedures can also be investigated in the time 
domain by analyzing the connection between the auto and 
cross-correlations of the AR and ARMA processes. 

Combining equations (60*), (63*), and (30*) yields 

min(/,/j) 

£ Ak[RYV/(k-i)-RYW(k-i)]=0 / = 0, . . . ,q + r 

which represent a set of (q + r) matrix equations in the (q + 
r) unknowns 

ARYV/(k)=RYW(k)-Rvw(k) k=-q-r, . . . ,0. (48) 

This system has only the trivial solution ARYy/(k) = 0 pro­
vided that the matrix A0 is nonsingular. This condition is 
always satisfied. Thus, 

RYV/(k)=RYW(k) k=-g-r,-...,0. (49) 

It is seen that the AR to ARMA procedures developed by 
relying on the original target spectral matrix yield processes 
which have the same excitation-response crosscorrelation as 
the AR process which approximates the target process. The 
proof of this property further elucidates the features of these 
procedures and offers a formulation which is an alternative to 
the minimization of the frequency domain error defined by 
equation (32*). 

Autocorrelation Matching—Original Spectral Matrix. 
Combining equations (29*), (62*), (65*), and (49) yields the 
following relations between the autocorrelations of the two 
processes 

p 

L Ak[RYY (k-i) -RYY {k-i)] = 2(MbEmin8i0 

q + r 

- E AjR^(i-f) (50) 
l=g+l 

/' = 0, . . . , / ? . 

It was shown previously that if the ARMA system is stable, 
this set of equations yields a unique value to the difference of 
the autocorrelations 

ARYY(k)=RYY(k)-RYY(k) k = 0, . . . ,p. (51) 

In the special case of the ACM procedure, r = 0, and equation 
(50) reduces to 

p 

YJAkhRYY{k-i)=2w„EylE\/2bi0 / = 0 ,p. (52) 
k=0 

Then, ARYY can be considered as the autocorrelation function 
of the output of the AR system whose transfer function matrix 
is 

mz) = (t,Akz-k) l El/2. (53) 

Thus, a possible solution of equation (52) is 

LRYY{i)=RYY{i)-RYY{i)=Vb ( ^ A ^ 1 ) ' . 

4™(£Ae-^~V^. (54) 

And, as before, the requirement of stability of the ARMA 
system renders this solution unique. 

Thus, it is seen that if Emin approaches zero asp increases, 
the AR and the ARMA representations of the target process 
have identical autocorrelation values at time lags I = 
0, . . . ,p. This property illuminates further the features of the 
AR to ARMA procedure and can be used as an alternative for­
mulation to the one introduced by the frequency domain 
minimization. 

Crosscorrelation Matching—Inverse Spectral Matrix. 
Clearly, the previous analysis applies also to the generalized 
inverse procedure provided that the symbols Ak,p and B(,q axe 
interchanged. The quantities involved will be the auto and 
cross-correlations of the output X and X of the inverse AR 
and ARMA systems, respectively. Some additional conclu­
sions concerning the original systems can be drawn. 

The output of a stable causal ARMA system Y can be com­
puted from equation (25*) or equivalently from equation 

Qo 

*r=I>( ' )W r _„ (55) 
l' = 0 

where the impulse response h(i) is such that 

/ / ( ^ ) = 0 - | ( ^ ) J V U ) = ^ / ! ( i ) ^ - , ' f o r k l > l . (56) 
;'=0 

Thus, 
oo 

RYW( -s) =E\Y,Vfl_s] = D /»(i)E[W,_ ;wJ_,] =2u„h{s) 
;=o 

(57) 
is the relation between the impulse response and crosscorrela­
tion sequences. 

The product of the transfer functions of the ARMA system 
and its inverse is equal to /„ . Thus, the impulse responses, or 
equivalently the crosscorrelations RYW and i ? x w of the AR­
MA system and its inverse, respectively, are related through 
the following convolution 

ERYW(s-i)R*w(-s)=4o>2
bIn8i0 i = 0,l, . . . (58) 

This equation shows that the first / values of 7?xw are uniquely 
determined by the first / values of RYV/ and vice versa. 
Thus, the matching of p + r + 1 crosscorrelations of the in­
verse systems imply the same property for the original 
systems. That is, 

RYW(k)=RYW(k) k=-p-r,...,0. (59) 

This matching property which can be seen as the dual of equa­
tion (49) elucidates, as before, the features of the AR to 
ARMA procedures developed by relying on the AR to ARMA 
inverse spectral matrix method. 

The POM Procedure as Pade-Type Approximation. With 
the help of equation (59) the POM procedure can be seen as a 
Pade-type approximation of the AR transfer function. In­
deed, it is readily shown that the lowest power of z ~' in the ex­
pansion of the function 

N(z)H2k U) -D{z) = ( D B,z-')B-1 ( £ A,z-') 
V f = 0 ' ys = 0 ' 

-(£o
A*z-k) (6°) 
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KANAI-TAJIMI 
SEISMIC SPECTRUM 

(ioh = 50n rad. s
-1* 

TARGET AR(HQ), ARMA.C3,3)-(ACM org.) 

ARMM3,3)-(ACM inv.), ARMM 4, 3) - (PCM) 

40 80 120 160 
FREQUENCY, to 

Fig. 1 Kanai-Tajimi seismic spectrum 

PIERSCN-M3SKCWITZ 
WAVE SPECTRUM 

TARGET, ARMM7,7)-(A£M org.) 

ARW\(13,13)-(ACM inv.), ARIW\(8, 8)-(PCM) 

0 0 . 8 0 1.60 2.U0 3 . 2 0 

FREQUENCY, to 

Fig. 2 Pierson-Moskowitz wave spectrum 

isz~<-p+q+l), when the coefficients Ak and Bt satisfy equations 
(54*) and (55*) or equivalently, equations (84*) and (85*). 
Further, the function 

&H(z) =HARMA (Z) -HAR (z) 

= {TlAkz-k) [N(z)B^D(z) 

W I W TURBULENCE SPECTRA 

/ ™ x - 1 

-D^)\\ydAsz~s) B0 
(61) 

is analytic in the domain fi: \z\ > \z\\ where Z\ is the root of 
equation 

p 

' W " " " (62) ^[(t^-k)(P^)h° 
which has the greatest modulus. Thus, the Laurent expansion 
of /\H(z) in the domain Q has the following form 

AH(z)= £ 5(s)z- (63) 
s=p+q+1 

That is, the first/? + q + 1 coefficients of the Laurent expan­
sions of J7AR (z) and HARMA (z) are equal. Thus the Pade-type 
approximation is established. 

Implementation Aspects 

In this section the choice of the initial conditions for the 
recursions of the AR and ARMA systems will be investigated. 

Once the coefficients B0, Ak, Bt, and Ak have been com­
puted from appropriate equations, the AR and ARMA models 
of the target process are available. These approximations can 
be used to simulate a time history of Y. That is, values of Yr 

= Yr or Yr, r = 0 TV can be generated by using equa­
tions (1*) or (25*), respectively. Clearly, to compute Y0, the 
values Y_,, . . . ,Y_S, where sis m orp for the AR or ARMA 
model, respectively, are needed. These initial values form a n 
X 5 random vector Y / c with covariance matrix Klc..lts n x n 
block element ui is 

(KIC)ui=E[Y_u\Ji]=RYY(u-i) u,i=\, . . . ,s. (64) 

The vector Y / c can be conveniently generated from n x s in­
dependent normal /V(0, 1) deviates stacked in the vector P, 
through the equation 

Q. 
I/! 

TARGET, A R ( 1 0 0 ) , ARWU4, l l)-(AGYi o r g . ) 
A R W ( 7 , 6 ) - ( A C M i n v . ) , ARMM8, 8)-(PCM) 

« 6 

FREQUENCY, to 

Fig. 3 Wind turbulence spectrum 

WIND TURBULENCE 
SPECTRUM 

S 1 2 , IMAGINARY PART 

ARMA(7,6)-(ACM inv . ) 

TARGET, AR(100), APJW\(4,4)-{ACM o rg . ) 

ARVA(8,8)-(PCM) 

Fig. 4 

0 0.80 1.60 2.40 3.20 

FREQUENCY, u 

Wind turbulence spectrum imaginary part of 1,3 component 

VP. (65) 

The symbol V denotes the ns x ns lower triangular matrix ob­
tained from the Cholesky decomposition of KIC 

KIC=VV^. (66) 
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Clearly, p < m so that the ARMA scheme exhibits a reduction 
of the computational complexity as compared to the AR 
algorithm. 

Numerical Results 

The ARMA system development procedures presented in 
the first part of this series have been successfully applied to 
various spectral shapes encountered in engineering. 

For the first application, the Kanai-Tajimi spectrum from 
earthquake engineering defined as (Madsen et al., 1986) 

( o | - a r r + 4f|w|coz 

was selected as a target expression. The parameters ug, £g, S0 

of the spectrum were selected to be 8-ir, 0.8, and 1, respec­
tively. The spectra of the different approximations are plotted 
on Fig. 1. Clearly, either of the AR(40), ARMA(3,3)-
(ACM org.) , ARMA(3,3) - (ACM inv.) , and AR-
MA(4,3)-(POM) systems can be used for an accurate simula­
tion of earthquake records. Note that the qualifiers (org) or 
(inv) denote ARMA systems produced by relying on the 
original or the inverse spectral matrices, respectively. 

The simulation of a time record of wave elevation is an im­
portant problem of ocean engineering. The most commonly 
used statistical description of the elevation process involves 
the Pierson-Moskowitz (P-M) spectrum. Its dimensionless 
form (Spanos, 1983) 

D5/4 / 5 

<Mw)=- exp \ 4w4 / 
(68) 

was selected as a target expression. Figure 2 shows that a 
reasonable AR approximation of the P-M spectrum can lead 
to quite efficient ARMA models of the wave elevation. The 
comparatively large filter orders needed for the ACMinv. 
method can be attributed to the mathematical peculiarity of 
the target spectrum as studied by Spanos and Mignolet (1986). 

Finally, a trivariate example was chosen from wind 
engineering. Specifically, the fluctuating velocities in the 
direction of the mean wind at 3 equidistant points can be 
modeled as normal random processes with mean 0 and the 
following dimensionless spectral matrix (see Madsen et al., 
1986) 

numerical results reinforce their usefulness for random vibra­
tion problems. In this regard they should be viewed in context 
with other applications such as in Gersch and Yonemoto 
(1976). 

Concluding Remarks 

Properties and computational aspects of the ARMA system 
(algorithm) procedures developed in Part I have been studied 
in detail. The results of the present analysis may be summar­
ized as follows. 

1. The stability of the systems obtained by the generalized 
original spectral matrix procedure can be ensured if at least 
one of the triplets (G,, C,, 7,) or (G2, C2, y2)

 a s defined by 
equations (27)-(32) satisfies the conditions of nonsingular G, 
positive semi-definite C, and positive y. When p > 3, this 
criterion can be simplified by noting that the 3n nonzero eigen­
values of C are also eigenvalues of the 3/? x 3« matrix C 
defined by equation (43). These conditions are applicable to 
the special cases of the POM and ACM procedures. In the lat­
ter case, it was proved that the stability of the system is en­
sured by the condition det (G\) ^ 0 or det (Emin) ^ 0. 

2. Relying on the duality of the procedures which involve 
the original or the inverse spectral matrix, it was shown that 
the stability criterion could be used to test the invertibility of 
the systems developed by the generalized inverse spectral 
matrix procedure. 

3. It was proved that the AR and ARMA processes de­
rived through the generalized original or inverse spectral 
matrix procedure have in common the same p + q + 1 first 
input-output crosscorrelations. 

4. It was shown that the differences between the first p + 
1 autocorrelations of the AR and ACM (original spectral 
matrix) processes are the autocorrelations of an AR process 
with known parameters. 

5. It was discussed that the simulated ARMA processes 
would not display nonstationary characteristics if pertinent in­
itial values were generated as jointly normal random variables 
with mean 0 and covariance matrix KIC as defined by equation 
(64). 

6. Finally, the discussed ARMA procedures were ex­
emplified by application to a variety of spectral shapes en­
countered in different technical areas such as earthquake 

S(co) = 
1 

(1+ lco l ) 5 

exp 

exp 

exp 

FT-) 
\—r~) exH^r-) 

exp 

/talcoh /-2pd\w\\ / - / M l c o K 

The symbols d and JJ represent the distance between 2 points 
and their common height above the ground. The constant (3 
equals 0.163. Equation (69) with d — r\ was chosen as a target 
spectrum. Figures 3-4 show the matching of the 1,1, 1,2, and 
1,3 components of the AR, ARMA, and target spectral 
matrices. Clearly, the AR(100), ARMA(4,4)-(ACMorg.), AR-
MA(7,6)-(ACMinv.), and ARMA(8,8)-(POM) processes 
represent good approximations of the turbulent velocities. 

Note that all the systems presented have been found to be 
stable. 

It is noted that this series of articles aims primarily to unify 
and set on a concrete basis, from a perspective of frequency 
and time domain optimization, stability, and matching 
criteria, various AR to ARMA simulation procedures of 
multivariate stationary random processes. The presented 

(69) 

engineering (Kanai-Tajimi spectrum), ocean engineering 
(Pierson-Moskowitz spectrum), and wind engineering (spec­
tral matrix of the turbulent velocities). Excellent matching of 
the target spectra and the ARMA approximations was ob­
served in all cases. 

It should be noted that the preceding developments could 
also serve as a basis for investigating properties of ARMA 
schemes used in connection with nonstationary random pro­
cesses such as in Polhemus and Cakmak (1981) and Gersch 
and Kitagawa (1985), and multidimensional random processes 
(Naganuma et al., 1985). 
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On the Nonstationary Response of 
Stochastically Excited Secondary 
Systems 
The envelope response of a secondary system is derived for the case where the 
primary system is subjected to nonstationary stochastic excitation. An approximate 
closed form expression for the mean square envelope response is obtained for the 
case of transient response to stationary excitation when the primary and secondary 
systems are noninter-acting. When the combined system is classically damped, the ef­
fect of the interaction is described by the introduction of an equivalent noninterac-
ting system. The analytical results are compared with results of numerical 
simulations. 

Introduction 

The design of secondary systems to withstand seismic and 
other loads has recently received increased attention. A secon­
dary system may be a piece of equipment in a primary struc­
ture or a substructure which is separate from its supporting 
primary structure. Secondary systems are usually character­
ized by having a mass which is small in comparison with the 
mass of the structure on which they are supported. The excita­
tion to such systems is frequently stochastic in nature as in the 
case of earthquake, wave, and wind excitation. Secondary 
systems are often essential to the safety and wellbeing of the 
primary structure and their failure may have very serious con­
sequences. This is particulary true in critical facilities such as 
nuclear power plants. 

Several researchers have investigated the response of secon­
dary systems to stochastic excitation. Primarily, attention has 
been focused on determining the stationary response to sta­
tionary excitation. It may be argued that this information will 
adequately represent the response to a long duration excitation 
with nearly stationary statistics. Using the assumption of sta­
t ionary , Singh (1975) undertook to simplify the computation 
of the mean square response of a single-degree-of-freedom 
secondary system attached to a multiple-degree-of-freedom 
primary system. More recently, Igusa and Der Kiureghian 
(1983, 1985) used perturbation methods to simplify expres­
sions for the stationary response statistics of a multiple-
degree-of-freedom secondary system attached arbitrarily to a 
multiple-degree-of-freedom primary system. 

Relatively little work has been done on the response of 
secondary systems to transient excitation. Perhaps most 
notable among the work reported is that of Chakravorty and 
Vanmarcke (1973) who obtained the mean square relative 
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Fig. 1 Single-degree-of-freedom secondary system attached to single-
degree-of-freedom primary system 

displacement of a single-degree-of-freedom secondary system 
attached to a single-degree-of-freedom primary system, in 
response to suddenly applied white noise. The mean square 
response is a useful measure of response, but for many ap­
plications it is more important to have an estimate of the peak 
or envelope response. 

This paper presents an approach to the secondary system 
problem which leads to a general expression for the time-
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varying statistics of the envelope of the response of a secon­
dary system to excitation represented as a general stochastic 
process. The primary system and secondary system are each 
represented as single-degree-of-freedom systems. However, 
the results derived here may be combined to approximate the 
behavior of a more complicated primary system (Penzien and 
Chopra, 1965). 

Primary System Response 

There are many approaches to analyzing the response of a 
single-degree-of-freedom linear oscillator to stochastic excita­
tion. The approach chosen herein is analogous to that used 
subsequently for the secondary system. Only a few results 
which will be useful later will be presented by way of review. 

Let the system be defined as in Fig. 1. Then, neglecting in­
teraction, the relative displacement x{t) of the primary system 
is described by the equation 

x+2f,co,;t + co2x = ~z(t) (1) 

The response x(t) to any excitation z(t) may, for zero in­
itial conditions, be expressed as 

x ( f ) = [ ' _ l _ e - f i " i C ' - ^ smudl(t-T)[-z(T)]dT (2) 
Jo udl 

where corfl = co, Vl - f?. This integral may be decomposed as 

x ( 0 = * i ( ' ) coso}dit + x2U) sincodl? (3) 
where 

f 1 
xl(t) = - \ e - ? i » i « - ' > sin udlT[-Z(T)]CIT 

Jo corfl 

f 1 ( 4 ) 

X2U)= e - f l " l < ' - T ) COS 0 ) d l T [ - Z ( T ) ] r f T 

Jo wdl 

For class of problems of interest, it will be assumed that 
x ( 0 = M ' ) c o s [ w r f l / + < M O ] (5> 

where a, (t) and c6, (t) are nearly constant over any one period 
27r/cod,. Equation (5) may be decomposed in the form of equa­
tion (3) to give 

xt (t)=a, (t) cos0, (?) 
(6) 

x 2 ( 0 = - « i ( O s i n < M O 

The envelope of the response a, (t) may be expressed as 

a?(t)=xHO+xl(0 

= V [' l
 e-ri"i(2<-n-T2> 

J o J o o>2
dl 

COSa) r f l (T,-T 2 ) [z(T 1 ) ] [ i : ' (T 2 ) ] r fT 1 r fT 2 (7) 

If z(t) is a stochastic process, a{ (t) will also be a stochastic 
process. Taking the ensemble average of af{t) gives 

E[af (7)]=—r- f f e - f i « i » ' - ' i - ^ ) 
0)d[ Jo JO 

COS COdl(r, - T2)E[z(Ti)z\T2)]dTidT2 (8) 

For a broad-band stochastic excitation, it may be shown 
(Smith, 1985) that 

{ CO 

S{o,Tl)e
l»i*2-'0du (9) 

— CO 

where S(cu, t) is the evolutionary power spectral density 
(Priestley, 1965) of the process z(t). Substituting equation (9) 
into equation (8) and using symmetry in T, and T2 gives 

E[af(t)]~-^- {' r e-2fi"i('-n) 
CO^, J O J - o o 

SiusOHuSiWadTt (10) 

where 

£(co,0=2 e-h"v cos W^T eimdr (11) 

It may be shown that the function £ (a>, /) is sharply peaked at 
co = corf,, and that 

i oo 

{.(o>,t)doi = 2-K 

Taking S(w,t) as nearly constant over the region of maximum 
£, thus yields 

2TT et 
£ I f l ? ( / ) ] » - j - e-2fi«i"-Ti)5(«rfl,r1)rfr1 (12) 

cod, Jo 
This result is identical to that obtained by Spanos and Lutes 
(1980), except that co, is replaced here by corf,. 

Secondary System Response 

The relative displacement y(t) of a noninteracting secon­
dary system is governed by the equation 

y + 2^2y + uly=-z(t)-x\t) (13) 

Using equation (1) for the primary system, the right-hand side 
of equation (13) may be expressed more simply as 

—z—x^l^WiX + ofx 

^wfciiV) cos [uit + QiV)] (14) 

where equation (5) has been used together with the assumption 
that f, < < 1. y(t) may now be expressed in terms of the 
Duhammel integral representation 

f' 1 
y(t) = e-f2«2('-r)sin o,2(t-T)u,?al (r) 

J o co2 

COS[CO,T+^,(T)]C?T (15) 

Note that oid2 = co2 Vl - f2 has been replaced by co2 in equa­
tion (15), since it is assumed that f2 < < 1. 

It will be assumed that y(t) has the appearance of a har­
monic oscillation with slowly varying amplitude and phase, 
and possibly a slowly varying frequency. That is, 

y(t)=a2(t)cos[u'(t)t + 4>2(t)] (16) 

where a2(t), oi'(t), and <j>2(t) are slowly varying random 
functions of time. 

Equation (15) exhibits two characteristic frequencies, co, 
and co2. However, one of these frequencies may dominate the 
other. When the natural frequencies of the primary and secon­
dary systems are well separated, the response of the secondary 
system is generally dominated by the lowest natural frequency, 
although a small amount of the higher frequency is still pre­
sent. Equation (15) will first be decomposed in harmonics of 
co,. This procedure may be expected to yield good results for 
co, < co2, since the frequency co, will certainly be present in 
y(t) in this case. 

Let 

y{t) =y\ (t) cosult+y2(t) sinco,? (17) 

where 

f 1 
7 i ( 0 = e-f2"2<'-'> sin co2(?-T)co,2a, (r) 

Jo co2 

C O S [ C O , ( ? - T ) - 0 , ( T ) ] C ? T (18) 

f' 1 
yi(t) = e-

f2»2<'->•> sin co2(?-T)co2tf, ( T ) 
Jo co2 

sin [co,(?-r) — </>, (r)]dr 
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If equation (16) is decomposed in a similar manner, it may be 
seen that 

Then, when Aco^O, a closed form expression for p(t) may be 
obtained as 

y1(t)=a2(t)cos[o)'(t)t-o>lt + (j}2(t)] 

y2(t) = -a2(t)sm[w'(t)t-o>1t + <l>2(t)] 

Thus, 

al(t)=y?(t)+yi(t) 

= Jo L e" f2"2(2 '~T '"T2)sin « 2 ( r - T . ) sin «2(r-T2) 

"i4x(T1,T2)c?T1rfr2 

(19) 
/*(') = 

(Aco)2[(cox + co„)2
 + J<

2] -̂ 7 N£ 

+ J/2] <-

-2?A<V 

(20) 

+ e-2f»w«'[2co2 + (co2
x - co2 + v)2){\ - cos 2a>„0 

+ 2wo„ sm2u>ut\ 

+ 2w„e~(i'xux+!'«"«"[(cox-to„) cos (cox+ «„) / - ! ' s in (wx+ &)„)? 

where 

X (T[ ,T2) = tf, (T,)fl,(T2) COS [01,(7, - T2) + <£,(T,) - 0 , (T 2 ) ] (21) 

The function X(TU T2) is a random function which depends 
only on the primary response x(t). X ( T , , T2) can, in turn, be 
written in terms of the excitation z(t) using the random func­
tions x, ( 0 and xx (t) so that (Smith, 1985) 

- k + " J cos(cox-co„)/+psin(cox-coj?]j 

For Aco = 0, the corresponding result is 

j t i ( / ) = 7 r e - 2 f i w i ' ' ' " 

(29) 

Vit2--
2co, 

? sin 2co, t 

Jo Jo co, 

+ A . (1 - c o s 2w,0 
4co, -I 

(30) 

, ( / l + ( 2 - T , - T 2 ) 

COSW,(/, - / 2-Ti+T 2)[z(^l)][z( ' - 2)]C?T,rfT 2 (22) 

Equations (20) and (22) express a\(t) as a four-fold integral 
involving the random function Z{TX)Z{T2). 

A similar calculation may be made in the case that co2 < co,. 
In this case, it will be appropriate to decompose equations (15) 
and (16) in harmonics of co2. This leads to the expression 

"2 (', = JoJo- u>\ 
. eSl«>2Q.t-7l ~T2) 

cos CO2(T, - 72)x{r^x(72)dTXdT2 

where 

x(t)=\ e - f i" iC- ' ) sin CO,( / -T) 

(23) 

+ — c o s co,(?-r ) ] [ - i ' ( i - ) ]c?T 
COi J 

(24) 

It may be shown that ix(t) > 0. 
In summary, the second moment E[a2 (t)] is seen to be ex­

pressible as a convolution of the evolutionary power spectral 
density S(co, t) of the excitation process z(t) with the non-
negative function ix(t). In order to obtain the probability den­
sity function of a2{t), moments of all orders must be com­
puted. However, it is reasonable to suppose that the secondary 
envelope a2(t) is nearly Rayleigh distributed if the excitation 
is Gaussian and the response is narrow-banded. Since the 
Rayleigh distribution has only a single parameter, the pro­
bability density is determined by the second moment. 

Response to Finite Duration Stationary Excitation 

One application of the above results is to the case where the 
excitation is derived from a stationary process which is 
modulated by a rectangular function in time. The evolutionary 
power spectral density of the power acceleration will be taken 
as 

S(«,0 = 
Closed Form Solution 

The equations derived above provide a description of the 
stochastic process a2(t) in terms of the excitation process 
z(t). Let 

S0(co) Q<t<T 

0 otherwise 
(31) 

cox=min(co,,co2) 

co„ =max(co,,co2) 

where 50(co) is the power spectral density of the underlying 
stationary process, and Tis the duration of shaking. Neglec­
ting terms of higher than first order in f, and f2l it may be 
shown that 

(25) 

where 
Then, taking ensemble averages in equations (20) and (22), 

making use of the sharply peaked nature of the kernel func­
tion as above and assuming that S(co, T3) is a slowly varying 
function of co, it may be shown that (Smith, 1985) 

E[a2
2(t)] = S0(ux)p(t) 

Cp*(t) 0<t<T 

(32) 

E[aj(t)]= \joix(t-s)S(^,s)ds (26) 

P(t) = 4 (33) 
\j>*(t)-p*(t-T)t>T 

p* (t) describes the buildup of the secondary response from 
rest to stationarity, when T is made arbitrarily large. 

where 
P'(t)< 

(Aco)2co|(cox + O ! j 2 (.f. Mx«x 
-2fX<"X'> 

l*(t)-
47TCO 

C02
2 

' P T 2 

Jo Jo 
1 e"2^"*' \ \ " e<fxwx~fuu«)<Ti+T2> 

2f«w« 
( l - e~ 2 f « a , K' ) 

Let 

cos cox (T, - T2) sin CO„T, sin CO„T2 drldr2 

" = f«w«-fx"x 

Aco = V(co„-co x ) 2 + i'2 

690 /Vo l . 54, SEPTEMBER 1987 

(27) 

(28) 

2co„ 

(cox-co„)2 + coxco„(fx + f J 2 

[2(fx"2x + J> 2 „ ) (1 - e~ <*\»x + {•»»«)' cos (cox -co„) t ) 

+ (co2
x-co2)e-(fx»x + f«<-„)'sin(cox-co„)?]j (34) 
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Fig. 2 Comparison of stationary mean square secondary envelope 
(solid) with narrow-band prediction (dashed): ft = 0.01; f2 = 0.01, 0.05, 
0.10 
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Fig. 4 Comparison of mean secondary envelope (dashed) with simula­
tion (solid): ft = f2 = 0.01; «-|T = 80 ir 

OI2 / W 

Fig. 3 Comparison of stationary mean square secondary envelope 
(solid) with narrow-band prediction (dashed): ft = 0.05; f2 = 0.01, 0.05, 
0.10 

If Aco = 0, equation (34) is interminate. The corresponding 
result for this case is 

If T is large, the system will eventually achieve stationarity. 
At stationarity 

£[«f]sta«=P*(<»)S0(cox) (36) 

If the secondary response is narrow-banded, then 

< / > s t a , » 1 / 2 < « 2 2 > s t a t (37) 

The stationary variance of the displacement of a secondary 

Fig. 5 Comparison of mean secondary envelope (dashed) with simula­
tion (solid): ft = ?2 = °-0 5 ; "1T = 20 ir 

system driven by white noise may be shown to be (Crandall 
and Mark, 1963) 

irS0 a)f + o)1aj2
3(f2/f,) + ^ 

Eb>2hm = 2f2a>2
3 (a?-u$)2+A 

(38) 
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Fig. 6 Comparison of maximum mean secondary envelope with 
simulation (circles): ft = ?2 = °-0'1! u1 T = 8 0 * Fig. 8 Comparison of maximum mean secondary envelope with 

simulation (circles): ft = f2 = 0.01; a^T = 80 w 

OJ 2 /W, 

Fig. 7 Comparison of maximum mean secondary envelope with 
simulation (circles): ft = ?2 = °-05; "1 T = 20 IT 

where 

A =4a) lW2 [r,f2("i2 + co|) + a),co2(f1
2 + ff)] (39) 

A comparison of equations (37) and (38) shows asymptotic 
agreement as u2/oi\ — 0, as a)2/ojj — 1> and as oj2/cor — 00. In 
these cases, the assumption of narrow-bandedness is valid. 
For intermediate values of u>2/ui, however, y(t) has a 
bimodal behavior. 

Figures 2 and 3 show a comparison of the actual stationary 
response and that predicted by the narrow-bandedness 
assumption. It may be seen that the narrow-bandedness 
assumption generally leads to an underestimation of the mean 
square envelope response. 

w,T /277-

Fig. 9 Comparison of maximum mean secondary envelope with 
simulation (circles): ft = f2 = 0.05; a-^T = 20 ?r 

Comparison With Simulation Results 

In order to verify the analytical results a series of numerical 
simulations were performed. The average value of a2(t) for 
250 samples is shown in Figs. 4 and 5 for various values of 
system parameters. The theoretical mean envelope value is 
shown for comparison. In general, the theory gives conser­
vative results.The difference is most pronounced at higher 
levels of damping and away from resonance, when the 
bimodality of y(t) is greatest. 

The intensity of response may be characterized by the max­
imum achieved by the mean value of the envelope. Figures 6 
and 7 show a comparison of simulated and theoretical values 
for max E[a2(t)], as a function of u2/o)1 for fixed duration. 

Figures 8 and 9 show the same comparison as a function of 
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duration for fixed o>2/wi. In all cases, the theoretical values 
correspond closely to those obtained by simulation. 

Interaction Effects 

So far, it has been assumed that the mass of the secondary 
system is negligible in comparison with the mass of the 
primary system, so that the response of the primary system is 
unaffected by the presence of the secondary system. This 
assumption simplifies the analysis considerably by reducing 
the combined system to two chained single-degree-of-freedom 
systems. 

As the mass ratio increases, the noninteraction approxima­
tion becomes progressively worse, particularly if w, =w2 , Ig­
noring interaction effects generally leads to conservative 
estimates of system response, since the secondary system will 
actually absorb energy from the primary system. However, in 
some cases (especially near resonance), the assumption of 
noninteraction leads to gross overestimates of system 
response. 

The equations of motion for the two-degree-of-freedom 
primary/secondary system, including interaction effects, are: 

x + 2f1o)1x + co2x-e(2f2co2.y + cd2
2j>) = -z 

(40) 
y + 2f2co2.y + w\y = - z - x 

where t-m2/ml is the mass ratio. If f,a>2 = liw\> li is possi­
ble to uncouple these equations as 

xe + 2{1'u,'xe + (b>i')2xe 

ye + 2{2'G>2'ye+(o>2')
2ye 

-z 

-z-x. 

(41) 

where 

r,' 
CO,' 

= Vl + 0f, 

= 71+00), 

^ 1 + 0 

(42) 

l + ( 
0 ) 2 

and 

x(t)=xe(.t)+-r-ryeO) 
l + u 

(43) 
y(0-

(1 + 0) 
yeU) 

with 

6 = Vi [(1 + e) ( — ) - l ] + sgn (co,2 - of) 

The actual (interacting) secondary envelope is therefore 
1/(1+0) times the secondary envelope of the equivalent 
noninteracting system with system parameters modified as in 
equations (42). Thus, the results already obtained for the 
noninteracting system can be carried over to the interacting 
system simply by modifying the system parameters and scaling 
the response. 

Figure 10 shows 0 as a function of the mass ratio e, for 
several values of cd2/o>,. It may be seen that 0 is positive when 
w2 < a),, and negative when co2 > w ,. It may be shown that 
the natural frequencies of the equivalent noninteracting 
system in equation (42) are more widely spaced than those of 
the original system. This effect is most prominent near 
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Fig. 10 Interaction parameter 9 versus mass ratio t for several values of 

resonance, where a slight "detuning" may have a large in­
fluence on the response. By comparison, the changes in damp­
ing and the scaling of y(t) are much less significant. 

Near resonance, for small 0, interaction effects may be 
neglected if 101 < < f,. At perfect resonance interaction may 
be neglected if e << If. Note that the restriction to classical 
damping requires fj ~ l2 when oij ~ co2. 

Away from resonance, the detuning is less significant, so e 
< < f2 remains a conservative criterion. If fi = f2 = 0.05, 
this requires that the secondary system's mass be substantially 
less than 1/400 of the primary system's mass for interaction 
effects to be ignored. If the two-degree-of-freedom system is 
not classically damped, the above analysis does not apply. In 
this case, there seems to be no simplification of the interacting 
system, and the complete system must be considered. The sta­
tionary analysis (Igusa and Der Kiureghian, 1985) indicates 
that the effect of interaction may be neglected if 

e < < r i f 2 (45) 

In any event, the assumption of noninteraction gives conser­
vative results when e is small. 

Summary and Conclusions 

An approximate closed form solution has been presented 
for the mean square envelope response of a secondary system 
which is attached to a noninteracting primary system sub­
jected to nonstationary random excitation. The predictions of 
the closed form solution agree well with results of numerical 
simulation. The analytical solution is useful in the analysis of 
composite systems subjected to transient random excitation, 
such as earthquake loading. 

Under certain restrictions, the effects of primary-secondary 
system interaction have been shown to be expressible primarily 
in terms of a frequency detuning of the two system 
subelements. This simple result provides useful qualitative in­
sight into the nature of interaction effects. 
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Characteristics of Numerical 
Simulations of Chaotic Systems1 

A generalized form ofDuffing's Equation is examined in order to gain insight into 
the characteristics and properties of chaotic motion. It is shown that variations in 
the forcing function parameters as well as variations in the system's initial condi­
tions can lead to a chaotic response. The incidence of chaos is presented in the form 
of chaos maps and the structure of these maps is discussed. The influence of linear 
spring force on these maps is also examined. Finally, it is shown that an improper 
choice of time step can cause spurious results with regard to the existence of chaotic 
motion. 

Introduction 

It has been realized for over two hundred years that 
although most meaningful problems are nonlinear in nature, 
the difficulty associated with solving such problems makes an 
analytical study of them impractical. This lack of tractability 
has serious implications due to the fact that nonlinear equa­
tions often do not behave as intuition might indicate. The 
variety of behaviors that nonlinear systems can generate is 
very rich and is only hinted at by a linear analysis. 

One partial solution to this problem has been the develop­
ment of various approximate techniques (Bogoliubov and 
Mitropolsky, 1961; Hagedorn, 1981; Minorsky, 1983; Nayfeh 
and Mook, 1979). Such techniques usually assume that the 
system nonlinearities are small and often are based upon an 
assumed form of the actual solution. These techniques (har­
monic balance, multiple scales, etc.) have allowed in­
vestigators to uncover some essential details regarding the 
response of nonlinear systems. However, these methods are 
limited and only apply to a restricted range of parameter 
values. None of the techniques even suggest the existence of 
chaotic motions (Holmes, 1979; Ueda and Akamatsu, 1981; 
Moon and Shaw, 1983; Tongue, 1986), the subject of this 
paper. 

One of the primary reasons for examining chaotic systems is 
that they are capable of producing regular, well behaved, 
periodic outputs which are easily handled by approximate 
techniques as well as outputs that appear random and which 
are not well approximated by any analytical techniques. As 
more and more researchers start investigations of chaos, it 
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becomes important to make certain that the problems 
associated with numerical analyses of chaotic systems are 
clearly understood. Unfortunately, most papers presume a 
prior knowledge both of chaos from a theoretical framework 
as well as from a computational one, making it difficult for 
the beginning researcher to be aware of the different problems 
that can occur. The following section addresses these 
problems. 

Computational Difficulties 

There exists an essential difference between exact analytical 
solutions of differential equations and numerical integrations 
of the equations, namely that analytical solutions are con­
tinuous in time whereas numerical integrations involve finite 
time steps. Because of this, numerical integrations are best 
regarded as the solutions of difference equations rather than 
differential equations. For small time steps the difference be­
tween the differential and difference equation is presumed to 
vanish. With regular, well behaved, linear equations, the ques­
tion of an appropriate time step for the integration is easily 
handled. One simply determines what is the fastest time con­
stant of interest (highest natural frequency for a modal 
analysis) and chooses a time step small enough to accurately 
track this. Thus the time step might be chosen so that thirty 
time increments equals the period of the highest frequency. 

When dealing with chaotic systems this question is not so 
easily handled. Since the overall response contains a con­
tinuous spectra of frequencies, it is not clear how small a time 
increment is needed. By choosing incorrectly, qualitative er­
rors can result. Figure 1 illustrates this problem. This figure 
shows two Poincare maps for the equation: 

x+0 .2 i -x+x 3 =0 .3cos (1 .20 (1) 

The small and large dots were generated with time steps 
equal to 0.2618 and 0.0654, respectively. The time discretiza­
tion equal to 0.2618 has clearly given rise to a strange attractor 
and thus one might conclude that the system is behaving 
chaotically. However, that is not what occurs when the time 
scale is refined to 0.0654 (large dots). Now the Poincare map 
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DISPLACEMENT 
Fig. 1 Poincare map, At = 0.2618 and 0.0654 

shows that the response is actually a period five motion. Addi­
tional reductions of the integration time step cause no further 
changes in the output. 

Two qualitatively different solutions have been generated 
from a single differential equation. The only parameter that 
distinguishes between the two cases is the length of the integra­
tion time step. The conclusion to be drawn is that chaotic 
responses must be viewed with care. The strange attractor of 
Fig. 1 is actually from spurious chaos. The true response of 
the governing differential equation is periodic while the 
response of the numerical approximation to the actual dif­
ferential equation, for a time step of 0.2618, is chaotic. But it 
must be stressed that this means that the difference equation 
that has replaced the differential equation supports chaos, not 
the differential equation itself and presumably not the 
physical system that gave rise to the differential equation. 

It is well known that for a chaotic system, two solutions 
starting arbitrarily close together will quickly diverge from 
each other. This observation has been used as the basis for an 
analytical measure of chaotic systems (Ueda, 1979; Wolf, 
1985). The rate of divergence of two closely spaced points is 
found to be exponential in time (separation « eL>'). The 
values L-, are called Lyapunov exponents and they govern the 
rate of separation with respect to specific directions in phase 
space. Chaos is associated with a positive exponent, which im­
plies that two trajectories starting infinitesimally close to each 
other will diverge exponentially. This is illustrated in Fig. 2 for 
the equation 

x + 0 . 2 x - x + x3=0.33cos(1.20 (2) 

An exactly analogous situation will occur for any change in 
the time discretization. If two trajectories, starting from iden­
tical initial conditions, are generated using slightly different 
time discretizations (A/ = 0.0524 and 0.0518), the same kind of 
time histories as seen in Fig. 2 will be generated. Note that on­
ly a one percent change in the time step is used. 

At first this seems odd, since very small changes in time 
discretization usually lead to very small changes in the in­
tegrated output of well-behaved systems. However, the system 
being considered is chaotic. Although the two initial condi­
tions were identical, the next calculated state for each trajec­
tory will be different due to the different duration of their 
associated time step. Thus one should expect divergence to oc­
cur, as it did for identical discretizations and differing initial 
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Fig. 2 Exponential divergence of trajectories 
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Fig. 3 Period bifurcations: A! = 0.0393/w 

conditions. It should be noted that this same behavior can be 
observed even for solutions that are ultimately periodic. In 
this case the time history can go through a transiently chaotic 
stage before settling into periodicity (Yorke and Yorke, 1979). 

Another interesting point to consider is how a system pro­
gresses into chaos. Work has been done that predicts a regular 
route to chaos (Feigenbaum, 1978, 1980). As a critical 
parameter in the generating equation changes, the response 
changes from period one motion to period two, period four, 
and so on. Theoretically, a limiting value of the critical 
parameter exists for which the period of the motion goes to in­
finity, at which point the response becomes aperiodic. For 
parameter values above this critical point, chaos can occur. 
This kind of response is easily generated by simple recursive 
systems such as the logistic equation. 

A question can now be raised as to whether this simple route 
to chaos can occur for a nonconservative dynamical system 
such as the one examined in the previous part of this paper. 
Simulations were therefore run to obtain the response of 

x+0.1x-x + x3 = 3.2cos(oit) (3) 

for values of frequency near the chaotic regime. The results 
are shown in Figs. 3-5. 

The figures illustrate the kind of steady state motion that is 
obtained for the given time discretization at the given driving 
frequencies. They record the periodicity of the output (period 
one, period two, etc.) as a function of the driving frequency. 
The results shown in Fig. 3 demonstrate that simple period 
doubling can be observed in a dynamical system and that the 
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time discretization again affects the response. As the driving 
frequency is decreased from u = 0.482, with a time step equal 
to 0.0393/co, the steady state response progresses from a 
period one motion, to period two, four, eight, sixteen, and 
finally into chaos (represented by period 20 motion). Clearly, 
frequency doubling is occurring. If the size of the time step is 
increased to 0.0785/o the responses alter slightly (Fig. 4). The 
period sixteen motion of Fig. 3 disappears and a period four­
teen motion appears in what was previously a chaotic regime. 
Coarsening the time step yet further (Fig. 5), to 0.1571/co, 
causes a large change in the response and greatly obscures the 
period doubling that was previously so evident. Thus the 
observation of period doubling can depend on a proper choice 
of time increment. It is important to note that these results do 
not imply that period doubling is the only route to chaos, 
merely that it is one possible route. 

Results 

It is of interest to determine when chaos can occur for dif­
ferent parameter combinations. One reason to do this is to 
decide if chaos is a rare occurrence or a common one. The 
shape of the chaotic regions in parameter space may also be of 
help in yielding an overall understanding of the system. 

Figure 6 shows the regions of chaos and the regions of 
periodic responses associated with different values of forcing 
amplitude, G, and forcing frequency, co, for the equation 

x + 0.1x + ex + x3 = Gcos(ut) (4) 

for e= - 1. This kind of plot will be called a chaos map. The 
region of parameter space was divided by a mesh of spacing 
AG = 0.04 and Aa> = 0.005. One hundred different values for G 
and to were used, yielding ten thousand different combinations 
of amplitude and frequency. For each of these combinations, 

equation (4) was integrated and the resultant output analyzed. 
If the output was chaotic, then a dot was placed on the cor­
responding grid point. If the response was periodic, then the 
grid intersection was left blank. Only the indicated ten thou­
sand points of parameter space were investigated; one cannot 
say anything with absolute certainty about the infinitude of 
combinations that occur at untested values. 

Overall qualitative trends are quite apparent. First, it seems 
that chaos is not a rare occurrence but occurs at a roughly 
equal frequency to that of periodic responses. Second, even at 
the present scale of mesh spacing it can be seen that periodic 
responses occur within the mainly chaotic regions. Also, the 
mainly chaotic regions are structured and all fall along curving 
paths from the origin. Figures 7 and 8 show how this chaos 
map varies for the linear spring coefficient, e, equal to 0 and 
0.3, respectively. 

It should be recognized that these plots are closely related to 
the concept of basins of attraction (McDonald, 1985). 
Numerous researchers have tried to determine what the steady 
state position of a nonlinear system is as a function of some 
system parameters. For example, the unforced case of equa­
tion (4) will come to rest in one of two equilibrium conditions, 
either x=l. orjc= — 1. One can then ask which regions of in­
itial condition space will send the system to x = 1. and which 
will send it to x = - 1. These regions are called basins of attrac­
tion. The boundary that separates the regions is the basin 
boundary. Grebogi et al. (1984) defines an attractor as a com­
pact set for which almost all points in a neighborhood of the 
set tend toward the set as time goes to infinity. Thus in the 
present example we have the very simple situation in which 
x = ± 1. acts as the attractor set. One can further generalize the 
problem by introducing a forcing team. If the forcing is small, 
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the system trajectories will oscillate about x=l. or JC= - 1 . 
Therefore, basins of attraction can again be constructed on 
the basis of whether the final oscillations are about x=l. or 
- 1 . 

Figures 6-8 do not show in which region of the phase space 
the trajectory ends but rather indicate the existence of 
equalitatively different global responses, namely periodic and 
chaotic. They give an immediate sense of how likely it is that 
chaos will occur, as a function of the driving parameters. 
Clearly chaos is more common for e= — 1. than for e = 0.3. 

There is a qualitative difference between the system's static 
equilibria for e greater than zero and e less than zero. In the 
former case only one equilibrium exists while the latter case 
supports three distinct equilibria. The existence of three 
distinct equilibria (two stable separated by one unstable) has 
led some investigators (Moon, 1980) to postulate that chaos 
can occur when the energy flow of the system is such that the 
oscillation amplitude of the particle approaches the separation 
distance between a stable and unstable equilibrium. 

The author (Tongue, 1986) has shown that this is not a 
necessary condition for chaos and Figs. 6-8 illustrate this quite 
clearly. As e is increased to zero and then to positive values, 
the regions of chaos alter in shape and draw away from the 
G = 0. boundary. This supports the notion that, although 
multiple static equilibria encourage the existence of chaos, 
they are not necessary. For large values of G, the mass particle 
is forced to be far from the origin for a great deal of the time. 
Thus, as far as the mass is concerned, the conditions of e 
greater than or less than zero are essentially the same. The fine 
details of equilibria at x= ±Ve, 0 or three roots at x = 0 . are 
lost. However for small G (i.e., oscillation amplitudes on the 
order of the equilibrium spacing), the existence of separate 
equilibria becomes important and the interaction of the poten­
tial walls associated with them dominates the response. In this 
case multiple equilibria are quite important. 

It should be noted that a system of the given type can sus­
tain multiple dynamic equilibria (Hagedorn, 1981). Thus, even 
though the system does not have multiple static equilibria, it 
does have the possibility of multiple dynamic equilibria whose 
interaction may lead to the observed chaotic response. Finally, 
in addition to requiring higher levels of forcing, the overall 
frequency of occurrence of chaos is seen to be reduced as e is 
increased. This implies that it is less probable that chaos will 
occur when multiple equilibria are absent for arbitrary choices 
of forcing amplitude and frequency. 

As can be seen from Fig. 6, the chaotic boundaries appear 
to be reasonably smooth. McDonald et al. (1985) have in­
vestigated several examples of systems having basin bound­
aries and have observed that these boundaries are often fractal 
(Mandelbrot, 1977) in nature. The question then arises as to 
whether these chaos maps exhibit fractal behavior. Figure 9 is 
a chaos map for the restricted region of Fig. 6 in which 
0 . 5 2 < O J < 0 . 5 6 and 0 .8<G<1.2 . The scale of resolution has 
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been increased by a factor of 125. While the two upper bound­
aries appear relatively smooth, the others seem quite ragged. 
An increase in surface detail with increasing resolution is one 
characteristic of fractal structures. Thus the lower boundaries 
seem fractal-like whereas the upper ones are relatively smooth; 
if they are fractal their dimension would appear to be close to 
unity. A comprehensive answer to the question of the dimen­
sion of the boundaries will require the use of fractal interpola­
tion (Barnsley) or of covering sets (Mandelbrot, 1977) and will 
be accomplished in a later paper. 

As a final observation it should be noted that, although the 
system under examination in this paper appears to be 
reasonably simple, there are a total of eight parameters that 
must be taken into account. The general equation is seen to be: 

x + ox + ex + <xxl = Gcos(wt + 6) (5) 

I.C.:x(0)andi(0) 

The eight parameters are a, e, a, G, w, d, x(0), and i(0). 
Of course, it is possible to nondimensionalize in order to 

reduce the total parameter set. If one defines T = VF t and 
x= (e/a)'A y then equation (5) becomes 

y" + ay' + y + y3 = GCOS(O>T+6) 

where 

( y=d( ) a ^ Got1'2 
a 

G = - and oi = 
dr ' ' Ve ' " e3/2 VF ' 

The difficulty with such a reduction is that it restricts the 
analysis to e and a values of the same sign and won't permit 
e = 0. Since both of these cases are of interest, the anlysis will 
treat the form of equation (5). 

It is possible to express this problem as a coupled second 
order and first order equation: 

x+ax+ex + ax3 -GCOS(TJ) = 0 I.C. = x(0),x(0) 

tl = u I.C. =ij(0) 

However, instead of expressing the system as two coupled 
equations, an equivalent fourth order equation can be found2 

in which the system's dependent variable's initial conditions 
are clearly related to x(0), x(0), G and co. Since these are the 

This alternate formulation, used in a different context, was pointed out to 
the author by Dr. Gary Anderson of the Army Research Office during a con­
ference on nonlinear systems, held at the Georgia Institute of Technology. 
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parameters of main interest in this paper, this final formula­
tion shall be presented. To start, express equation (5) as: 

x+ax + ex + axi=q; I.C.:x(0),i(0) (6) 

q + u2 q = 0; I.C.:?(0),?(0) (7) 

Clearly, a proper choice of ^(0) and q(0) will yield a solution 
for 0 (0 that will match Gcos(co? + 0) for any G, 9 
combination. 

Differentiating equation (6) twice yields an expression for q 
which when substituted into equation (7) along with the ex­
pression for q will yield the following fourth order 
homogeneous equation: 

xIV + ax + x(e + w2) + 6ax2x+3axx2 + CJU2X + eu2x + o2ax2 =0 

(8) 

I.C.: x(0),i(0),jc(0),x(0) 

The appropriate initial conditions for x and x are seen to be: 

i(0) = q(0) - ax3 (0) - ex(0) - ai(0) (9) 

x(0) = q(0) - 3ax2(0)x(0) - ex(0) - ax(0) (10) 
The choice of a homogeneous or nonhomogeneous form is 

thus seen to be arbitrary and can be based on convenience in 
regard to physical interpretation. It is thus interesting to note 
that the forcing parameters (G and o>) can be considered to be 
serving the same purpose as the initial conditions (x(0) and 
x(0)). 

It has been shown that variations in G and co can give rise to 
a chaotic response. Since variations in G and co will cause 
variations in x(0) and x(0) for the fourth order formulation of 
equation (5) it should not be surprising that variations in x(0) 
and x(0) will also produce chaos (McDonald, 1985). This is il­
lustrated in Fig. 10, which examines 

i + 0.1i + x+3.8x3 = 12cos(1.250 

for various initial conditions x(0) and i(0). 
Figure 10 shows an initial condition chaos map for a fairly 

wide range of initial conditions. As can be seen, there are 

again predominantly chaotic regions and predominantly 
periodic regions. This map does not have the same ordered 
form as that exhibited by the G,a> chaos maps. 

It is clear that only periodic responses result for a wide 
range of initial condit ions (—1.5 < x ( 0 ) < 1. and 
- 3. <x(0)< 1.). However, beyond this region chaos begins to 
predominate. This supports the supposition that the existence 
of chaos depends not only on the governing equation's 
parameters but also on the system's initial conditions. Thus 
one cannot simply look at a G,co chaos map when trying to 
determine the probability of chaos but must also take the 
system initial conditions into account. Of course this type of 
behavior is in keeping with classical nonlinear analysis, for 
which initial conditions play a key role in determining a 
system's steady state response. 

Conclusions 

1 Classical techniques are not adequate to predict or 
describe chaotic motion. 

2 Chaos does not always occur but depends on an ap­
propriate combination of system parameters. 

3 Numerical integration can give spurious results with 
regard to the existence of chaos due to insufficiently small 
time steps. 

4 Chaos maps occur for both positive and negative linear 
stiffness coefficients. Chaotic behavior is more probable for 
the case of negative linear stiffness. 
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A New Method for Finding 
Symmetric Form of Asymmetric 
Finite-Dimensional Dynamic 
Systems 
A subclass of general lumped-parameter dynamic systems which can be transformed 
into an equivalent symmetric form is considered here. For the purpose of the present 
study, these systems are divided into two categories: those without velocity depen­
dent forces {pseudo-conservative systems) and those with velocity dependent forces 
(pseudo-symmetric systems). For each category, the results on symmetrizability of 
matrices are used to develop an effective, systematic technique for computing the 
coordinate system in which the system is symmetric. The primary advantages of the 
technique presented in this study are twofold. First, it is computationally efficient 
and stable. Second, it can effectively handle systems with many degrees-oj'-freedom, 
unlike the trial and error approach suggested in previous studies. 

Introduction 

Lumped-parameter dynamic systems with symmetric matrix 
coefficients have been studied for many decades. The develop­
ment of results which analyze the overall dynamic behavior of 
such systems via studying the properties of the coefficient 
matrices are abundant and well documented, for example 
those by Lord Rayleigh (1945), Foss (1958), Caughey (1960), 
Caughey and O'Kelly (1965), Moran (1970), Walker and 
Schmitendorf (1973), Meirovitch (1980), and Inman and 
Andry (1980). However, systems that are under the influence 
of general types of forces, which possess asymmetric matrix 
coefficients, are often encountered, such as those described by 
the vector differential equation 

Mx+ (C+G)x + (K+E)x = 0. (1) 
Here, Mis a nonsingular matrix indicating the inertial forces, 
C and K are symmetric matrices representing the dissipative 
and conservative forces, and G and E are skew-symmetric 
matrices denoting the gyroscopic and follower forces. Usually, 
equation (1) is rewritten in a simpler form as 

x+Ax+Bx=0, (2) 
where A = M~l (C+G) and5 = M~[ (K+E) are real asym­
metric matrices. Systems of this nature arise in many areas of 

Contributed by the Applied Mechanics Division for presentation at the 
Winter Annual Meeting, Boston, MA, December 13-18, 1987, of the American 
Society of Mechanical Engineers. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y. 
10017, and will be accepted until two months after final publication of the paper 
itself in the JOURNAL OF APPIIED MECHANICS. Manuscript received by ASME 
Applied Mechanics Division, May 16, 1986; final revision, October 15, 1986. 

Paper No. 87-WA/APM-l. 

engineering and have received increased attention in recent 
years with the advent of modern control techniques for 
dynamic systems. 

One way to analyze various dynamic aspects of a system 
described by equation (2) is to transform it into a state space 
form and solve for the eigenvalues of the state matrix. 
Although many eigensolution techniques are available to han­
dle this task effectively, it is usually desirable to analyze the 
dynamic behavior of asymmetric systems through studying the 
properties of the coefficient matrices, just as symmetric 
systems. The advantages of such an approach are twofold. 
First, it involves computations in ^-dimensional space as op­
posed to 2/2-dimensional space needed for the state-space ap­
proach. Second, a physical sense for the problem is preserved, 
since the results are direct in terms of the coefficient matrices. 
Consequently, several studies have focused on finding such 
results; to name a few one can cite those by Mingori (1970), 
and Ahmadian and Inman (1984,1986). However, one point is 
evident in all of these studies: the asymmetric nature of the 
coefficient matrices in equation (2) does not allow for results 
that are as sharp and clear as those existing for symmetric 
systems. 

To eliminate the problem of dealing with asymmetric 
matrices, different ideas have been proposed. One idea sug­
gests ignoring the asymmetries and simply approximating the 
system as a symmetric system, so that the results developed for 
symmetric systems can be applied. Although this approach is 
simple in nature, it suffers from a major defect in the sense 
that the approximation could lead to intolerable errors, which 
would make the analysis useless. Another idea suggests reduc­
ing the system to a symmetric form via a similarity transfor­
mation. Since this approach is exact, it is more attractive and 
has been the focus of several studies such as those by Huseyin 
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and Leipholz (1973), Huseyin (1978), Inman (1983), and 
Ahmadian and Inman (1985). 

Huseyin (1978) presents conditions under which a system 
without velocity-dependent forces (i.e., A = 0 in equation (2)) 
can be transformed into a symmetric form; he classifies this 
class of systems as pseudo-conservative systems. In another 
study (Inman, 1983), Inman considers systems with velocity-
dependent forces, and he takes advantage of the results 
presented by Taussky (1968) and Zassenhaus (1969) to show 
that if the coefficient matrices A and B are both sym-
metrizable and they have at least one symmetric factor in com­
mon, then the system can be transferred to a symmetric form 
via a similarity transformation. 

The advantages of such a transformation are obvious. Now, 
the well-known results of symmetric systems can be used to 
analyze various dynamic aspects of an asymmetric system 
based on the properties of its coefficient matrices. However, 
the major difficulty which still remains is the computation of 
the coordinate system in which the system is symmetric. The 
problem is in determining the symmetric factors of the asym­
metric coefficient matrices. Huseyin (1978) recognizes this 
problem and illustrates a method for systems with 2 degrees-
of-freedom. For systems of higher order, he proposes a trial 
and error approach based on a special form of the symmetric 
factors of the coefficient matrix B in equation (2). Inman 
(1983) also realizes this problem, and he also suggests a trial 
and error approach for determining the symmetric form of the 
system (2). 

However, a trial and error strategy is hardly sufficient for 
most systems, since it is inefficient and can result in serious 
computational difficulties even for low-order systems. In ad­
dition, there is no assurance that a trial and error approach 
can yield a solution. Consequently, a more efficient, 
systematic technique is needed. 

The study presented here discusses a successful computa­
tional technique for determining a transformation which 
yields the symmetric form of an asymmetric system. Two ex­
amples are used to illustrate the effectiveness of the results. It 
is shown that the developed method is capable of handling 
systems with many degrees-of-freedom, unlike the trial and er­
ror approach suggested previously. 

Background 

It has been shown in the past (Tausskey, 1968) that a real 
asymmetric matrix is symmetrizable if and only if it satisfies 
any of the following conditions: 

1. It has real eigenvalues and a complete set of real 
eigenvectors; 

2. it is similar to a symmetric matrix; 
3. it is similar to its transpose via a symmetric, positive 

definite transformation (i.e., P = Q1PTQ); and 
4. it becomes symmetric when multiplied by a suitable 

positive definite matrix. 
A symmetrizable matrix can always be expressed as the 
product of two symmetric matrices, one of which is positive 
definite, i.e., 

P = PlP2;Pl=Pf>0, P2=Pl 

where P\ indicates the transpose of the matrix Pt and the 
notation > 0 denotes positive definiteness; so Pl is symmetric 
and positive definite and P2 is symmetric. 

Using the above concept, it has been demonstrated (Inman, 
1983) that for dynamic systems of the form 

x + Ax + Bx = 0, 

the coefficient matrices A and B are simultaneously sym­
metrizable if and only if they are separately symmetrizable, 
i.e., 

B=TXT2\ TI = TJ>0, T2 = Tl, 

and have at least one factorization in common, i.e., S{ = Tl. 
Using this, Inman shows that the aforementioned dynamic 
systems can be transformed into a symmetric form as follows: 

q + Aq + B <7 = 0, 

where 

A=AT = SfS2Sf 

B = BT = SY2T2S'{' 

and 

q = SrYlx. 

Here, S'{' indicates the square root of the positive definite 
matrix S,, defined according to 

where co is the modal matrix of S1 and As is a diagonal matrix 
of the eigenvalues of S,. 

Results 

Before discussing the derivation of the results let us in­
troduce the following two definitions: 

Definition 1. The coordinate system in which the equation 
of motion is symmetric is referred to as symmetric 
coordinates. 

Definition 2. An asymmetric system which possesses sym­
metric coordinates is called a pseudo-symmetric system. 

As mentioned earlier, for the purpose of this study, asym­
metric systems are divided into two categories: those without 
velocity-dependent forces and those with velocity-dependent 
forces. Now, the results for each category are presented. 

Pseudo-Conservative Systems 

Dynamic systems with nonconservative, follower forces, as 
described by the equation 

Mx+(K+E)x = 0 (3) 

IMMO 

K = KT 

E=-ET 

or 

x + Bx = 0 (4) 

where 

B = M-l(K+E) (5) 

are considered first. For instance Pfliiger's column (Pefliiger, 
1964) which consists of a simply-supported elastic rod sub­
jected to a uniformly-distributed tangential force along its 
length constituties a typical example of this class of systems. If 
the matrix B is symmetrizable, i.e., 

B=TlT2;T1 = T[>0,T2 = T2
r (6) 

then the asymmetric system shown in equation (4) can be 
transformed into a symmetric form via a similarity transfor­
mation; such systems are commonly referred to as pseudo-
conservative systems. The significance of pseudo-conservative 
systems is that they can be reduced to a form where they 
resemble conservative systems, even though they are asym­
metric in their physical coordinates. 

To provide a systematic scheme for computing the matrices 
T{ and T2 in equations (6), one can write them as 

T, = * 7 $ r (7a) 
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and 

e = y lAB 

T7 = $~Te * 

(76) 

• 2 - * c * (7c) 

where 7 is an arbitrary positive definite diagonal matrix (i.e., 
7,-, > 0, / = 1,2, . . . , n), $ is the modal matrix of B, and AB 

is a diagonal matrix which contains the eigenvalues of B, i.e., 

AB = * - 1 5 * . (8) 

Since T{ is positive definite, according to Cholesky decom­
position it can be expressed as 

where L is a lower triangular matrix whose entries are 

' = 1 - . </i 

(9) 

L y = i J 

r ,=' i 
4/ = [(T\)ik - Li V*/J /^'; 

« (10fl) 

k = i+l, i + 2, . . . , n (106) 

Since matrix L is now known it can serve as the similarity 
transformation which reduces B to a symmetric form. To il­
lustrate this more clearly, rewrite equation (4) as 

x+LLT T2x = 0, (11) 

let 

x = Lq, (12) 

and premultiply (11) by L~l; this yields 

q + Bq = 0, (13) 

where 

B = BT=LTT2L (14) 

For computational purposes, the above process can be out­
lined as follows: 

1. Compute the modal matrix and eigenvalues of the 
matrix B (i.e., form $ and AB); 

2. choose the arbitrary positive definite matrix 7 (the 
simplest choice is the identity matrix) and calculate the 
matrix e according to equation (76); 

3. compute the matrices Tx and T2 according to equations 
(7a) and (7c); and 

4. determine the matrix L according to equations (10), and 
find thejymmetric coordinates q and the symmetric 
matrix B as presented in equations (12) and (14), 
respectively. 

Example 1. As an example, consider a system with 7 
degrees-of-freedom where 

M = 

K= 

E = 

hich 

B = 

diag. [3.00 

24.91 
- 4 . 5 1 
-4.H7 
-4 .23 ' 
-1 .94 
-2.85 

_-1.24 

~ 0.00 
0.51 

-0 .07 
0.39 
0.32 

-0 .52 
0.16 

gives 
" 8.30 
-2 .01 
-1.51 
-1.67 
-0 .81 
-1 .12 
-1 .08 

2.00 

-4.54 
20.43 
-1.53 
-1.43 
-1 .36 
-2.14 
-3.34 

-0.51 
0.00 
0.12 
0.20 

-0.13 
-0.55 

1.14 

-1.68 
10.21 
-0.47 
-0.61 
-0.74 
-0.89 
-2 .21 

3.00 

-4 .47 
-1 .53 
30.55 
-5 .09 
-4 .37 
-2 .91 
-2 .14 

0.07 
-0 .12 

0.00 
1.28 
0.35 

-0 .53 
1.24 

-1.47 
-0 .82 
10.18 
-1 .91 
-2 .01 
-1 .14 
-0 .90 

2.00 

-4 .23 
-1.43 
-5.09 
31.51 
-3.47 
-5 .00 
-4 .23 

-0.89 
-0 .20 
-1 .28 

0.00 
-0.61 
-1.87 

1.34 

-1.71 
-0 .82 
-2 .12 
15.75 
-2 .04 
-2 .29 
-2 .89 

2.00 

-1.94 
-1.36 
-4.37 
-3.47 
26.33 
-2.09 
-1.89 

-0.32 
0.13 

-0.35 
0.61 
0.00 

-0 .72 
0.57 

-0.75 
-0.61 
-1.57 
-1.43 
13.16 
-0.94 
-1.31 

3.00 

-2.85 
-2.14 
-2.91 
-5.00 
-2.09 
32.67 
-1.98 

0.52 
0.55 
0.53 
1.87 
0.72 
0.00 
0.92 

-0.77 
-0.80 
-0.79 
-1.57 
-0.69 
10.89 
-1.06 

1. 

-1.24 
-3.34 
-2.14 
-4.23 
-1.89 
-1.98 
21.10 

-0.16 
-1.14 
-1.24 
-1.34 
-0.57 
-0.92 

0.00 

-0.46 
-2.24 
-1.13 
-2.78 
-1.23 
-0.97 
21.09 

Solving for eigenvalues and eigenvectors of the matrix B and 
choosing the arbitrary matrix 7 as 

7 = diag. [5.81 .48 

yields 

.043 .12 .47 4.68 1.20] 

T7 = 

L = 

1.2192 
0.1676 
0.1387 
0.1449 
0.1524 
0.1844 
0.0000 

6.5616 
0.7218 
0.6561 
0.6240 
0.0000 
0.0000 
0.6562 

1.1042 
0.15179 
0.12561 
0.13123 
0.13802 
0.16700 
0.00000 

-0.1676 
1.5240 

-0.1297 
0.0000 
0.0000 
0.0000 

-0.1524 

-0.7218 
6.5616 
0.0000 

-0.6561 
-0.5315 
-0.6562 
-0.6240 

O.OOOOO 
1.2251 

-0.12143 
-.016259 
-.017100 
-.020691 

-0.12439 

-0.1387 
-0.1297 

1.3716 
-0.1676 
-0.1419 

0.0000 
-0.1524 

-0.6561 
0.0000 
7.2177 

-0.5971 
-0.6562 
-0.7940 

0.0000 

0.00000 
0.00000 
1.1580 

-0.16067 
-0.13930 

-.020284 
0.14464 

-0.1449 
0.0000 

-0.1676 
1.6764 

-0.1524 
-0.1387 
-0.3353 

-0.6240 
-0.6561 
-0.5971 

9.1862 
-0.4659 
-0.6562 

0.0000 

0.00000 
0.00000 
0.00000 
1.2779 

-0.15116 
-0.12850 
-0.28215 

-0.1524 
0.0000 

-0.1419 
-0.1524 

1.9812 
-0.1524 

0.0000 

0.0000 
-0.5315 
-0.6562 
-0.4659 

6.5616 
0.0000 

-0.7218 

0.00000 
0.00000 
0.00000 
0.00000 
1.3855 

-0.14295 
-.046860 

-0.1844 
0.0000 
0.0000 

-0.1387 
-0.1524 

1.8288 
0.0000 

-0.0000 
-0.6562 
-0.7940 
-0.6562 

O.OOOO 
5.9054 

-0.6562 

0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
1.3278 
-.036497 

0.0000 
-0.1524 
-0.1524 
-0.3353 

0.0000 
0.0000 
2.2860 

-0.6562 
-0.6240 

0.0000 
0.0000 

-0.7218 
-0.6562 

9.1862 

0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.0000c 
1.4719 

9.11 
1.60 
1.12 
1.66 
- . 8 2 
- . 9 1 
- . 6 2 

-1 .60 
10.36 
- .47 
- .38 
- .62 
- .91 

-2.77 

-1 .12 
- .47 

10.65 
-1.99 
-1.89 
-1 .07 
-1.79 

-1.66 
- .38 

-1.99 
16.27 
-1.60 

~-1.79 
-3.53 

- . 82 
- .62 

-1.89 
-1.60 
12.82 
-1.03 
-1.97 

- .91 
- .91 

-1.07 
-1.79 
-1.03 
10.49 
-1.78 

- .62 
-2.77 
-1.79 
-3.53 
-1.97 
-1.78 
19.90 

according to the process outlined earlier. Now, the original 
system can be transformed into a symmetric form, as shown in 
equation (13). For this case the symmetric matrix B is 

B = 

Pseudo-Symmetric Systems 

In the presence of dissipative and gyroscopic forces the 
equation of motion described in equation (3) becomes 

Mx+(C+G)x+(K + E)x = 0, (15) 

where 

C=CT, 

G=-GT, 

and the other matrices are as defined earlier. Equation (15) 
can be rewritten as 

where 

and 

x+Ax+Bx = 0, 

A=M~l(C+G) 

B = M~l(K+E) 

(16) 

(17a) 

(176) 

are general asymmetric matrices. 
For this class of systems the following theorem is used to 

demonstrate a systematic method for calculating the sym­
metric coordinates and the symmetric form of the system (16). 

Theorem l1 . An asymmetric system possesses symmetric 
coordinates if and ony if the coefficient matrices A and B are 
simultaneously symmetrizable. 

The above theorem implies that for a pseudo-symmetric 
system matrices A and B in equation (16) can be expressed as 

A=SlS2;Sl=Sf>0,S2=S2
r (18a) 

B=TXT2\ 7,
1 = 7T>0, r 2 = 7f 

s, = r, 
(186) 

• i - i , (18c) 

Rewriting the above symmetric factors, in a manner similar to 
that presented earlier for pseudo-conservative systems, yields 

1 Proof of all theorems are included in Appendix A. 
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T{ = * 7 * r (19a) 

(196) 

(19c) 

and 

• M 

(20a) 

(206) 

(20c) 

Sl=6aer 

where 7, $, and AB are as defined in equations (7a-c), a is an 
arbitrary diagonal matrix with positive entries (.i.e., an > 0, i 
= 1, 2, . . . , ri), 8 is the modal matrix of A, and AA is a 
diagonal matrix which contains the eigenvalues of the matrix 
A, i.e., 

AA=d"lAd (21) 

Now, the following theorem is in order. 

Theorem 2. An asymmetric system described by equation 
(16) is pseudo-symmetric (i.e., possesses symmetric coor­
dinates) if and only if the arbitrary matrices a and 7 are 
related according to 

a = 6»- I$7*7 '6l-7 ' (22) 

a = ¥ 7 ¥T, 

where 

* = 6l-1* 

Expanding the matrix a defined in equation (23) gives 

(23) 

(24) 

aU = £?***** jk 

and 

n 

««• = D ykk^tk 
k=l 

A 

for 

otherwise 

/=1,2 n 

.7=1,2, . . . ,n 

i*j (25a) 

(256) 

Since the matrix a is chosen to be diagonal and positive 
definite, the right-hand-side of equations (25a) and (256) must 
be zero and positive, respectively . However, the term ex­
pressed on the right-hand-side of equation (256) is always 
positive, since ykk is selected to be positive; therefore, the only 
condition which needs to be satisfied is 

n /=1,2, . 

k=l ijtj 
(26) 

The above equation can be written in a matrix form as 

Pz = 0 (27) 

where the matrix P is a n2 — n/2 x n matrix and the unknown 
vector z is a n X 1 vector given according to 

Zi = yu i=\,2,...,n (28) 

The elements of the matrix \j/ constitutive the entries of the 
matrix P; they are found according to 

tikijk=Ptk ; £=1,2, . . . ,« (29) 

i = 2 n; y '=l,2 / - I , 

f = l if » = 2 

£ = / + ( i - l ) ( / - 2 ) / 2 i f / > 2 

For a nontrivial solution of the simultaneous equations shown 

in equation (27), the number of independent equations must 
be less than the number of unknowns, which indicates the 
rank of P must be less than n. This means the system shown in 
equation (16) is not pseudo-symmetric if rank (P) = n. Now, 
equations (22) through (29) can be used to develop a 
systematic computational technique for calculating the 
matrices Su S2, and T2. This technique is outlined below: 

Step 1. Compute the eigenvalues and eigenvectors of A and 
B, and form the matrices 6, AA, *, and AB. 

Step 2. Given that all eigenvalues of A and B are real (i.e., A 
and B are at least separately symmetrizable), form the n1 -n/2 
x n matrix P according to equation (29). 

Step 3. Transfer the matrix P to its reduced form, as defined 
by O'Neil (1983) and explained in Appendix B. Call the re­
duced matrix PR. 

Step 4. Using the matrix PR, check for m, the rank of P; if 
m = n, then the system is not pseudo-symmetric; otherwise 
(i.e., m < n), the system can be pseudo-symmetric and a sym­
metric coordinate system may be found. 

Step 5. Using PR, choose the vector z such that it has all 
positive entries and satisfies the equation 

PRz = 0, 

where, now, PRisamxn matrix and z is a n x 1 vector. This is 
often a very simple task, due to the special form of the matrix 
PR-

Step 6. Upon determining the vector z the symmetric factors 
can be calculated according to equations (19), (20). 

Once the matrices Su S2, and T2 are calculated, the system 
shown in equation (16) can be expressed as 

x + SlS2x + S]T2x=0 (30) 

where 

S 1 = L L r , (31) 

according to Cholesky decomposition (Meirovitch, 1980). 
Letting 

x = Lq (32) 

and premultiplying equation (30) by L ~' yields the symmetric 
form of the system 

q + LTS2Lg + LTT2Lq = 0 (33) 

where 

LTS2L=(LrS2L)T (34a) 

LTT2L=(LTT2L)T, (346) 

and q is the symmetric coordinates. 

Example 2. Consider a system described by equation (15), 
where 

M= 

G = 

K= 

dia ?. [1.00 

" 31.00 
-1.50 

-11 .00 
-13.50 
_ -7.00 

~ 0.00 
-0.50 
0.00 
0.50 

_ 1.00 

~ 12.00 
-1.50 

-11.00 
-11.50 
-10.00 

1.00 

-1.50 
31.00 
-6.00 
-19.50 
-1.50 

0.50 
0.00 
2.00 

-0.50 
-2.50 

-1.50 
38.00 

-11.00 
-11.00 
-1.00 

1.00 1 

-11.00 
-6.00 
18.00 

-13.50 
-15.00 

0.00 
-2.00 
0.00 

-0.50 
-2.00 

-11.00 
-11.00 
75.00 

-15.50 
-27.50 

.00 1.00 

-13.50 
-19.50 
-13.50 
89.00 

-17.50 

-0.50 
0.50 
0.50 
0.00 
-2.50 

-11.50 
-11.00 
-15.50 
88.00 

-19.50 

-7.00 
-1.50 
-15.00 
-17.50 
102.00 

-1.00 
2.50 
2.00 
2.50 
0.00 

-10.00 
-1.00 
-27.50 
-19.50 
153.00 
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0.00 
-0 .50 

1 .00 
-0 .50 

2.00 

0.50 
0.00 
3.00 
1.00 

-3 .00 

-1 .00 
"3 .00 

0.00 
-1 .50 
- I t .50 

0.50 
-1 .00 

1.50 
0.00 

-0 .50 

-2 .00 
3.00 
1.50 
0.50 
0.00 

After reducing the system to the form shown in equation (16), 
steps 1-6, as described earlier, are followed to find the sym­
metric factors of the system. The result is as follows: 

S, - T. = 

S,= 

' 0.51 
0.00 

-0 .13 
-0 .13 
-0 .13 

"59.08 
-7 .39 
-7 .38 
-7 .38 

0.00 

"73.85 
-7 .39 
-7 .38 
-7 .38 

0.00 

0.00 
0.51 

-0 .13 
-0 .13 
-0 .00 

-7 .39 
59.08 

0.00 
-11.77 

-7 .38 

-7 .39 
66.19 
-7 .38 
-7 .38 
-7 .38 

-0 .13 
-0 .13 

0.67 
-0 .13 
-0 .13 

- 7 . 3 8 
0.00 

66.17 
- 7 . 3 9 
-7 .38 

-7 .38 
-7-38 

103.39 
-7 .38 

-11.77 

-0.1.3 
- 0 .13 
-0 .13 

0.95 
-0 .13 

- 7 . 3 8 
-11 .77 

- 7 . 3 9 
88.62 
-7 .38 

- 7 . 3 8 
-7 -38 
- 7 . 3 8 

' 88.62 
- 7 . 3 8 

-0 .13 
-0 .00 
-0 .13 
-0 .13 

1.35 

0.00 
-7 .38 
-7 .38 
-7 .38 
73.85 

0.00 
-7 .38 

-11.77 
-7 .38 

110.78 

Next, calculating the transformation matrix L and the sym­
metric form of the system yields 

L = 

B = LTS2L = 

C=LTT2L = 

0.71 
0.00 

-0 .18 
-0 .18 

_-0.18 

"12.25 
5.25 

-1 .36 
11.12 

J 1.96 

~ 52.25 
6.25 

-7 .12 
-13.06 
-17 .91 

0.00 
0.71 

-0 .18 
-0 .18 

0.00 

5.25 
10.75 
-1 .18 

-22.59 
-2 .99 

6.25 
16.00 

-12.13 
-18.03 

-1 .50 

0.00 
0.00 
0.78 

-0 .26 
- 0 . 2 2 

-1 .36 
-1 .18 
51.61 

-19 .57 
-21 .85 

-7 .12 
-12.13 

81.38 
-16.12 
-37.00 

0.00 
0.00 
0.00 
0.90 

-0 .25 

-11 .12 
-22 .59 
-19 .57 

79.96 
-27 .67 

-13.06 
-18.03 
-16.12 

82.28 
-37 .81 

0.00 
0.00 
0.00 
0.00 
1.10 

-11.96 
-2 .99 

-21 .85 
-27.67 

89.10 

-17 .91 
-1 .50 

-37.00 
-37 .81 
131.10 

Summary 

Lumped-parameter dynamic systems under the influence of 
general types of forces such as dissipative, gyroscopic, conser­
vative, and follower forces were considered. The main em­
phasis of this study was placed on developing an effective 
method for reducing asymmetric dynamic equations to a sym­
metric form via a similarity transformation. To this end, 
systems that are transferable to a symmetric form were divided 
into two groups: those without velocity dependent forces, 
referred to as pseudo-conservative systems (Huseyin 1978), 
and those with velocity dependent forces, named pseudo-
symmetric systems. 

For pseudo-conservative systems, the symmetrizability con­
ditions for an asymmetric matrix as stated by Taussky were 
used to find a systematic approach for calculating the sym­
metric coordinates (i.e., the coordinate system in which the 
system is symmetric). 

For pseudo-symmetric systems, a similar approach was 
followed to allow for simultaneous symmetrizabilty of the 
coefficient matrices, therefore allowing the system to be 
reduced to a symmetric form. The scheme presented here com­
putes the symmetric factors of the coefficient matrices and 
uses Cholesky decomposition to find the symmetric 
coordinates. 

The primary advantages of the technique developed here are 

twofold. First, it is computationally efficient and stable. Se­
cond, it can effectively handle systems with many degrees-of-
freedom, unlike the trial and error approach suggested in 
previous studies. Two examples involving systems with 5 and 7 
degrees-of-freedom were used to illustrate the utility of the 
technique. 
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A P P E N D I X A 

Theorem 1. The proof of this theorem is as follows. If the 
coefficient matrices are simultaneously symmetrizable, then 
according to Inman (1983) equation (16) can be rewritten as 

x+SlS2x + SlT2x=0 (Al) 

S!=5f>0 

or 
042) 

Lq and 

x + LL TS2x + LLTT2x=0, 

based on Cholesky decomposition. Letting x 
premultiplying equation (A2) by L~l yields 

q+(LTS2L)q+(LTT2L)q = 0 (.43) 

which is symmetric. Therefore, the system shown in equation 
(16) possesses symmetric coordinates. Conversely, if the 
system (16) has symmetric coordinates z, then it can be written 

704/ Vol. 54, SEPTEMBER 1987 Transactions of the ASME 

Downloaded 03 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



where the matrices (Lf 'AL,) and ( i f lBL\) are symmetric, 
i.e., 

LilALl={LiiALl)
1 

and 

(L^BLl) = (L^BLl)
T 

Equation (A4) can be rewritten as 

ATLrTLrl = (.ATLrTLrV 

(A4) 

(AS) 

(A6) 
which implies that the matrix ATL^TLxx is symmetric. Fur­
thermore, equation (A 4) implies that 

A=(LlLf)(ATLrTLr
l) (Al) 

This indicates that the matrix A is symmetrizable, since it can 
be written as the product of two symmetric matrices one of 
which is positive definite. Similarly it is possible to use (̂ 45) to 
show that B is symmetrizable and can be written as 

B=(LlLf)(BTLrrLr1). (AS) 

Therefore, according to (Al) and (A8), the matrices A and B 
are simultaneously symmetrizable. 

' Theorem 2. The proof of this theorem is based on Theorem 
1. If the system is pseudo-symmetric, then 

and 

x=s,s2,s1=sr>o> s2=si
T 

B=TXT2, T, = 7 f > 0 , T2 = 1\ 

S,=T,. 

(A9) 

(AW) 

(All) 

based on equations (19a) and (20a), equation 0411) can be 
rewritten as 

da6T = <i>y<f>T (/112) 

a = d~i<i> y <f>Td~T
 ( y 4 1 3 ) 

Conversely, if the arbitrary matrices a and y are related to 
each other according to (^413), then one gets 

6<xeT = $y$T (/114) 

or 

S!=Tlt (A15) 

using equations (19a) and (20a). Therefore, the system is 
pseudo-symmetric if and only if the arbitrary matrices a and 7 
are related according to the equation (A 13). 

A P P E N D I X B 

A reduced matrix is a matrix which satisfies the following 
conditions: 

I. The first nonzero entry in each row is 1; this is called 
the leading entry. 

II. If row r has its leading entry in column c, then all 
other entries of column c are zero. 

III. Each row having all zero entries, if there is such a row, 
lies below any row having a nonzero entry. 

IV. If the first nonzero entry in row r lies in column cx and 
the first nonzero entry of row r2 is in column c2, and if 
/•[ < r2, then c( < c2. 

A complete discussion of reduced matrices can be found in 
Section 10.5 of O'Neil (1983) where it is proved that every 
matrix has exactly one reduced matrix row-equivalent to it. 

ERRATA 

Errata on "Asymmetric Wave Propagation in an Elastic Half-Space by a Method of Potentials," by R. Y. S. 
Pak and published in the March 1987 issue of the ASME JOURNAL OF APPLIED MECHANICS, Vol. 54, 
pp. 121-126. 

On page 124, equation (30) should read: 

Xm=PZT1V:)-iQS:-1tt)i 

Journal of Applied Mechanics SEPTEMBER 1987, Vol. 54 / 705 

Downloaded 03 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



ERRATA 

Errata on "Asymmetric Wave Propagation in an Elastic Half-Space by a Method of Potentials," by R. Y. S. 
Pak and published in the March 1987 issue of the ASME JOURNAL OF APPLIED MECHANICS, VoI. 54, 
pp. 121-126. 

On page 124, equation (30) should read: 

Journal of Applied Mechanics SEPTEMBER 1987, Vol. 54 1705 

Copyright © 1987 by ASME
Downloaded 03 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



T. Staubli 
Hydraulic Research and Development, 

Sulzer Escrter Wyss Ltd., 
Zurich, Switzerland 

Mem. ASME 

Entrapment of Self-Sustained 
Flow Oscillations: Phaselooking or 
Asynchronous Quenching? 
Asynchronous quenching andphaselocking are two different mechanisms leading to 
the onset of synchronization of flow instabilities with externally excited oscillations. 
Experimental evidence for asynchronous quenching as well as for phaselocking is 
given from response measurements of representative pressures, velocities, or of 
forces for the following types of flow -forcing interactions: an oscillating circular 
cylinder in crossflow; interaction of an unstable, planar jet with an oscillating 
leading edge; a forced mixing layer between parallel streams; and a thermally forced 
cavity shear-layer. 

Introduction 

If self-sustained flow oscillations are subjected to external 
forcing, they usually synchronize with the excitation over a 
certain range of excitation frequencies. Such synchronization 
effects, commonly known as "lock-in" or "locking-on," are 
observed for many types of flow instabilities, e.g., for the 
Karman vortex street forming behind cylinders or blunt trail­
ing edges, for free shear-layer instabilities, for oscillations of 
impinging flows such as flow past cavities, and for jet - edge 
(edgetone) oscillations. The external forcing also encompasses 
many different types such as mechanical forcing, acoustic 
forcing by a loudspeaker, or thermal forcing. 

In this context of flow systems containing fluctuating vor-
ticity, our purpose will be to demonstrate that external excita­
tion of such systems exhibits the typical characteristics of 
quasiperiodicities and phase-locking in forced dynamical 
systems. The contents of this paper focus on the onset of syn­
chronization of self-sustained oscillations, arising from the 
flow instability, with the external forcing. From experimental 
evidence, it will be shown, that there are at least two means of 
attaining this synchronization: phaselocking and asyn­
chronous quenching. This terminology is chosen in accor­
dance with that of Dewan (1972), who discusses the entrain-
ment of van der Pol oscillations. 

For phaselocking, the external forcing causes a systematic 
phase retardation or advancement of the self-sustained oscilla­
tions in such a manner that the frequency of the self-sustained 
oscillation becomes identical with the excitation frequency. 
Retardation occurs for excitation frequencies below the 
natural frequency and advancement occurs for higher excita­
tion frequencies. As synchronization is approached, this phase 
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shifting leads to coalescence of the self-sustained frequency 
and the excitation frequency. For phaselocking, therefore, 
both components coexist undistinguishably at the same fre­
quency, contribute to the oscillations, and lead to resonance. 
Phaselocking usually is observed for small excitation levels. 

In the case of quenching the self-sustained oscillation of the 
flow is attenuated and disappears when the excitation frequen­
cy approaches that of the self-sustained oscillation. We call it 
asynchronous quenching if this suppression of the self-
sustained oscillations occurs at a frequency different from the 
excitation frequency. Quenching usually requires, in contrast 
to phaselocking, higher excitation levels. 

Synchronization of flow oscillations and body motion can 
also be observed for coupled systems involving a self-excited, 
fluid-dynamic oscillator and a passive mechanical oscillator, 
e.g., an elastically mounted cylinder in crossflow. Although 
the frequency of the mechanical system may, for such cases, 
be affected considerably by the flow effects, the flow oscilla­
tions themselves will be entrained by the body motion and syn­
chronize with it over certain ranges of the parameters chosen 
in the experiment, e.g., flow velocity. Typical for such coupl­
ed systems is that there are ranges where two stable states of 
oscillation can be found at the same frequency, which explains 
experimentally observed hysteresis effects and jumps in 
amplitude and phase (e.g., Feng, 1968). This multi-amplitude 
response arises from the coupling of the nonlinear fluid-
dynamic system with a linear mechanical oscillator (Staubli, 
1983b). Unfortunately, this coupling makes it difficult to 
discuss the response of the fluid-dynamic part alone since the 
mechanical system typically has a narrow-band resonant 
response due to weak damping, thereby veiling the details in 
the onset of synchronization of the self-sustained flow 
oscillations. 

This paper discusses the onset of synchronization for the 
following types of interaction of external forcing with self-
sustained flow oscillations: an oscillating circular cylinder in 
crossflow (Staubli, 1983a); an impinging jet interacting with 
an oscillating edge (Staubli and Rockwell, 1987); a forced mix-
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,. T r a n s v e r s e C y l i n d e r A c c e l e r a t i o n r j ( t ) 

P o w e r S p e c t r u m o f L i f t Force 

f / f * = 0 . 8 9 ; f i f = 1.02 

Power S p e c t r u m o f A c c e l e r a t i o n 

f / f * = 0 . 8 9 ; r! = 0 . 0 6 

f / f 

Fig. 1 Time records and power spectra of lift force and acceleration for 
an oscillating circular cylinder in crossflow in case of not synchronized 
vortex shedding (Staubli, 1983a) 

ing layer between parallel streams (Oster and Wygnanski, 
1983); and a thermally forced, oscillating cavity shear-layer 
(Gharib, 1983). 

The main parameters in all these studies are the frequency 
and amplitude of the forced excitation. Because of the 
nonlinearity of the fluid-dynamic system (self-sustained flow 
oscillations) only harmonic forcing can be considered. 
Typically, the response of the fluid-dynamic system is deter­
mined by power spectra of global, or representative local, flow 
properties such as force, pressure, or velocity. 

With the frequency and amplitude of forcing as parameters, 
there are two ways of attaining synchronization. Either the 
amplitude may be increased at a constant excitation frequen­
cy, or the amplitude may be maintained constant while the fre­
quency is varied. The latter way is preferable to show the 
resonance effects that accompany synchronization. If we wish 
to ascertain the type of entrainment, both methods are 
equivalent and complement each other. 

Knowledge of the type of entrainment of the self-sustained 
flow oscillations by the external excitation may provide insight 
into the physcial events leading to synchronization and, fur­
ther, may lead to an appropriate model in the form of a 
nonlinear differential equation modelling the global properties 
of the fluid-dynamic system or flow oscillator. 

Loading on an Oscillating Circular Cylinder in 
Crossflow 

Fluid forces acting on an externally-driven cylinder were 
measured in a water tank using a towing technique. The ex­
perimental system and the associated measurements are 
described by Staubli (1983a). Selected measurements of fluc­
tuating lift will be presented here to demonstrate the transition 

/ J L c L ( t ) = c0(t)+ce(t) 

0 .2 A .6 .8 1.0 1.2 1.4 1.6 1.8 2.0 

2.0 

Fig. 2 Response characteristics of the lift force of an oscillating cir­
cular cylinder (>je = 0.11) in crossflow showing: (a) the lift coefficients c0 

(self-excited component) and ce (externally excited component); (b) the 
normalized frequency f0lt'0 of the self-sustained lift component c0 as a 
function of the normalized excitation frequency f e / f j (Staubli, 1983a) 

to synchronization in a case where the self-excited oscillation 
in the flow is of the Karman vortex street type. 

The power spectra of the measured lift forces showed that 
only two discrete frequency components have to be taken into 
account for an accurate description of the response of the 
fluid forces in case of forced sinusoidal oscillation of the 
cylinder. This discrete two-frequency response was observed 
under the experimental restriction of small amplitudes of 
cylinder oscillations (<0.8D). For such small amplitudes the 
fluid-dynamic response, in terms of lift forces, is typically 
deterministic. Concerning the dependency on Reynolds 
number, we find this characteristical two-frequency response 
for the whole range of technically important Reynolds 
numbers with the exception of the transitional range between 
Re = 2-105 and 106; for supercritical Reynolds numbers the 
response to sinusoidal excitation was investigated by 
Szechenyi and Loiseau (1975). 

The correctness of the superposition of two cosine com­
ponents for approximation of the lift force is confirmed by the 
measured time records which show modulations with the 
periodicity l/[fe-f0\ (fe = excitation frequency; f0 = fre­
quency of self-sustained vortex shedding). An example of time 
records and power spectral density distributions is given in 
Fig. 1. While the lift signal shows a typical beating wave form 
in the time domain, the measured acceleration signal of the 
cylinder oscillations shows to a good approximation a 
sinusoidal time record. 

Accordingly, the forcing function which is given by the 
sinusoidal displacement signal t]{t) (ije = Amplitude/ 
Diameter) and the resulting lift forces cL (t) can be written as 
follows: 
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displacement 

r/(0=i7e cos (2irfet) 

lift coefficient 

cL{t)=cB cos (2irfBt)+ce cos (2irfet + <t>). 

In the absence of cylinder oscillations the self-sustained 
,.. vortex shedding in the wake gives rise to lift fluctuations of the 
^ ' form 

(2) 
cL(t)=c0 cos ( 2 i r / * 0 . (3) 

which is a special case of equation (2), where ce = 0 and/D — 

a ) 
„ l / J c ; ( t ) = C„(U+Ce(t) 

—fr- T- f./f0" = 0.94 

Fig. 3 The lift coefficients c0, ce and the frequency f0 of the self-
sustained lift component c0 for varying displacement amplitudes i\e and 
excitation at a frequency ratio of: (a) fe/f*0 = 0.78; (b) 1eli*0 = 0.89; (c) 
fe/f0 = 0.94; (d; fe/fJ = 1.0 (Staubli, 1983a) 
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f*. The frequency/* denotes the frequency of the "natural" 
Karman vortex shedding in absence of cylinder oscillations. 
Especially near synchronization, the frequencies /„and f* are 
not identical. The measured Strouhal number was S = f*D/U 
= 0.180 for the Reynolds number of Re = 6-104. 

The spectral components ce at the excitation frequency fe 

and c0 at the self-excited frequency /„ were determined from 
spectral density distributions after taking window effects 
(Hanning windows) into account and by assuming minimal 
modulations of fe a n d / 0 . It should be noted here, that the 
self-sustained component was not completely free of modula­
tions; however, we can conclude from the shape of the peaks 
in the spectra that these modulations were minor. 

Figure 2(a) displays the lift coefficients c0 (amplitude of 
self-sustained component) and ce (amplitude of forced com­
ponent) as a function of the normalized excitation frequency 
fe/fo f ° r a constant amplitude of displacement r\e = 0.11. 
There is a synchronization range near fe/fl = 1 where the 
cylinder oscillation entrains the flow oscillation. The coeffi­
cient ce shows a distinct resonance behavior within that range; 
the maximum lies a t / , / / J slightly less than one. For high ex­
citation frequencies, the lift coefficient ce increases due to ad­
ded mass effects and is proportional to j%. For frequencies 
above synchronization, the self-sustained flow oscillations 
recover, and the lift component c0 shows amplitudes com­
parable to those of the nonosciUating cylinder, i.e., fe/fl = 0. 

The onset of synchronization clearly indicates an attenua­
tion of the self-sustained lift coefficient cg on both sides of the 
synchronization range. Extrapolation of the measured data 
points indicates a complete quenching of the self-sustained 
flow oscillation near synchronization. Here, the resolution of 
the smallest values of the coefficients c0 which still can be 
determined accurately in the measurements is limited by the 
signal-to-noise ratio. Although we note, e.g., in Fig. 1, a noise 
level due to stochastic or other signal contributions, which is 
negligible in comparison to the deterministic peaks in the spec­
tra, this noise makes the determination of the self-sustained 
component c0 more difficult when the latter is small relative to 
the externally excited component ce. As can be seen in Fig. 
2(a), the coefficient c0 becomes small relative to ce for the 
onset of synchronization; it is in this range that noise con­
tributes significantly to the peak of c„ in the power spectrum 
and adds a positive systematic error to the true values of c0. 
Thus, without any noise effects, a stronger drop of c0 could be 
expected in Fig. 2(a) for the onset of synchronization. In an 
absolute sense, there is no experimental evidence of an in­
creased noise level for the onset of synchronization. 

Even if the noise significantly influences the amplitude of 
the lift coefficient c0 of the self-sustained oscillation, the 
associated frequency f0 still can be determined accurately. 
This frequency f0 normalized with the frequency f*Q of the 
"natural" vortex shedding, is plotted in Fig. 2(b) as a function 
of the normalized excitation frequency fe/f*0. Since the 
measured data points do not approach the line/,, = / , , the self-
excited and the excitation frequencies do not coalesce. 
Especially for fe/f*0 > 1, the measured frequency /„ shifts 
away from its original value f% towards lower frequencies. 
This result confirms measurements of Stansby (1976) for an 
oscillating cylinder having the same relative displacement 
amplitude but a different Reynolds number. These findings 
concerning the amplitude of the lift component c0 and the 
shift of the frequency/0 near synchronization represent an ex­
ample of entrainment of self-sustained flow oscillations by 
asynchronous quenching. 

Measurements for constant excitation frequency and in­
creasing displacement amplitude are displayed in the Figs. 3(a) 
through 3(d). In none of these cases do the frequencies/, and 
/ , coalesce. Further, the self-excited component of the lift 
force, the coefficient co ; is always attenuated by increasing the 
amplitude of excitation; in fact, Figs. 3(b) and 3(c) show a 

complete suppression of c0. This suppression of the self-
excited component for larger amplitudes of displacement 
demonstrates the well-known effect of broadening of the syn­
chronization range at larger excitation amplitudes. 

Somewhat different is the case shown Figs. 3(d), where the 
excitation frequency is identical to the natural Karman shed­
ding frequency, that isfe/fl = 1. For this case, and also for 
fe/fo ~ 1» w e should closely examine the limit of very low ex­
citation amplitude. By definition, for r)e~0 the coefficient ce 

must approach zero, while c0 shows the value of the 
nonosciUating cylinder. With the available equipment it was 
not possible to obtain adequate resolution for displacement 
amplitudes smaller than t\e « 0.02. For such a displacement 
the measured lift coefficient at excitation frequency fe is 
already larger than the coefficient cB of the nonosciUating 
cylinder. 

However, since ce grows from a zero value, there must be a 
range of excitation at very small amplitudes where we will find 
a superposition of two independent components, the self-
excited and the externally forced ones. They both contribute in 
case of fe/fl = 1 to the lift force at the same frequency. Of 
course, it is not possible to separate contributions at the same 
frequency by measurement, but we can conclude from this 
transition to zero excitation amplitude that here, in contrast to 
larger amplitudes, quenching of the self-sustained flow oscilla­
tions cannot be the mechanism leading to synchronization. We 
rather expect synchronization by phaselocking which requires 
the coexistence of the two contributions at the same frequency 
as a necessary condition. In general, we can conclude from the 
above measurements that for the oscillating circular cylinder, 
oscillating at amplitudes of practical interest, synchronization 
is achieved by asynchronous quenching. 

Similar experimental observations of attenuation in the 
onset of synchronization are reported by Graham and Maull 
(1971), who investigated the interaction of vortex shedding 
behind a plate with an oscillating trailing edge. They also 
observed an attenuation of the self-excited components when 
the excitation frequency approached the frequency of the 
natural vortex shedding. Their measurements of velocity fluc­
tuations show in the spectra, somehow overemphasized by the 
logarithmic scale, modulations of the self-excited frequency 
components. This effect is due to overall modulations of the 
self-sustained vortex shedding, but also due to the fact that the 
single point measurement of velocity represents only a local 
property in a turbulent wake. 

Impinging Jet Interacting With an Oscillating Edge 

The case of an unstable, planar jet interacting with an 
oscillating leading edge has been investigated by Staubli and 
Rockwell (1987). Some of the measurements will be presented 
here to provide insight into the type of synchronization occur­
ring when the controlled frequency fe of the edge oscillations 
approaches the frequency fl of the self-sustained jet 
oscillation. 

In these experiments, pressure fluctuations p(t) were 
measured at a representative location on the leading edge. This 
localized pressure loading was used to characterize - as lift 
forces were in case of the oscillating cylinder - the response of 
the jet oscillations to mechanically forced oscillations of the 
edge. The geometry and the Reynolds number were chosen 
small enough so that the response of the jet-edge interaction 
could be described to a good approximation, with only two 
discrete frequency components (larger impingement length 
and higher Reynolds numbers exhibit multiple frequency com­
ponents of the self-sustained jet oscillation; Lucas and 
Rockwell, 1984). Thus, the pressure fluctuation p(t) can be 
written in analogy to equation (2) as a superposition of the 
following two cosine components with the frequencies f„ and 

fe-
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r /r* 
Fig. 4 Response characteristics of the pressure loading due to jet-
edge interaction (tip displacement ije = 0.16) showing: (a) self-excited 
pressure component p0 and externally excited pressure component pe; 
(b) normalized frequency f0/f"0 of the self-sustained jet oscillation as a 
function of the normalized excitation frequency iel\*0 (Staubli and 
Rockwell, 1987) 

p(t) =p0 cos (2wf0t) +pe cos {2-wfe + 4>) (4) 

The phase angle 4> is here the phase between the edge displace­
ment and the pressure fluctuations. In absence of edge oscilla­
tions, equation (4) degenerates to 

P(t)=p0 cos (2-wftt) (5) 

The frequency f*0 is the frequency of the "natural," self-
sustained jet oscillation which corresponds to the most 
amplified jet instability. The forced excitation is described in 
terms of the tip displacement of the leading edge (nondimen-
sional with nozzle width IB) 

r,(t)=Ve cos (2%ret) (6) 

The response characteristics of the self-excited component 
p0 and of the externally excited component pe for the constant 
amplitude of displacement r/e = 0.16 are displayed in Fig. 
4(a) . There is a striking similarity with the measurements of 
the loading on an oscillating circular cylinder in crossflow. 
The forced pressure component pe indicates a pronounced 
resonance for fe/fl ~ 1, comparable to that of the lift coeffi­
cient c0 in Fig. 2(a). For higher excitation frequencies the 
pressure fluctuation pe increases due to added mass effects 
and is proportional t o / e

2 . For the high frequencies of excita­
tion the self-sustained jet oscillation completely recover; the 
pressure amplitudes p0 aife/fl > 2.5 reach values comparable 
to those of the stationary edge with/ e / /£ = 0. For the onset of 
synchronization the self-sustained oscillations are attenuated 
down to a level where they disappear within an overall noise 
level. This can be observed on both sides of the synchroniza­
tion range. 

Figure 4(b) displays the frequency of the self-sustained jet 
oscillation f0 as a function of the excitation frequency fe, both 
normalized with the frequency „/̂  of the "natural" jet oscilla­
tions. For the low frequency ratios fe/f*0 the external excita-

f./f„* 

Fig. 5 Response characteristics of the pressure loading due to jet-
edge interaction (tip displacement >je = 0.11) showing: (a) self-excited 
pressure component p0 and externally excited pressure component pe; 
(b) the normalized frequency 10lf0 of the self-sustained jet oscillation 
(Staubli and Rockwell, 1987) 

f / f 

Fig. 6 Response characteristics of the pressure loading due to jet-
edge interaction (tip displacement tje = 0.07) showing: (a) self-excited 
pressure component p0 and externally excited pressure component pe; 
(b) the normalized frequency 10lf*0 of the self-sustained jet oscillation 
(Staubli and Rockwell, 1987) 

tion hardly effects the self-excited frequency/,,. For excitation 
frequencies above synchronization, the ratio f0/f0 becomes 
considerably smaller than one and recovers to a value of one 
for increasing excitation frequency when the interaction of the 
two components decreases. 

Figures 5 and 6 show two cases with smaller amplitudes of 
displacement, that is r\e = 0.11 and t]e = 0.07. The response 
characteristics of the forced component pe are qualitatively 
the same for all three investigated amplitudes of displacement. 
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Fig. 7 Power spectra of the streamwise velocity fluctuations u' for a 
forced mixing layer between parallel streams (Oster and Wygnanski, 
1983). (r = UilU2 = 0.6; x = 100 mm; y = 0; A = amplitude of flap 
oscillation.) 

At resonance, there is a minor reduction of the maximum 
amplitudes; and, for high frequencies/e, the smaller added 
mass effect proportionally reduces the pressure fluctuation^. 
The self-excited pressure p0 shows a stronger effect of the 
reduction in displacement amplitude, especially near syn­
chronization. As expected for smaller excitation levels, the at­
tenuation of p0 is reduced and the actual synchronization 
range becomes smaller. At least for t\e = 0.07, shown in Fig. 
6(a) , there is no more indication of a complete suppression of 
p„. Thus, this experiment shows that there is an amplitude 
limit below which the external excitation cannot suppress the 
self-sustained flow oscillations, a necessary condition for 
quenching. Further indication that we have phaselocking in 
this case of very low displacement amplitude comes from Fig. 
6(b) showing the frequency f0 of the self-excited component 
versus the excitation frequency/,,. For this graph, and also 
already in Fig. 5(b), we observe that the measured points tend 
to approach the line fe = f0. This coalescence of the self-
excited frequency with the externally excited frequency is the 
second necessary condition for phaselocking. 

Thus, we can conclude that the response of the flow oscilla­
tion of the impinging jet on forced edge oscillations is, in 
general, comparable to the response of the Karman vortex 
shedding behind an oscillating cylinder in terms of force and 
pressure measurements; for the large displacement amplitudes 
the measurements clearly indicate an entrainment of the flow 
oscillations of the asynchronous quenching type. From the 
measurements at very small amplitudes in the jet-edge case, as 
well as from deduction of the limit of excitation amplitudes 
tending to zero, we can conclude that synchronization is 
caused there by phaselocking. 

The Forced Mixing Layer Between Parallel Streams 

Oster and Wygnanski (1983) present velocity measurements 
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L = 6 Hz 

P„ = 20 watts 
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Fig. 8 Velocity fluctuation spectra, presenting interaction of the 
natural and forced frequencies in a cavity shear layer for different power 
levels (Pe); (h) scope trace of case (d) (Gharib, 1983) 

in a turbulent mixing layer. Controlled oscillations of a flap 
(amplitude A) were applied at the initiation of mixing between 
two parallel streams. The frequency of forcing was at least one 
order of magnitude lower than the initial instability frequency. 
In contrast to the above shown examples, the self-excited fre­
quencies are in this case not restricted to one discrete frequen­
cy but instead represent frequency components in a broad 
band between 400 and 600 Hz, as can be seen from Fig. 7(a). 
The peak in the power spectrum at / = 230 Hz is a sub-
harmonic of the shedding frequency in the immediate 
neighborhood of the trailing edge. Oster and Wygnanski 
report the following observation: "With increasing amplitude 
of surging (Figs. 1(c), 1(d)) one may note a marked increase 
in the energy content at the forcing frequency (fe = 60 Hz) 
and a relative reduction at high frequencies, so that the in­
tegral of all spectral components of u remains approximately 
constant. Further investigation is required to determine how 
the fluctuating energy shifts to the forcing frequency,. . . . " 

Thus, these measurements indicate another case of attenua­
tion of the self-excited components, while the level of the ex­
ternal excitation is increased. We can, therefore, classify this 
onset of synchronization with the excitation frequency as 
asynchronous quenching. Of course, this classification does 
not explain how the energy is transferred from one frequency 
component to another; but one expects, from similarity to the 
foregoing cases of attenuation of the self-sustained oscillation 
in the onset of synchronization, that there might be similar 
physical principles leading to this attenuation in all cases of 
asynchronous quenching. 

In contrast to the cases of the oscillating cylinder or of the 
jet-edge interaction, which showed only one discrete frequen­
cy component resulting from the self-excited flow oscillations, 
the self-excited contribution consists in this mixing layer ex­
ample of a broad-band of effects in the frequency spectrum. 
Under these conditions, the response of the fluid cannot be ap­
proximated anymore with two-frequency components, which 
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was done in equations (2) and (4). For a description of the 
response we have to consider in this case the integral over a 
frequency range associated with the self-excited flow effects. 
Nevertheless, this example shows that the classification of en-
trainment by quenching is not necessarily restricted to a group 
of flow situations where only discrete frequency components 
are observed in the flow oscillations. 

Effect of Forcing on a Naturally Oscillating Cavity 
Flow 

Gharib (1983) describes oscillations arising from flow past a 
rectangular cavity and a means of controlling them. His ex­
periments have been performed in a water tunnel using an ax-
isymmetric cavity model. The forced oscillations were in­
troduced by a sinusoidally heated thin-film strip, which ex­
cited the Tollmien-Schlichting waves in the boundary layer 
upstream of the cavity. 

Figure 8 shows measurements taken at a constant frequency 
fe and increasing power Pe supplied to the heated strip. 
Gharib mentions: "Spectra reveal that as the amplitude of the 
forcing increases, the amplitude of the natural oscillation 
decreases and eventually disappears." Furthermore, "strong 
modulation of the signal indicates that both frequencies are 
present simultaneously." From these comments and from Fig. 
8 we can conclude that this example describes still another case 
of well-defined asynchronous quenching. 

Conclusion 

In the foregoing, we have addressed four different examples 
of self-sustained, fluid-dynamic oscillations subjected to ex­
ternal forcing. In spite of differences between these various 
flow configurations, there are qualitative similarities in the 
response of the respective flow instabilities to external forcing, 
including the onset of synchronization. 

Of the two means of attaining synchronization, asyn­
chronous quenching is detected more often. In case of jet-
oscillating edge interaction, measurements indicate phaselock-
ing for very small amplitudes of excitation. This also can be 
concluded for all other cases from the fact that there is a lower 
limit in amplitude of external forcing for which self-sustained 
oscillations can be suppressed. 

The similarity of the measured responses for these flow 
oscillations suggests that, in all cases, similar nonlinear dif­
ferential equations might be formulated to describe the 
measured fluid-dynamic response. These differential equa­
tions for global flow properties might be second or higher-
order differential equations with small nonlinearities for 
damping (causing self-excitation) and also with a small 
nonlinear spring. 

That a nonlinear equation for the flow instability, e.g., the 

van der Pol equation, coupled with a linear oscillator for the 
mechanical system can successfully describe the vortex in­
duced oscillation of an elastically mounted cylinder in 
crossflow was first demonstrated by Hartlen and Currie 
(1970). The great advantage of formulating differential equa­
tions describing the fluid-dynamic response to external excita­
tion would be that once these equations are known, any 
mechanical oscillation can be calculated from coupling these 
equations with differential equations describing the 
mechanical system. Of course, such amplitudes of oscillation 
of mechanical systems can also be obtained directly from 
measured, fluid-dynamic data, a means which involves ex­
tended computations, as shown by Staubli (1983b). 
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A New Method for Predicting the 
Critical Taylor Number in Rotating 
Cylindrical Flows 
A method for determining the boundaries of dynamic stability of a fluid system, as 
distinct from the prediction of the subsequent motion, is presented. The method is 
based on well-known approaches to the problem of instability in elastic systems. The 
extension of these methods to fluid systems, specifically, to the stability of flow be­
tween concentric cylinders, confirms that it may be possible in some cases to deter­
mine the boundaries of stability of fluid systems without recourse to an Orr-
Sommerfeld type treatment. The results also suggest that the concept of apparent 
(virtual) viscosity may have implications for fluid stability outside the current realm 
of turbulence modelling. Finally, it is also shown that flow instability may be 
preceded by the onset of a critical stress condition in analogy with elastic systems. 

1 Introduction 

The study of the stability of fluid systems has been a part of 
the ongoing research into the behavior of fluids going back as 
far as the famous dye experiments of Osborne Reynolds (1883) 
and perhaps earlier. In general, there are two problems of in­
terest to those who work in the field: the prediction of the con­
ditions under which a given fluid system would become 
unstable, and the description of the subsequent motion. 

Currently, most techniques for the study of unstable flows 
are based on models that arise from the perturbation of time-
dependent Navier-Stokes equations. Typical of the resulting 
equations are the Orr-Sommerfeld equations, the derivation 
of which may be found in any good text on Fluid Mechanics 
(Schlichting, 1968; White, 1974). 

The stability analysis of elastic systems provide a clue as to a 
possible alternate approach of this problem. Simple models of 
elastic systems, based on' linear assumptions and 
displacements, have been used extensively for the prediction 
of the boundaries of stability of such systems. The results, 
such as the critical buckling load for columns, have found 
wide use in engineering, and the fact that these simple models 
stop short of predicting the subsequent (very often nonlinear) 
motion has for most situations been irrelevant. It is the prop­
osition here that some of these techniques from solid 
mechanics are applicable to some problems in fluid 
mechanics. In this paper, we use the problem of instability of 
rotating flow between two concentric cylinders to show that 
flow instability can be analyzed using concepts analogous to 
those used for studying instability in elastic systems and thus 
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we open up the possibility of an integration of these two cur­
rently disparate fields. 

The general methods for the determination of the bound­
aries of stability for elastic systems are fully described in 
Bolotin (1964a). In the following modelling, the philosophical 
approach is based almost entirely on that work, due regard be­
ing paid when necessary to the differences that naturally exist 
between solids and fluids. 

It is perhaps worth recalling that the equations that general­
ly govern the behavior of solids and fluids, the equations of 
continuum mechanics, are the same until appropriate con­
stitutive relations for stress are invoked. Thus, clearly, as long 
as the stress terms are retained and proper attention is paid to 
the other subtle differences that exist between fluids and 
solids, it is not surprising that some of the equations from 
solid mechanics can be used without major modifications. 

The notion that some aspects of fluid stability are analogous 
to the behavior of solids has its origins in the concept of fluid 
buckling. Experimental and theoretical work in this area by 
Cruickshank (1980), Blake and Bejan (1984), Bejan (1981), 
Suleiman and Munson (1981), and Cruickshank and Munson 
(1981) suggests that the investigation of this link can shed 
valuable light on flow stability problems ranging from those at 
low Reynolds number to high Reynolds number turbulent 
situations. Previous work in this area have generally dealt with 
unique, isolated instances of the fluid buckling phenomenon. 
In this paper, the Euler buckling analogy inherent in the con­
cept of fluid buckling is extended to one of the more classical 
problems of fluid mechanics. 

2 The Governing Equations 

A. The Differential Equations of Dynamic Stability. Con­
sider a three-dimensional element of a continuum performing 
a regular three-dimensional motion with transport velocities 
(«, v, w) on which a three-dimensional oscillation is then im­
posed. We restrict ourselves to small, though finite 
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displacements resulting from the oscillations. During the 
oscillatory displacement, the following assumptions as stated 
by Bolotin (1964b) are assumed to hold, and they refer to the 
effects of the oscillation on the medium: 

(a) Lengths of linear elements, the areas and volumes 
change; however, the influence of these changes on the stabili­
ty is usually negligibly small and can be neglected for small 
deformation relative to unity. 

(b) Angles of rotation and the general nondimensional 
oscillatory displacements in comparison to unity may not be 
neglected. Thus, changes in cross section and length are not 
considered; however, the additional forces which arise from 
rotation of the cross section due to the oscillation are taken in­
to account. 

So far, it is clear that even though the original Bolotin work 
was developed for solids, its applicability to any medium that 
satisfies the concept of the continuum is preserved by not in­
voking the constitutive relation for stress. 

The finite displacements, using the terminology of Bolotin, 
may be described in a system of rectangular Cartesian or cur­
vilinear coordinates xx, x2, x3 referred to the undeformed 
medium (in the case of a fluid system, this would be the coor­
dinate system applicable to the base, unperturbed flow). If the 
corresponding displacements of points in the medium are «,, 
«2» "3 then the new coordinates will be 

£ l = X l + « l ( * l , X 2 , * 3 ) 

?2 = x2 + u2\x\'x2'xi) 

(1) 

(2) 

%3=x3 + u3(xux2,x3) (3) 

Such a formulation would be a Lagrangian as distinct from 
an Eulerian formulation. In the Eulerian system, the coor­
dinates of points of the deformed medium (£lt £2 , £3) are 
taken as independent variables, hence according to Bolotin, 
the equations that govern the displacement (or oscillation) are 
given by: 

V daik ^ v D2u, 

k=\ "«Ar Dt2 / = 1 , 2 , 3 (4) 

In equation (4), ojk are the components of the stress, Xt are the 
components of the body force per unit volume in the deform­
ed state, p is the density of the deformed medium, and D/Dt is 
the substantial derivative. This equat ion in its simpler 
manifestations is par t of the s tandard engineering literature. 
For example, the vibrating string equation is obtained by set­
ting w, = 0, u3 = 0 , and xx = x; then for this problem x2 = 0, 
the component of stress ol2 is T du2/dx, and neglecting the 
body force, we have 

d2M2 

dx1 

d2u2 

dt2 

where T is the tension in the string and p is its mass per unit 
length. If the string is also moving with velocity v in the x 
direction, the resulting equation would be the so-called mov­
ing threadline equation (Swope and Ames, 1963). 

B. The Two-Dimensional Problem. We now consider the 
application of equation (4) to an element with base (unper­
turbed) motion in a horizontal (x, z) plane, and subjected to 
oscillatory displacements perpendicular to this plane. This 
simplification is carried out with the application to the Taylor 
problem specifically in mind. Other stability problems may re­
quire slight variations from this approach. The oscillations are 
thus given by 

Thus , 

-0,u3=Q,u27±Q 

£ i = * i = * 

xz 

Fig. 1 An element displaced u2 above plane of motion (x, z) 

and 

£ 3 =*3=z 
Furthermore, if the stress components in the £2 direction are 
independent of that direction, then, upon neglect of body 
forces, equation (4) becomes: 

do. 
- + -

do,-

3*i o^3 

= 0 

do­ll , d°2i D2u2 

3fi 9?3 

don do33 

Dt2 

= 0 

(4a) 

(4b) 

(4c) 
d*i 3*s 

Equations (4a) and (4c) simply imply that for small 
displacements, there is no appreciable change in the stress 
components in the corresponding directions. This is equivalent 
to the equation 

7cos9 - T cos(9 + dQ) = 0 

where T is the tension and 9 is its angle with the horizontal, 
obtained for a horizontal resolution of forces during the 
derivation of the vibrating string equation. For small dQ we 
obtain the expression 7cos9 = 7cos9 which is true but irrele­
vant to the further analysis of the problem. Similarly, we drop 
equations (4a) and (4c) from further consideration. Hence, if 
we choose a medium that is infinitely deep in the £2 direction 
such that variations with respect to £2

 m aY De neglected, then 
the behavior of an element at any (£ , , £3) plane will be the 
same and the component of stress in the £2 direction will be in­
dependent of £2 . The component of the t ransport velocity in 
that direction, v, may also be assumed to be zero. 
This results in the following equat ion: 

D2u2 

"-OF m 
°a2\ , a°23 

a*, dz3 
Note that <T2I

 a n d o23 have a meaning that is slightly different 
from the obvious usage, as demonstrated earlier and in equa­
tions (5a) and (5b) below. 

Thus , we consider the mot ion of an element with steady («, 
w) transport velocity components in a horizontal (x, z) plane 
with the superimposed oscillatory displacements u2 occurring 
perpendicular to this plane. A much more general analysis 
would include the variat ion of the stress components in the £2 

direction and all three t ranspor t velocities would be retained. 
For the specified problem, however, this is not necessary. 
Figure I shows a typical such element after the deformation 
described. 
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It can be shown that the components of stress in the u2 

direction after the deformation, are 

°21 = "x. 
du2 

dx -+a,. 
du2 

~dT (5«) 

where <r2) is the sum of all stresses on the x face resolved in the 
u2 direction (Fig. 1). du2/dx and du2/dz account for angular 
change in the orientation of the faces of the element due to the 
rotation arising from the displacement u2. 

du2 

dz 
- + ov 

9u2 

dx 
(5b) 

Using 

D d d d 
= \-u _ _ + w —— 

Dt dt dx dz 
the corresponding equation obtainable from equation (4c?) is 
d ( du2\ d ( du2\ d ( du2\ 

i^vff- -w) + ^ T - IT) +^lff- -w) 

dx 

( du2\ 

-phf-+2 (« 
d2u2 

dxdt 
-+ w • 

dzdt 
+ 2uw 

d2u2 

dxdz 

+ W-
d2u2 

dx2 + wz 
d2u2 du2 / 

dz2 dx 

du 

~dx -+ w -
du 

IT 
du2 ( dw 

-+w • 
dw 

)] dz V' dx dz 

From the momentum equations of continuum mechanics 

(6) 

and 

p(u 

du 

dx 
-+ w • 

du 

~dz • ) -

dw 
-+ w -

dw 
) 

d°xx 
dx 

9(7 v 

daxz 

dz 

da7, 

(7) 

(8) 
dx 9z / dx dz 

Substituting equations (7) and (8) into equation (6), we obtain 

M$"(^--™)4JHv-"!) 
d2u2 

dz2 

(9) 

-2w 
d2u2 

dxdt 
-2w • 

d2u2 d2u2 

dzdt dt2 = 0 

Equation (9) would be applicable to both solids and fluids as 
we still have not invoked the constitutive relations for stress. 

3 Application to the Taylor Stability Problem 

Equation (9) will now be transformed to cylindrical coor­
dinates for application to the problem of flow between two 
concentric cylinders. The outer cylinder is stationary and the 
inner one is rotating. It is assumed that the steady base flow in 
the (x, z) plane is subjected to an oscillatory disturbance such 
that a particle is displaced a distance u2 above its base 
(undeformed) plane, consistent with the earlier theory. We 
will show that the simple form of disturbance assumed in this 
model is sufficient to determine the critical conditions under 
which this flow will become unstable. More complicated 
forms are, therefore, unnecessary. 

When end effects are neglected, the rotating cylinder prob­
lem fits the "infinitely deep" assumption of the formulation 
leading to equation (9). Clearly, the component of stress in the 
direction of the axis of the cylinders is independent of that 

direction when end effects are neglected, and the disturbance 
itself is imposed such that this independence is preserved. 

Continuing this development, we propose that we can, for 
the fluid motion considered here, replace the steady stress 
components of the previous sections arising from the steady 
nature of the transport velocities with a combination of this 
original steady-state stress and a very small time dependent 
component. It is the assumption that so long as this time-
dependent component is very small, the previous equations 
will remain essentially correct. Thus, for example, we will 
replace the stress o^, with a new one axx° + axx{t) where axx° 
is the original steady-state stress and axx(t) is a small time-
dependent stress the form of which will be determined for the 
particular problem at hand from the appropriate constitutive 
relations. For a fluid, this additional stress component can on­
ly be induced by a time-dependent velocity or pressure. Since 
we retain the steady-state pressure and velocity, we need to 
look for an additional plausible time-dependent velocity com­
ponent that would provide the time-dependence in the stress 
terms, but which at the same time is small enough to not affect 
in a major way the basic steady-state flow velocities and 
pressures derived from the Navier-Stokes equations. 

A. The Equations for Taylor Stability Analysis. It can be 
shown that for the case under consideration, equation (9) 
reduces to: 

where 

arr d2u2 

p dr2 

TA. ( r\ -. «w ri .1 

d2u2 

dt2 (10) 

oi is the angular velocity of the inner cylinder, and /-,, r2 are the 
radii of the inner and outer cylinders, respectively. Ve is the 
steady state flow velocity. 

We allow the original steady stresses to become time-
dependent in the manner indicated earlier, and these are 
substituted into equation (10). The steady-state stresses are ob­
tained from the steady-state solution. We are now left to 
determine the small time-dependent stress components. 

The constitutive relation for the normal stresses in equation 
(10) are 

dV^ 
dr 

arr = -p + 2/x • (11) 

and 

/ 1 dVe Vr\ 
(12) 

For the classical steady-state problem, Ke ^ / ( 9 ) and Vr = 
0. We retain, in this model, the 9-independence but allow the 
existence of a small Vr only as it affects these stresses. The 
continuity equation is then used to obtain a time-dependent 
value of Vr and this becomes the basis for the small time-
dependent components in the stresses alluded to earlier. 

From the continuity equation 

dV, 

dr 
• + -

1 dV( e 

ae =o (13) 

Hence, 

dr 
(rVr)=0 

The continuity equation allows us to obtain an expression for 
Vr that is at least consistent with continuity. 

Let r Vr = f(t) where/(r) is an arbitrary function of time, 
then the continuity equation is satisfied. From Fourier 
analysis, we may write 
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/(f)=esinGf + 

where 12 is some frequency and e is sufficiently small, 

then Vr = e/r sinQ/ (14) 

and the normal stresses become 

a„ =~p-2fi e/r2 sinfi/ (15) 

a e e = —p + 2fi e/r2 sinQ/ (16) 

As stated earlier, Vr is allowed to affect only the stress terms 
of this model . Vg and p are retained from their steady-state 
form unchanged. 

Thus equat ion (10) becomes 

( -
-2v sinQ/) 

a2w, 
/ dr2 ( + 2i>-Vsi 

\ o rz 
sinfi/ 

. CRITICAL TAYLOR NUMBER 

du2 

dr 

d2u2 
(17) 

TAYLOR NUMBER 

This equat ion, along with appropr ia te boundary and initial 
conditions will be solved numerically to determine the value of 
e at which u2 becomes unstable. 

T o summarize then , we intend t o study the stability of the 
Taylor flow problem by studying the physical displacement of 
the fluid particles in a direction perpendicular to the (r, 9 ) 
plane of the flow. We do this by interpreting the stress terms in 
the Bolotin equations to include a small t ime-dependent com­
ponent obtained by solving the continuity equat ion for Vr and 
substituting this into the constitutive relations. Vr is set small 
enough so that the values of p(r) and Ve (r) are unchanged, 
by its presence, from their steady-state values. Its only 
significance is in modifying the stress terms that are used for 
the prediction of the oscillatory displacements. In short , Vr is 
small enough not to change Ve or p , but the theory here is that 
it causes the stress terms to acquire a small t ime dependent 
component as shown in equations (15) and (16). 

B. Apparent Viscosity and e. It is easily shown that the 
parameter e in equations (15) and (16) has dimensions of 
kinematic viscosity. Clearly, since it arises specifically as a 
consequence of the disturbance, it can only be an apparent 
viscosity. This is consistent with the evolution of the concept 
of apparent viscosity in its more tradit ional application to tur­
bulence modelling. The current model (yet to be shown to be 
capable of predicting the bounds of stability for the rotat ing 
cylinder problem) indicates that the apparent viscosity may be 
a universal parameter in fluid stability studies, arising in 
unstable flows other than turbulent ones. It can also be 
shown, quite simply, tha t P rand t l ' s formula for apparent 
viscosity can be derived from the model used here. 

Consider the apparent stress term in equations (15) and (16) 
derived by solving the continuity equat ion for Vr. Clearly, 
ixe/r2 has dimensions of stress. 

Thus , fie/r2 a [stress] 

We may generalize for some other flow situations that this ap­
parent stress may be propor t ional to the shear stress in the 
fluid, or 

^ v I du I c m 
—-— = A ii —-— U°) 

f \ dy \ 
where if is a proportionality constant and /t \du/dy\ is a 
measure of the stress in the fluid, I is a significant length in the 
flow, replacing r, the radial distance. 

Then if ixT = pe be an apparent dynamic viscosity, equation 
(18) becomes 

^ I du I , .„. 
liT = KPe\-—-\ (19) 

I dy I 

Fig. 2 The regime of stability for flow between concentric rotating 
cylinders (outer cylinder stationary) 

or for K = 1 

Hr = 
du 

~dy~ 
(20) 

This is the formulation of the apparent dynamic viscosity 
derived by Prandt l (1967). Clearly, we are able to obtain his 
formula using a completely different approach , arising, as it 
were, from consideration of a problem in laminar instability. 

C. Solution of the Stability Equation. We investigated the 
behavior of equation (17) by applying the following boundary 
and initial conditions to the fluid behavior . 

u2(rut)=0 

u2(r2,t)=0 

and 

u2(r,o) = l^sm ir-

du-, 

(r2-r) 

(r2-ri) 

at 

(21) 

(22) 

(23) 

(24) 

In equation (23), Y0 is an arbitrarily small ampli tude of the 
initial displacement. The choice of initial condition is ar­
bitrary, the form shown being a reasonably simple one, consis­
tent with those used in elasticity. 

The pressure distribution is given by 

'">-i£kL-£+* '"T+T] <» 
where we have used the boundary condi t ionp{r 2 ) = 0 in solv­
ing for the pressure distr ibution from the Navier-Stokes 
equations. 

Using equations (21)-(25), an implicit second order accurate 
time marching formulat ion was used to determine the fluid 
displacement at different t ime levels. The solution was deemed 
to be unstable when w2 (r, t) — oo as t — °° at some values of 
r. 

4 Results and Discussions 

Figure 2 shows a plot of eaiticB]/ur2 versus Ta , the Taylor 
number defined as 

T =-
W i \(r2-r{) 

ecritical is the numerically determined value of e which ensures 
neutral stability. Thus , if e>e c r i t i c a l the displacements become 
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£ 0.6 

0.0, 
1.0 2.0 NON-DIMENSIONAL RADIAL 

DISTANCE (r/r ) 

Fig. 3 Initial (assumed) displacement of fluid from plane 

unstable but are stable for e < ecritical. It must be pointed out 
that as the flow approaches the point of neutral stability, it 
takes longer and longer for the flow to display either its stable 
or unstable character. Since, with the present numerical for­
mulation, we cannot for practical reasons continue the solu­
tions until time becomes infinite, we defined the flow as stable 
(or unstable) depending on whether instability has been attain­
ed after a reasonably long interval of time. There could be 
very slight variations in the values of ecriticai if the solutions 
were allowed to evolve to much higher time levels, but such 
variations are not expected to affect significantly the overall 
trends in Fig. 2. 

From Fig. 2, it is clear that unstable flows can be induced at 
any Taylor number, however, it is also clear that as the level of 
the disturbance is increased, the first point of instability cor­
responds to the experimentally observed one. Points to the left 
of the critical point can be reached only by introducing large 
disturbances into the flow while at the same time keeping the 
Taylor number relatively low. Solutions of the displacement 
equation assuming an initial disturbance as shown in Fig. 3 
show that under such conditions, the instability is not a cen­
trifugal instability because it is found mostly near the inner 
wall. Figure 4 shows this type of instability arising from the in­
itial disturbance shown in Fig. 3. Centrifugal type instability 
(that is, one where the instability is mostly near the outer wall) 
is observed only at Taylor numbers greater than the critical 
value indicated. 

Figures 5 and 6 show typical unstable and stable solutions of 
equation (17). The unstable displacements of Fig. 5 were ob­
tained to the right of the critical Taylor number. From Fig. 5, 
the fluid elements appear to "buckle" against the outer 
cylinder for the unstable modes given by e/wrf = 0.458. It was 
shown earlier that because of the external disturbances we may 
write: 

••-p-2/j.- sinfl/ 

ffee = — p + 2(i —T- sinfi/ 

(26) 

(27) 

where e is an apparent kinematic viscosity. From these equa­
tions, a series of critical values of the apparent viscosity were 
obtained (Fig. 2). 

A. The Concept of the Induced Critical Stress. We now 
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Fig. 5 Fluid displacement for unstable (t/ar* = 0.458) configuration 
Ta>41.3 

also propose the existence of corresponding induced critical 
stresses relating to these values of e. This critical induced 
stress, <rcritiCai, would be the maximum value of the induced 
stress that exists at the onset of instability and is a natural 
follow-on from equations (15) and (16). Theoretical values of 
the induced critical stress will also be presented later for the 
case of small V0. We define the critical induced stress arising 
at the onset of the instability as follows: 
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"critical — /* ' 
^critical (28) 

Figure 7 shows a plot of the induced critical stress coeffi­
cient as a function of the Taylor number. From Fig. 7, the 
following appear to be the relationships between the critical 
induced stress coefficient and the Taylor number for the fluid 
under study. 

Ta<41.3: ^critical = 7.5xl06(Ta)-3- f 

Ta>41.3: 
^critical 

= 208(Ta)' 

(29) 

(30) 
pU? 

where t/f = to/-,. As stated earlier, Fig. 4 shows a plot of the 
unstable displacements typically observed for Taylor numbers 
to the left of the critical Taylor number. It demonstrates that 
the instability that occurs in that region is of a more 

mechanical type. It is effectively a "sloshing" of the fluid due 
to the "irregular" motion of the inner cylinder. 

As the critical Taylor number is approached, the instability 
no longer displays the clear-cut nature shown in these figures, 
that is, the instability is not confined mostly to one wall or the 
other of the cylinders, but is spread out over the whole plane. 
It appears that the critical Taylor number is the transition 
point between the "mechanical" instability of Fig. 4 and the 
"centrifugal" one of Fig. 5 (e/wr\ = 0.458). 

B. Analytical Solution of a Simplified Model. While it ap­
pears relativley difficult to generate analytical solutions of 
equation (17) for the general case, we can investigate the case 
where: 

Va«l (31) 

Using equation (31), equation (17) asymptotically reduces to 

d2u, 
- + 2 ve sinfiz1-

/ 1 Bu2\ 
: \ r dr ) 

= 0 (32) 
dt2 ' rdr 

In equation (32) we have arbitrarily set the pressure, which is 
approximately a constant, for small Ve, to zero to simplify the 
analysis. The goal here is to attempt to demonstrate the 
underlying physics of the approach adopted in this paper 
through the development of an analytic solution for a relative­
ly simple case, a physics which may not be obvious from the 
numerical solution generated from the more general 
approach. 

Let u2{r, t) = R(r2/2) T(t), then using the method of 
separation of variables, we can show that equation (32) 
reduces to the following: 

f + ( - 2 ve\2 sinQOT=0 (33) 

where T= 
dt2 

JR(r2/2)isgivenbyi?"+X2i? = 0 (34) 

Using the boundary conditions discussed earlier, we can show 
that: 

X=-
2/2 7T 

(r2-rx
2) 

n = 0,l,2,3. (35) 

Equation (33) is a Mathieu stability equation, hence for small 
values of Ke the underlying Mathieu stability problem in­
herent in this approach is brought into sharper focus, and 
hence the consistency with the Bolotin method for the stability 
analysis of elastic systems is established. We can solve 
analytically for the value of ecriticai for the case Ve<<,. 

Typically, the Mathieu Equation is written as follows: 

cPf 
—4- +{K- h2smSlt)f= 0 (36) 

dt1 

from equations (33) and (36), we have: 

h2=2ve\2 (37) 
and thus we can obtain the critical values of e for the limiting 
case considered here, since we know the value of h2 for the 
case K = 0 from the stability diagram for the Mathieu 
equation. 

From White (1974), h2 ~ 1.5, hence for this limiting case 
the apparent kinematic viscosity becomes: 

(1.5) 
^critical ~ T 2 ~ \^°) 

where X (for n = 1) is given by: X = 27r/(/'2 — rX) 
The induced critical stress for the limiting case is given by: 

a c r=p(1.5) : 
(r2-r{

2)2 

(39) 

The simplified model shown above indicates the nature of 
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the stability problem formulated here. It is, in the limit, a 
Mathieu stabilty problem. 

5 Conclusions 

A simple approach to flow instability based on the displace­
ment of the fluid particles has been presented. It has been 
shown that an analysis based on the physical displacement of 
the fluid particles yields a stability criterion that is in­
distinguishable from the well known result. Furthermore, the 
existence of an apparent viscosity for this low Reynolds 
number flow has been established suggesting that apparent 
viscosity is perhaps a universal property of disturbed flows. 
The generalization of this apparent viscosity leads to an equa­
tion that is consistent with the Prandtl formulation. 

This relatively simple model appears to indicate that stabili­
ty models based on a philosophical approach analogous to 
that used for elastic systems could lead to a deeper 
understanding of the complex physical processes that lead to 
flow instabilty. It could also, possibly, open up the vast 
literature in existence on the stability of elastic systems for ex­
tension to fluid systems encouraging a useful integration of 
these two currently disparate fields. 
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Simplified Rigid-Plastic Beam Analysis 

R. B. Schubak,1'3 M. D. Olson,2'3 and D. L. Anderson2'3 

1 Introduction 

Limit analysis involving rigid-plastic material idealization 
and plastic hinging has been applied to laterally loaded rec­
tangular beams with axially constrained ends by Haythorn-
thwaite (1957), Gu'rkdk and Hopkins (1981), and Vaziri et al. 
(1987). While their solutions are academically valuable, they 
are of limited applicability. To apply them to nonrectangular 
beams (notably I-beams and T-beams), would require 
rederivation for each case. Furthermore, they are very com­
plicated and their extensions to dynamic problems would be 
impractical. It is therefore desirable to have a simplified solu­
tion which is insensitive to section geometry and, when applied 
to dynamic problems, results in simple, preferably linear, dif­
ferential equations of motion. The purpose of this note is to 
present such a solution based on a recent study by Schubak 
(1986). 

2 Assumptions and Analysis 

Beams of at least singly symmetric cross section subjected to 
a uniformly distributed load are considered. The ends of the 
beam are symmetrically supported at the section's centroidal 
axis with constraints against axial displacements. The beam 
material is assumed to be rigid perfectly plastic. Beam deflec­
tions are finite but small compared to the beam span, so that 
the axial force can be taken as constant along the beam span. 

Consider a pinned beam of span 21? subjected to a load per 
unit length p. As p increases beyond the linear collapse load 
p0, a plastic hinge is formed at the midspan. The beam begins 
to deform, and is assumed to continue to deform, in the 
mechanism of Fig. 1(a) with a midspan displacement of w0. 
Defining Ma, N0 as the ultimate plastic moment and axial 
force capacities, respectively, thenp 0 = 2M0/f, and moment 
equilibrium gives 

Po 
- = m + (1) 

Graduate Student. 
Professor. 
Department of Civil Engineering, University of British Columbia, Van­

couver, B.C., Canada V6T 1W5. 
Manuscript received by ASME Applied Mechanics Division, November 5, 

1986; final revision, December 10, 1986. 

(a) 

(b) 

Fig. 1 Deflection modes: (a) single midspan hinge mechanism; (b) 
plastic string 

where m = M/M0, n = N/N0, M is the moment in the 
midspan hinge and N is the axial force. To complete the solu­
tion, the section's moment-axial force capacity interaction 
relation (yield condition) and flow rule must be defined. 

The plastic flow rule states that the plastic strain increment 
vector (N05e, M05ip), where 5e and dtp are the increments of 
longitudinal strain and curvature, respectively, is outwardly 
normal to the interaction curve. In equation form this 
becomes 

M0b\jj dm 
= - 1 . 

N0be dn 

For the present mechanism, 8e/8\p = w0, and hence, 

dm Nnw„ 

(2) 

(3) 
dn M0 

After some finite deformation, the axial force will reach the 
axial capacity N0 and the beam will no longer have any mo­
ment resistance. The beam will respond thereafter as a plastic 
string (Fig. 1(b)) with tension, N0, for which the midspan 
displacement is given by 

pf 
2Nn 

(4) 

Reorganizing equation (4) and dividing both sides by p0, the 
load capacity for large deflections becomes 
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BRIEF NOTES 

P 

Po 

N0w0 
(5) 

(a) Rectangular Sections. For a rectangular cross sec­
tion, the interaction relation is 

m = l — n2 (6) 

Combining this with equations (1), (2), and (3) gives the load 
capacity for the bending phase as 

-=!+• 
Po 4 V M„ ) 

(7) 

The preceding analysis was based on the deformation 
assumption of a single midspan hinge mechanism. Although 
this mechanism is kinematically admissible and equilibrium 
has been satisfied, the presence of the axial force requires that 
the bending moment in the rigid half-beam exceed the plastic 
moment M0, a violation of the beam's plasticity condition. 
However, the results compare very well with those obtained by 
Gurkok and Hopkins using the correct displacement fields. 
This comparison is shown in Fig. 2. 

(b) Doubly Symmetric, Nonrectangular Sections. The 
interaction relations for a rectangular section and an open-
web section comprised of two equal concentrated areas are 
shown in Fig. 3. These two sections may be considered to be 
the limiting cases of practical bending sections—the interac­
tion relations of all doubly symmetric I-beams and box-beams 
lie between the aforementioned pair. 

Consider the linear interaction relation of the open-web sec­
tion. At the stress states («, m) = (0, 1) and (1, 0), the normal 
to the interaction curve is undefined and thus the plastic strain 
increment vector may lie anywhere within the appropriate fan. 
Putting m = 1 and n = 0 into equation (1) gives the load capaci­
ty as p = p0, which is valid for 0 < w0 < M0/N0. For larger 
deflections, the stress state "travels" instantaneously along 
the interaction relation to (n, m) = (1,0) and the plastic string 
solution of equation (5) then applies. 

The result is plotted in Fig. 4 along with the solution for the 
rectangular section. The solution for practical bending sec­
tions such as I-beams and box-beams will then lie between 
these two cases. 

(c) Singly Symmetric Sections. • Consider a T-beam with 
axial constraint applied at the centroid. The section properties 
and its interaction diagram are shown in Fig. 5. The usual 
plastic moment capacity (no axial force) for this section is 
135 a0, where a0 is the yield stress. However, the ultimate mo­
ment capacity defined as M0 herein is 162 a0 which occurs 
when the neutral axis coincides with the centroidal axis, 
resulting in a net axial force. 

The interaction relation for this section is 

5 

5 

U 

(1-4/2-5/z2), i f « < - l / 3 ; 

(3-2 / j - f l 2 ) , if « > — 1/3. 
(8) 

Following the same procedure as for the rectangular section, 
the load capacity is found to be 

Plast ic S t r i n g . 
Response 

Approximate 

/ 
// 

~~—Exact 
jy Giirk6k + Hopkins 

J I I I I I I I L 
0 I 2 3 4 5 6 

N 0 w 0 /M 0 

Fig. 2 Load capacity of rectangular beams 

= M / M 0 

n = N / N 0 , 

Fig. 3 Interaction curves for doubly symmetric sections: (a) rec­
tangular; (b) I or box; (c) open-web 
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Po 
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M0 

10 
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N w 10 
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(9) 

Journal of Applied Mechanics SEPTEMBER 1987, Vol. 54/721 

Downloaded 03 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



BRIEF NOTES 

a 
Q. 

Plastic St r ing 
Response 

Rectangular // 
B e a m ^ / 

Open-Web Beam 

_L J L_L _L 
0 1 2 3 

N0w0/M0 
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Fig. 5 True and approximate interaction curves for T-beam section 

The interaction relation can be approximated by linear 
segments connecting nodes at («, /n) = (— 1, 0), ( -2 /5 , 1) and 
(1,0) (see Fig. 5). From consideration of the flow rule it is seen 
that the stress state of a plastic section must always be at one 
of the nodes. As arsult, (n, m) = { — 2/5, 1) for 0 < N0w0/M0 
< 5/7 and («, m) = (1, 0) for N0w0/M0 > 5/7. Putting the 
first stress state into equation (1) and recalling equation (5), 
the approximate load capacity becomes 

Po 

(N0w0\ 
V M„ ) ' 

i f0< ° ° 

M„ M„ 

5 

M0 ' T' 
5 (10) 

T' 
The load capacity of the pinned T-beam is plotted in Fig. 6 

for both the true interaction relation and the linear approx­
imation. The initial negative slope in Fig. 6 is due to the com­
pressive axial force which develops instantaneously as a conse­

quence of the rigid-plastic assumption. This part of the curve 
represents an equilibrium solution but obviously not a stable 
one, and would be changed by the inclusion of elastic effects. 
However, the main purpose here was to show the effect of the 
linear interaction approximation. 

(d) Clamped Beams. For a doubly symmetric clamped 
beam, equations (1) to (7), and all other terms such as the 
definition of p0 and the labelling of the axes in Figs. 2 and 4 
are valid if M0 is simply replaced by 2M0. 

3 Conclusions 
The static response of axially restrained beams to uniformly 

distributed loads has been studied. An approximate deforma­
tion mechanism was used to derive simple results for the load 
capacity in terms of the moment and axial load in the plastic 
hinge(s). Solutions were derived for beams of various doubly 
symmetric and singly symmetric cross sections. It was found 
that replacing the interaction relation of a section with a linear 
approximation thereof results in a good estimate of the beam's 
load capacity and greatly simplifies the analysis. This 
simplification is particularly beneficial when applied to the 
dynamic response of axially restrained beams as shown by 
Schubak (1986). This work will be presented in a future paper. 
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Stress Concentration in Fiber Composite 
Sheets Including Matrix Extension 

J. N. Rossettos4'6 and M. Shishesaz5'6 

Introduction 
The study of stress concentration which occurs near broken 

fibers in filamentary composites is important in failure predic­
tion. The first analysis of this problem was carried out by 
Hedgepeth (1961), who used a shear lag model (SLM), where 
the fibers carry only axial loads and the matrix carries only 
shear loads. Recent work along these lines can be found in 
references by Reedy (1984). The present work is a direct exten­
sion of Hedgepeth's analysis in that the matrix now also car­
ries axial load. This would be appropriate for a relatively stiff 
matrix. As it turns out, the results show that the SLM is sur­
prisingly useful even for typical metal matrix materials. 
Similar trends are indicated by Reedy (1984), who used 3-D 
finite element calculations. 

In our analysis, the matrix adjacent to the last fiber break 
(of a series of in-line fiber breaks or crack) is assumed to either 
develop a line yield zone perpendicular to the fibers, or to 
break itself. Both cases are compared, and of particular in­
terest is the fact that they bracket the SLM. The analysis deals 
with resultant loads, so that a structural rather than a con­
tinuum approach is used. 

Analysis 
We consider a finite width sheet consisting of 2q + 1 fibers, 

parallel to the x axis, which are numbered so that the center 
fiber is the zeroeth, and the fibers above it are numbered 1 to 
q. Below it they are numbered - 1 to —q. The lamina is load­
ed in the x (or axial direction) and fiber breaks occur along the 
x = 0 axis. A quadratic displacement, u, is assumed in a given 
matrix bay as, 

u = u'n"^l+(y/d)(un-un_l) + 2(y/d)2(un + un_1-2u^„_l) 

(1) 
In equation (1) the origin of the local x—y system is at the 
center of each matrix bay; w™„-i is the displacement at the 
center of the («, n - 1) bay, u„ and un_x are the «th and n—\ 
fiber displacements, and dis the matrix width. Using equation 
(1), the shear stress in a matrix bay is rxy = G du/dy. Its 
change, Arxy, over a bay in the y direction is 

odll 

( A ^ , )„,„_,) = (drxy/dy)„i„_ldy = 4Ge„^i/d (2) 
J —a/2 

where 

e„,„-i ="„ + « „ + i - 2 < „ _ i (3) 

so that equilibrium of the matrix bay below, say, the «th fiber 
yields, dp^n_x/dx + h(ATxy)n„_i = 0, where the matrix net 
axial load is 

pd/2 

Pn,n-l=\ JnEm(dll/dx)hdy 
«J —a/2 

=EmAm (du^i/dx + de^^/edx) (4) 
h is the lamina thickness and Em is matrix modulus. The axial 
load in the «th fiber is pn = EjAjdun/dx. With these rela-
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Fig. 1 Stress concentration factor in the first unbroken fiber versus 
number of broken filaments, r. Total number of fibers is 21; Vf = Vm = 
0.5; e = 0.088; a = 0.70. 

tions, the equilibrium equations for a typical fiber and matrix 
bay are easily derived in terms of displacements (Shishesaz, 
1986). Note from equations (2) and (3) that e„>n_{ = 0 cor­
responds to the SLM. Dimensionless coordinates, loads, 
displacements are next defined by 

X=(EfAfd/Gh)l/2ti; (P„,PZr,-l)=P(Pn,PZn-0 

(un,en,n_uu™n^)=P(d/EfAfGhy/HUn,En,n_uU'»n_l) 

where p is the fiber load value at x = oo. The equilibrium 
equations for all fibers and matrix bays are then 

<PUn/d? + (Un+,- 2U„ + [ /„_,)- 2{En+ ,,„+£„,„_,) = 0 

( - 4 + l < n < t f - l ) (6) 

e(d2Un/dli2+d>U„_1/d¥-2d2Eni„_l/3de) + 4Ent„_l=0 

(-q+lsnnq-1) (7) 

d2U„/da2 + (U,,_l-U„)-2E„^l=0 (n = q) (8) 

(PU„/d^ + (U„+1-Un)-2E„+]:„ = 0 ( « = - < / ) (9) 

where the parameter, e, is e = AmEm/2AfEf = VmEm/2VjEf, 
and Vm, Vf are matrix and fiber volume fractions. It is noted 
that as e — 0 (i.e., Em is very small compared to Ef), E„„_l -~ 
0 from equation (7), and equations (6)-(9) reduce to those of 
the SLM. The£"s are expressed in terms of the L^s using equa­
tions (3) and (5) so that the 4<? + 1 equations (6)-(9) are written 
as 

L , U " - L 2 U = 0 (10) 

where 

U ^ K / ^ V i ' ^ - i - U_q+uU»Lq+l,_q,U_q] 
and matrices L^ and L2 are banded. It is convenient to assume 
a uniform strain at infinity, so that 
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and the dimensionless loads have the behavior 

(11) 

(12) 

In the case where we assume a line yield zone, with yield 
stress, Sy, the net force in the matrix bay is pf = Syhd. If 
there are r broken fibers, say n = 0, 1, 2. . . ./•— 1, and r- 1 
cut matrix bays the boundary conditions are 

I/„(0) = 0 

P„(0) = 0 

*C-i(0) = o 
P'ln-M = 0 
^ - i ( 0 ) = co 

n<0 n>r 

0 < « < / - - I 

n<-\ n>r+l (13) 

n<r- 1 n>\ 

n=0 n=r 

where co = p™/p. In the case where the matrix next to the last 
fiber break is also cut, we set co = 0 in the last of equations 
(13). A solution to equation (10) is assumed in the form U = 
Rexf, where U and R are vectors of order Aq + \. The 
resulting eigenvalue problem, (L2 - X2L[)R = 0. leads to 
eigenvalues, X,-, 
to satisfy (12), 
expansion 

and eigenvectors, R'. Positive A, are discarded 
and the solution to U can be written as the 

Aq+\ 

u = £ QR'e^+U, (14) 

where the particular solution, Up = [£, £, ,£] is add­
ed in equation (14) so that (12) is satisfied. Since U contains 
both fiber, U„, and matrix, i ^ „ _ i , displacements, differen­
tiation and use of previous relations lead to the load quantities 
which also satisfy (12). Equations (13) represent 4g+ 1 equa­
tions for the unknown constants C,, and are easily solved 
(Shishesaz, 1986). 

Results and Discussion 
In Fig. 1, the stress concentration faction (Kr - Pr), is plot­

ted against the number of broken fibers, r. The values of e and 
co are typical of boron-aluminum. The dashed curve is the 
average of the two bracket cases (i.e., upper and lower curves, 
which include matrix extension) and differs from the SLM 
(finite width case) by at most 5 percent. The smaller dif­
ferences for larger r may be due to increased matrix shear ac­
tion when more fibers break. Smaller values of e bring results 
even closer to the SLM. For instance (Shishesaz, 1986), for r 
= 3, in the yielded matrix case, when e = 0.056 and 0.0064 
(with co = 0.444 and 0.051) getK, = 1.63 and 1.81 which ap­
proach the SLM value (Kr = 1.83). In all cases, the value of co 
corresponds to a matrix force at infinity of 1/4 the matrix 
yield load, and assures that the matrix adjacent to the yielded 
or cut matrix does not yield. Finally, since we deal with a finite 
width sheet (i.e., 21 total fibers), note that in Fig. 1, for r = 6, 
the last break is 5 unbroken fibers from the edge and Kr 

(SLM, dash curve) is seen to deviate from the infinite sheet 
case (dash-dot curve) discussed by Hedgepeth (1961). 
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Effect of Natural Convection on the Axisym­
metric Stagnation Flow on a Vertical Plate 

C. Y. Wang7 

Introduction 

Consider a plate heated by a hot, impinging axisymmetric 
flow. The fluid dynamic problem near the stagnation point is 
the Homann (1936) exact solution and the forced heat convec­
tion problem was considered by Wang (1973). However, if the 
plate is vertical and the stagnation flow is weak, free convec­
tion effects may become important. This note considers the ef­
fect of free convection on the axisymmetric stagnation flow on 
a vertical plate. We shall use the full Navier-Stokes equations 
and the Boussinesq energy equation. The present note is an ex­
act solution of these equations. 

Formulation 

Figure 1 shows the plate in the xy plane with x in the vertical 
direction. The axisymmetric jet is impinging on the plate at the 
origin. The plate has temperature T„ and the conditions far 
from the plate are 

u = bx, 

P 

v = by, w = — 2bz 

b2(x2+y2)+P0, T=Ta (1) 

where (u, v, w) are Cartesian velocity components, p is the 
pressure, p is the density, T is the temperature, and b is the 
strength of the axisymmetric stagnation flow. 

For similarity solutions set 

u = _ M(y)+bxtp' (ij) 

v = by<p'(-q) 

w= —2sfbv<p(i)) 

T-TQ.= (T„-Ta,)H(V) 

(2) 

(3) 

(4) 

(5) 

where v is the kinematic viscosity, g is the gravitational ac­
celeration, /3 is the coefficient of thermal expansion and 

V -£-> (6) 
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where co = p™/p. In the case where the matrix next to the last 
fiber break is also cut, we set co = 0 in the last of equations 
(13). A solution to equation (10) is assumed in the form U = 
Rexf, where U and R are vectors of order Aq + \. The 
resulting eigenvalue problem, (L2 - X2L[)R = 0. leads to 
eigenvalues, X,-, 
to satisfy (12), 
expansion 

and eigenvectors, R'. Positive A, are discarded 
and the solution to U can be written as the 
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u = £ QR'e^+U, (14) 

where the particular solution, Up = [£, £, ,£] is add­
ed in equation (14) so that (12) is satisfied. Since U contains 
both fiber, U„, and matrix, i ^ „ _ i , displacements, differen­
tiation and use of previous relations lead to the load quantities 
which also satisfy (12). Equations (13) represent 4g+ 1 equa­
tions for the unknown constants C,, and are easily solved 
(Shishesaz, 1986). 

Results and Discussion 
In Fig. 1, the stress concentration faction (Kr - Pr), is plot­

ted against the number of broken fibers, r. The values of e and 
co are typical of boron-aluminum. The dashed curve is the 
average of the two bracket cases (i.e., upper and lower curves, 
which include matrix extension) and differs from the SLM 
(finite width case) by at most 5 percent. The smaller dif­
ferences for larger r may be due to increased matrix shear ac­
tion when more fibers break. Smaller values of e bring results 
even closer to the SLM. For instance (Shishesaz, 1986), for r 
= 3, in the yielded matrix case, when e = 0.056 and 0.0064 
(with co = 0.444 and 0.051) getK, = 1.63 and 1.81 which ap­
proach the SLM value (Kr = 1.83). In all cases, the value of co 
corresponds to a matrix force at infinity of 1/4 the matrix 
yield load, and assures that the matrix adjacent to the yielded 
or cut matrix does not yield. Finally, since we deal with a finite 
width sheet (i.e., 21 total fibers), note that in Fig. 1, for r = 6, 
the last break is 5 unbroken fibers from the edge and Kr 

(SLM, dash curve) is seen to deviate from the infinite sheet 
case (dash-dot curve) discussed by Hedgepeth (1961). 
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Effect of Natural Convection on the Axisym­
metric Stagnation Flow on a Vertical Plate 

C. Y. Wang7 

Introduction 

Consider a plate heated by a hot, impinging axisymmetric 
flow. The fluid dynamic problem near the stagnation point is 
the Homann (1936) exact solution and the forced heat convec­
tion problem was considered by Wang (1973). However, if the 
plate is vertical and the stagnation flow is weak, free convec­
tion effects may become important. This note considers the ef­
fect of free convection on the axisymmetric stagnation flow on 
a vertical plate. We shall use the full Navier-Stokes equations 
and the Boussinesq energy equation. The present note is an ex­
act solution of these equations. 

Formulation 

Figure 1 shows the plate in the xy plane with x in the vertical 
direction. The axisymmetric jet is impinging on the plate at the 
origin. The plate has temperature T„ and the conditions far 
from the plate are 

u = bx, 

P 

v = by, w = — 2bz 

b2(x2+y2)+P0, T=Ta (1) 

where (u, v, w) are Cartesian velocity components, p is the 
pressure, p is the density, T is the temperature, and b is the 
strength of the axisymmetric stagnation flow. 

For similarity solutions set 

u = _ M(y)+bxtp' (ij) 

v = by<p'(-q) 

w= —2sfbv<p(i)) 

T-TQ.= (T„-Ta,)H(V) 

(2) 

(3) 

(4) 

(5) 

where v is the kinematic viscosity, g is the gravitational ac­
celeration, /3 is the coefficient of thermal expansion and 

V -£-> (6) 

Professor, Departments of Mathematics and Mechanical Engineering, 
Michigan State University, East Lansing, MI 48824. Mem. ASME. 

Manuscript received by ASME Applied Mechanics Division, December 23, 
1986; final revision, March 4, 1987. 

724/ Vol. 54, SEPTEMBER 1987 Transactions of the ASME 

Copyright © 1987 by ASME
Downloaded 03 May 2010 to 171.66.16.27. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



BRIEF NOTES 

Pr 

0.2 
0.7 
2. 
7. 

20. 
70. 

Table 1 

H'(Q) 

-0.4038 
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-1.5458 
-2.2297 
-3.4276 

M'(Q) 

-0.6312 
- 0.4954 
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-0.2849 
-0.2131 
-0.1474 

Fig. 2 Temperature distribution H(rj) 
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Fig. 3 Velocity due to free convection M(tj) 

The Navier-Stokes and energy equation yield 

(7) 

(8) 

(9) 

(10) 

p = — — [b2{x2 +y2) + w2- 2PWZ] +p0 

(<p' ) 2 — 2ip<p " = 1 + <p'" 

M<p' -2<pM'=M" -H 

-ZPr<pH' =H" 

Here Pr is the Prandtl number. The boundary conditions are 

V(0) = p'(0) = 0, v ' ( o o ) = l (11) 

M(0) = 0, M ( o ° ) = 0 (12) 

H(0)=l, H(o°)=0 (13) 

Equations (8), (11) characterize the Homann stagnation point 
flow. Numerical solution gives an initial value of <?"(0) = 
1.1311937. Equations (10), (13) represent the temperature 
distribution which is unaffected by the natural convection. 

Q2 0.4 0.7 1 2 4 
Pr 

7 10 20 40 70 100 

Fig. 4 Maximum velocity I M I m a x and net flow 8 as a function of 
Prandtl number 

The effect of natural convection, not studied before, is felt in 
equation (9) which governs the vertical fluid velocity. 

The Numerical Results and Discussion 

The numerical scheme is as follows. Using the value of 
tp"(Q) and a given Prandtl number we guess H'(0) and in­
tegrate equations (8), (10) as an initial value problem by the 
Runge-Kutta-Fehlberg algorithm. The value of H'(0) is ad­
justed such that H remains zero for some large rj (say, greater 
than 6). Then equations (8), (9), (10) are integrated again 
together with a guessed initial value M'(0). The solution is ob­
tained through successive one-parameter shooting. Notice the 
integral form for //"from equation (10) is inconvenient in solv­
ing equation (9). Also equation (9) is linear but non-
homogeneous, making shooting necessary. The initial values 
thus obtained are listed in Table 1 for some representative 
Prandtl numbers. For air Pr = 0.7 and for water Pr = 7. The 
net heat transfer is proportional to i / ' (0) . In general H(-q) 
decays to zero in a thermal boundary layer (Fig. 2) with a 
thickness dependent on Pr. 

The buoyancy driven flow profile M{tj) is shown in Fig. 3. 
The downward velocity (for a cool plate) decreases with in­
creased Prandtl number. The net downward flow per width F 
is 

F^gtKT^-TJv^b- 2B, B = [ Md-q 
Jo 

(14) 

The values of B and Mmax are plotted in Fig. 4. For small 
Prandtl numbers, free convection may become considerable. 
The shear stress on the plate is 

-gd(Ta-Tw) r'=N7 i1 M'(0) + bx<p"(0)\ (15) 

= /* by<p"(0) 

The stagnation point is at 

? ( r 0 o - r w ) M ' ( 0 ) 
x = y = z = Q 

(16) 

(17) 
*»V(0) 

Since M'(0) is negative, the stagnation point is above the 
center line of the hot jet. The shear lines are rays from the 
stagnation point. The flow field, however, is highly three-
dimensional. 
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Will the Force Method Come Back? 

C. A. Felippa8 

Introduction 
The force method of structural analysis was overtaken by 

the displacement method in the mid Sixties, and has disap­
peared from the scene except for few specialized applications. 
Virtually all existing general-purpose finite element programs 
are based on the direct stiffness method (DSM) introduced 
three decades ago by Turner et al. (1956) and Turner (1959). 
The DSM combines the displacement method of solution with 
the direct, element-by-element assembly of the stiffness equa­
tions. The simplicity and efficiency of the DSM for general ap­
plications have not been matched to date; it has the polished 
"black box" feeling of Lagrange's analytical mechanics. 

There has been, however, a modest revival of interest in the 
force method as manifested in recent publications (Kaneko et 
al., 1982, 1985; Heath et al., 1984; Patnaik, 1986a, 1986b). 
This activity has been fueled by the hope that the force method 
may be competitive for a limited but important class of prob­
lems, namely those calling for a sequence of analyses of 
"perturbed" linear or materially-nonlinear structures, pro­
vided the perturbations do not affect the discrete equilibrium 
equations. This situation arises in fully-stressed design and 
optimization. 

The main weakness of the conventional force method on the 
computer is the difficulty of automating the selection of force 
unknowns that optimize matrix sparseness while maintaining 
numerical stability. Twenty years ago Fraeijs de Veubeke 
(1965, p. 83) noted, "A great step forward in the automation 
of the (self-straining) calculations would be achieved if the 
computer itself could be taught to investigate the topology of 
the (connection) matrices and deduce the self-strainings con­
fined to the smallest numbers of elements." Recent 
developments try to satisfy this goal by taking advantage of 
more advanced numerical techniques that were known in 1965 
(for example, sparse orthogonal factorizations). 

The purpose of this Note is to give the general formulation 
of the force method from the standpoint of the field of 
mathematical programming, and to call attention to links be­
tween this formulation and recent efforts in the field of matrix 
structural analysis. The relationship is noteworthy because 
great strides have been made in large-scale constrained op­
timization during the past 15 years while the force method has 
been neglected. It is hoped that the relations described here 
may spur further research work as well as development of 
computer-based applications using the abundant software 
now available in scientific libraries for linear and nonlinear 
programming. 

The Lagrangian System 
To exhibit the connections between mathematical program­

ming (MP) and matrix structural analysis it is convenient to 
start from the Lagrangian system for the quadratic program­
ming (QP) problem. The MP terminology used below follows 
the up-to-date textbooks of Fletcher (1981) and Gill et al. 
(1982). The matrix and vector notation, however, is more in 
line with that of structural mechanics. 

The QP problem under equality constraints can be stated as 

maximize — ViiTCi — brf, 
f 

subject to A ' f = p. 
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Here b and p are given vectors of dimension n and m, respec­
tively, with m < «; C is a « x n positive-definite symmetric 
Hessian matrix, A is an n x m constraint matrix of rank m, 
and f is the n vector of unknowns. The associated Lagrangian 
function is 

L(i,u) = - !/2f7 'Cf-b rf + u 7 ' (A 7 ' f -p) , (2) 
where u is a vector of m Lagrange multipliers. The stationarity 
conditions dL/df = dL/du = 0 yield the system of linear 
algebraic equations 

- C A 

AT 0 
(3) 

Following Fletcher (1981, p. 84), choose any n x (n — m) 
matrix V such that the augmented n X n matrix [A V] is non-
singular, and let its inverse be expressed in the partitioned 
form 

[AVI­

It follows that 

S rA = I, B r A = 0. 

(4) 

(5) 
This shows that S is a left generalized inverse of A (such in­
verse is of course nonunique if m < n) whereas B is a basis for 
the null space of A. With these definitions the general solution 
of equation (3) can be expressed as 

H - T 

- T r U 
(6) 

in which 

H = BF >Br = (I-HC)S, U = SrCT, F = BrCB. (7) 

The positive-definite symmetric matrix F is called the reduced 
Hessian matrix in the MP literature. 

Staged Elimination 

In practice the explicit inverse expressions (6) are rarely used 
to solve the Lagrangian system (3). Rather, some form of 
staged elimination of the unknowns f or u is explicitly or im­
plicitly invoked. 

To eliminate f in favor of u the first matrix equation is 
premultipHed by A r C _ I and added to the second, which 
yields 

A r C- 1 Au = p.+ A r C- 1 b, (8) 

Ku = p + p' , (9) 

where K = A rC~'A is a positive definite m x m matrix, and 
p ' = A r C _ 1 b . Once u is calculated, it can be backsubstituted 
in the first of equation (3) to recover f. In the MP literature, 
equation (8) is called a range-space equation, and is recom­
mended when m <<C n. The formally equivalent technique in 
matrix structural analysis is the displacement method. 

To eliminate u in favor of f the first matrix equation is 
premultiplied by B7", which upon taking equations (5) into ac­
count yields 

- B r C 

AT 

BTb 

P 
(10) 

This is the tableau form of the QP problem. The coefficient 
matrix of equation (10) is square but unsymmetric. A sym­
metric form can be obtained by observing that f' = Sp and f " 
= Bx, where x is a new unknown vector of dimension n — m, 
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satisfy the constraint equation A r f = p. (These are sometimes 
called the particular and homogeneous solutions.) Insertion of 

f = f ' + f " = B x + Sp (11) 

into equation (10) yields a new linear system in x: 

Fx=-Br(b + CSp)=-v. (12) 

In the MP literature, equation (12) is called the null-space or 
range-reduced system and v the reduced gradient vector. In 
structural analysis, equation (12) is the redundant-force or 
flexibility method. The coefficient matrix F = BrCB—which 
made its debut in equation (7)—is square, symmetric, and of 
order n — m. Once f is determined by solving either equation 
(10) or equations (11)—(12), the Lagrangian multipliers may be 
recovered from 

ii = S r ( b + Cf). (13) 

Expressing these solutions in terms of the original data of 
course reproduces equation (6). 

The Structural Problem 
Table 1 gives the mechanical meaning of the symbols used in 

equations (1) through (13). The key equations are now re­
interpreted for the structural analysis problem. 

Mixed Method. System (3), which combines force and 
displacement unknowns, is the mixed method of analysis (also 
called the combined method). The first matrix equation ex­
presses compatibility of deformations whereas the second one 
expresses discrete force equilibrium. 

This system may be derived by variational or physical 
arguments. Variational arguments are usually based on finite 
element discretizations of the Hellinger-Prange-Reissner prin­
ciple, which leads directly to a symmetric form. Physical or 
nonvariational arguments generally lead to unsymmetric 
forms which may be symmetrized through appropriate 
transformation of the unknowns. 

Displacement Method. Equation (9) is formally the stiffness 
equation of the displacement method. However, programs 
based on the DSM solve a similar equation 

K„u = f„, (14) 

where K„ is formed directly by assembling the "singular" ele­
ment stiffness matrices. Displacement boundary conditions 
are applied after assembling Ku. For conventional elements 
(e.g., bar, beams) K = K„, but for complicated 2D and 3D 
mixed elements K has wider connectivity than K„ so the latter 
is preferable. When finite elements are formulated by a mixed 
or stress-hybrid formulation, the DSM may be viewed as a 
condensation of the force (or stress) unknowns via equation 
(8) at the element level rather than at the systems level. 

Table 1 Meaning of symbols in matrix structural analysis 

Symbol Interpretation 

A Connection matrix (alias: leverage) 
Ar Equilibrium matrix 
B Self-stress matrix (alias: prestress, self-strain) 
BT Compatibility matrix 
b Initial stress vector (alias: prestress, initial-strain, 

prescribed-displacement) 
C Compliance matrix 
F Flexibility matrix 
f Unknown internal forces (or stresses) 
K Mixed-method stiffness matrix 
n Number of force unknowns 
m Number of displacement unknowns 
p Prescribed forces 
p' Pseudo forces 
u Unknown displacements 
x Unknown redundant forces 

S,H,T,U,v No particular name 

Journal of Applied Mechanics 

Force Method. Systems (10) and (12) furnish alternative ex­
pressions of the force method. In either case the crucial step is 
the determination of the self-stress matrix B. Because of the 
arbitrariness in the choice of V in equation (4), the matrix is 
far from unique. A good procedure for computing B should 
take advantage of any sparseness present in the connection 
matrix A while maintaining numerical stability. 

The best computer implementations of the force method in 
the Sixties were based on Gauss-Jordan factorization with 
pivoting, a procedure labelled "the rank technique" by 
Robinson (1973). Recent research has focused on triangular 
and orthogonal factorization schemes; in particular the "turn­
back" LU decomposition introduced by Kaneko et al. (1982) 
and variants thereof. Heath et al. (1984) give an excellent 
survey of candidate methods, but the problem remains open. 

Once a B is available, f may be determined by solving the 
tableau system (10) or the range-reduced system (11)-(12). 
Patnaik (1986a, 1986b) prefers the former approach while 
Kaneko (1982), Heath et al. (1984), and Kaneko and Plem-
mons (1984) follow the latter. 

Free Vibrations 
Patnaik (1986b) notes that "the standard force method 

(meaning the range-reduced system (12)) has not been 
developed for vibration and buckling analysis." This state­
ment is examined below for the free-vibration eigenproblem 
and shown to be justified. Set b = 0 and p = u2Mu, where u> 
is the circular frequency and M a structural mass matrix. 
Substitution into equations (10) and (13) yields 

- B r C n 

f = co2 
0 

MSrC _ 

This is an unsymmetric eigenproblem of order n which has 
n — m improper roots. To symmetrize it, try the transforma­
tion f = Dz and attempt to satisfy the first matrix equation in 
equation (15). A short calculation gives D = C~'A, which is 
the inverse of equation (13) when b = 0. Therefore, z = u and 
we obtain 

A7"C-1Au = Ku = u2Mu. (16) 

This is the standard mass-stiffness eigenproblem of order m. 
Of course, DSM-based programs would use K„. 

Eigensystems (15) and (16) correspond to equations (10) and 
(9), respectively. Is there a flexibility counterpart to equation 
(12), namely 

Fx = o>2Gx (17) 

where G is symmetric and of order n — ml The question is 
nontrivial because p is no longer a given vector, which makes 
the range decomposition (11) frequency dependent: 

f = (I - c^SMS^C) - ' Bx = [I + co2SMSrC 

+ co4(SMSrC)2 + . . .]Bx. (18) 

Substituting into BrCf = 0 we find that eigensystem (17), with 
G = -B rCSMS rCB, appears as the first two terms of an 
infinite eigenmatrix expansion in ascending powers of to2. The 
complexity of the matrices is unlikely to encourage practical 
applications. The buckling eigenproblem can be analyzed in a 
similar manner. 

Concluding Remarks 
A cautious answer to the title question would be: perhaps, 

but not as a general-purpose tool. Even after the arduous task 
of constructing a "good" self-stress matrix B is completed, we 
are not done. In linear stress analysis there remains the 
problem of solving either equation (10) or equations (11)—(12). 
In vibration analysis, the force based unsymmetric eigen-
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problem (15) is computationally inferior to equation (16). As 
for relative matrix sizes, note that for two and three-
dimensional continua discretized with mixed finite elements, n 
~ \.5m and n ~ 2m, respectively. 

But the case noted in the Introduction offers an applications 
niche. If the matrix equilibrium equation A r f = p does not 
change as the sequence of related problems is solved, the self-
stress matrix B can be reused. In structural optimization this 
happens if topology and element shapes are not design 
variables. Moreover, as the internal forces provided directly 
by the force method often have engineering significance, the 
calculation of design-sensitivity derivatives is simplified (Pat-
naik and Gallagher, 1986c). 

The processing of very large systems, say n > 10000, calls 
for further research and numerical experimentation in 
substructuring and iterative methods. A comparative study of 
system-decomposition procedures presently favored in large-
scale constrained optimization may be profitable regarding 
these two areas. 
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Penalty Spring Stabilization of Singular 
Jacobians 

C. A. Felippa9 

Problem Description 

Consider the system of nonlinear equations 

r(u,\) = 0, (1) 

where u is the state vector of n unknowns, r is a vector of n 
residual components, and X is a scalar control parameter. 
These equations are to be solved for varying values of X. The 
additional equation that makes equation (1) determinate is the 
single constraint 

c(u,X) = 0. (2) 

Equations of the type (l)-(2) arise in many applications. For 
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example, in nonlinear structural analysis by the finite element 
method, u collects the displacement degrees of freedom, r col­
lects residual forces, X is a loading parameter, and equation (2) 
is the "arclength" constraint. 

Newton with Augmented Jacobian 

We consider the solution of equations (l)-(2) in the context 
of a continuation procedure. Suppose that a solution u*, X* is 
available or predicted from a previous step. Starting with the 
initial approximation u° = u*, X° = X*, the conventional 
Newton method applied to equations (l)-(2) generates a se­
quence of iterates u*, X*, where k = 0, 1, . . . is an iteration 
step index. The corrections to the state and control variables 

d = u * + 1 - u * , r, = \k+>-\k, (3) 

are obtained by solving the linear algebraic system 

where 

and all known quantities are evaluated at u*, X*. (The negative 
sign for dr/dX is chosen because q is conventionally the in­
cremental loading vector in mechanical problems.) 

The n x n matrix K is the Jacobian matrix of equation (1); 
also called the tangent stiffness matrix in structural 
mechanics. The coefficient matrix of equation (4) is called the 
augmented Jacobian. In many applications K is symmetric 
and sparse and it is of interest to solve the linear system (4) us­
ing techniques that preserve those attributes. The procedures 
described below make use of auxiliary systems of equations to 
achieve that goal. The number of auxiliary systems depends on 
whether the Jacobian K is singular (critical points) or non-
singular (regular points). Both cases are treated in the sequel. 

Regular Points 

Regular points of equations (l)-(2) are solutions at which 
the Jacobian matrix K is nonsingular. If so, performing for­
ward Gauss elimination on equation (4) to get rid of d pro­
duces the scalar equation 

(6 + a r K - 1 q ) 7 / = - ( c + a 7 ' K - 1 r ) . (6) 

Let d? and dr denote the solution of the auxiliary symmetric 
linear systems 

K d r = - r , Kd? = q. (7) 

Then 

•n=-(c + a
Tdr)/(b + aTdg), d = dr + 7/d„. (8) 

Two right-hand sides have to be generally solved at each 
Newton step. The number reduces to one for k > 1, however, 
if modified Newton is used so that K is held fixed for several 
iteration steps and q does not vary. The latter assumption 
holds in structural mechanics applications if the loading is 
conservative and proportional. 

Limit Points 

Limit points are characterized by the condition 

Kz = 0, z r q * 0 , (9) 

where z is a null eigenvector (the "collapse mode" in struc­
tural mechanics) of K. At limit points the Jacobian matrix is 
singular but the condition z rq ^ 0 ensures that the augmented 
Jacobian is not. Although the detection of exact singularity 
may be masked by roundoff in actual computations, indirect 
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Problem Description 

Consider the system of nonlinear equations 

r(u,\) = 0, (1) 

where u is the state vector of n unknowns, r is a vector of n 
residual components, and X is a scalar control parameter. 
These equations are to be solved for varying values of X. The 
additional equation that makes equation (1) determinate is the 
single constraint 

c(u,X) = 0. (2) 
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example, in nonlinear structural analysis by the finite element 
method, u collects the displacement degrees of freedom, r col­
lects residual forces, X is a loading parameter, and equation (2) 
is the "arclength" constraint. 

Newton with Augmented Jacobian 

We consider the solution of equations (l)-(2) in the context 
of a continuation procedure. Suppose that a solution u*, X* is 
available or predicted from a previous step. Starting with the 
initial approximation u° = u*, X° = X*, the conventional 
Newton method applied to equations (l)-(2) generates a se­
quence of iterates u*, X*, where k = 0, 1, . . . is an iteration 
step index. The corrections to the state and control variables 

d = u * + 1 - u * , r, = \k+>-\k, (3) 

are obtained by solving the linear algebraic system 

where 

and all known quantities are evaluated at u*, X*. (The negative 
sign for dr/dX is chosen because q is conventionally the in­
cremental loading vector in mechanical problems.) 

The n x n matrix K is the Jacobian matrix of equation (1); 
also called the tangent stiffness matrix in structural 
mechanics. The coefficient matrix of equation (4) is called the 
augmented Jacobian. In many applications K is symmetric 
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Two right-hand sides have to be generally solved at each 
Newton step. The number reduces to one for k > 1, however, 
if modified Newton is used so that K is held fixed for several 
iteration steps and q does not vary. The latter assumption 
holds in structural mechanics applications if the loading is 
conservative and proportional. 

Limit Points 

Limit points are characterized by the condition 

Kz = 0, z r q * 0 , (9) 

where z is a null eigenvector (the "collapse mode" in struc­
tural mechanics) of K. At limit points the Jacobian matrix is 
singular but the condition z rq ^ 0 ensures that the augmented 
Jacobian is not. Although the detection of exact singularity 
may be masked by roundoff in actual computations, indirect 
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effects may be felt in the form of ill-conditioning when K is 
factored to solve the linear systems (7). 

This problem can be stably solved by combining the solu­
tion of three auxiliary systems. The coefficient matrix of these 
systems is rendered nonsingular by adding a fictitious "penal­
ty" spring stiffness s to the /th equation: 

(K + sE,-)d,= - r , (K + sE,-)d9 = q, (K + sE,)de = se„ (10) 

where e, is the elementary vector of order n, all of whose en­
tries are zero except the /th entry which is one, and E,- = e,e;

r. 
The choice of i is discussed below. As the only modification to 
K is on a diagonal element, its sparseness and symmetry are 
not affected. Let us express the solution of equation (4) as 

d = dr + ad,7 + j8dc, rj= - (c + a r d ) / 6 . (11) 

Solving for 1; from the second equation assumes that b # 0, a 
restriction to be removed shortly. Coefficient a is dimen-
sionless whereas /3 has the physical dimensions of d. Inserting 
(11) into the first matrix equation of (4) yields the right-hand 
side 

Kd-qr;=-r+ja + " + C ] q + .?[ff-ef
rd]e,- (12) 

The values of a and /3 can be determined by requiring that the 
expressions in square brackets vanish. Defining the six inner 
products 

ar = aTdr, aq = nTdq, ae = nrde, 

dri = z?dr, dqi = efdq, dei=e?de, (13) 

the following 2 x 2 unsymmetric linear system results: 

The first equation in (14) has been multiplied through by b to 
avoid breakdown for b = 0. Once a and /3 are computed, the 
increment d is formed from the first of equations (11). The 
value of the fictitious spring stiffness s enters equation (14) on­
ly indirectly through dr, dq, and de. It is recommended that 5 
be taken as large as possible while guarding against overflow; 
a detailed error analysis of this problem is given in Felippa 
(1977). 

Equation (10) shows that three right-hand sides, r, q, and 
seh have to be solved at each step in the general case. But if 
modified Newton is used and q is constant, only one right-
hand side (r) has to be processed for k > 1, assuming of 
course that i remains fixed. 

The vanishing of a because c = c(\) causes no difficulty. 
On the other hand, if b vanishes because c = c(u) some care 
must be taken as the calculation of 77 from the second of equa­
tions (11) breaks down. It is then preferable to use the 
Rayleigh-quotient-like formula 

which results on premultiplying the first of equation (4) by d7". 
The expensive matrix-vector product Kd can be circumvented 
by using an equivalent expression that involves only vector 
operations: 

K d = - r + aq + /3se,--sE,-d. (16) 

Substituting this expression into equation (15) yields 

, „ M-d} 
•q = a + S—-= (17) 

d'q 
in which d, = e,rd. Recovery of 77 from this equation is recom­
mended even if b is nonzero. 

Choosing i 

For choosing / several strategies are possible, and only one is 
mentioned here. Keep an index list of the m components of u 
that have varied most rapidly in previous iterations; for exam­
ple m » n/100. (This is a disguised way of monitoring the fun­
damental eigenvector of the Jacobian.) If ill-conditioning is 
detected at equation j when factoring K to solve the auxiliary 
systems (7), backtract to the closest largest-change index less 
than j , and switch to the limit-point procedure. This strategy 
tries to save most of the factorization work since the factors of 
K and K + sE ; are the same up to the /th equation. 

Bifurcation Points 

A bifurcation point of equation (1) is characterized by a 
variant of equations (9) in which the second condition is z rq 
= 0, this z is called the buckling mode. Both K and the 
augmented Jacobian are singular, and the second row of the 
coefficient matrix in equation (14) vanishes. The occurrence of 
simple bifurcation (the case in which the buckling mode is 
unique) can be detected by monitoring changes of sign of the 
determinant of the augmented Jacobian. A simple bifurcation 
point can be stably treated by solving a 3 x 3 unsymmetric 
system that incorporates an estimate of z. The procedure is 
discussed in Felippa (1987). The multiple bifurcation case re­
mains a frontier research topic. 

Concluding Remarks 

The limit-point treatment presented here is a synthesis of 
two earlier techniques. To traverse limit points, Sharifi and 
Popov (1970) introduced fictitious stiffnesses in the form of 
rank-one updates but did not use auxiliary systems. Rhein-
boldt (1981) discussed the use of auxiliary systems in conjunc­
tion with the partition of the Jacobian matrix. The procedure 
presented here avoids the need for partitioning and conse­
quent special treatment of the elements in the /th row and col­
umn of K; only the diagonal entry is changed. It enjoys the ad­
ded advantage that none of the auxiliary system right-hand 
sides requires access to elements of the K matrix. This would 
be computationally inconvenient should K be stored by blocks 
on peripheral storage, or if its elements are not explicitly 
available as in frontal solution schemes. The connection be­
tween the partitioned-equation and penalty spring treatments 
may be established through the Sherman-Morrison modified-
inverse formula. 

Extension to several penalty springs placed on additional 
equations follows a similar procedure. If m springs are in­
troduced, m + 2 right-hand sides (m of which are elementary 
vectors) have to be solved for at each iteration, although a 
considerable reduction of work is possible if modified Newton 
is used. Such an "overkill" stabilization may be called for if K 
becomes highly rank deficient. Two examples: flow-like 
behavior of a structure undergoing deep plastification or high-
temperature creep, and cable structures with initially un­
stressed members. 
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On the Fracture of Pencil Points 

H. Petroski10 

Introduction 
To ask how and why a pencil point breaks is essentially to 

ask the same fundamental questions that Galileo (1638) did in 
his seminal work on the strength of materials three and a half 
centuries ago. Yet the problem of the fracture of a pencil point 
seems to have a sparse literature. In a 1979 paper, Cronquist 
observed that broken-off conical pencil points always appear 
to be virtually identical in size and shape, and he presented an 
elementary strength-of-materials analysis to explain the 
phenomenon. Cronquist's observation was discussed in a 
popular vein by Walker (1979) and was extended by Cowin 
(1983). In his note on broken pencil points Cowin takes into 
account a more general loading than did Cronquist, but while 
still working within the context of strength of materials. These 
last three references appear to be the only literature explicitly 
on the problem of predicting the size and shape of broken-off 
pencil points. The purpose of the present note is to give some 
background on the problem, to explain an aspect of the frac­
ture that remains unanswered, and to extend the analysis of 
the fracture of pencil points to a broader class of points. 

The kinds of pencil points that have heretofore been treated 
have been the truncated circular cylindrical cones of the 
hardened mixture of graphite and clay that we find in common 
wood-cased pencils and that we are all familiar with from 
school days. The geometry and notation employed by Cowin 
(1983) is shown in Fig. 1. Cronquist (1979) treated only the 
case where the force components F and R combine to give a 
force transverse to the pencil axis, noting that an equal axial 
component of force would change his result by only about ten 
percent, whereas Cowin allowed /-"and R to be completely ar­
bitrary. In both analyses, the normal stress across plane x = 
const was calculated using familiar strength of materials equa­
tions for axial and bending stresses in beams. The maximum 
value of this normal stress was found by Cronquist to occur 
where the ratio of the fracture diameter to the pencil point 
diameter at the writing tip is 3/2, and Cowin essentially con­
firmed this to be an average value under a broad range of 
loading conditions. Perhaps because the actual fracture sur­
face is slanted and makes it difficult to measure the diameter 
where a conical pencil point fractures, Walker introduced the 
ratio N of slant length to tip diameter of the broken-off point. 
In terms of the parameters defined in Fig. 1, 

N= [OW - Q/cos a]/2 tan a (1) 

Walker collected data in a desk-top experiment and found 
reasonable agreement with a predicted value of N of approx­
imately 2.5. 

The results of Cronquist arid Cowin are consistent with our 
experience that sharper points tend to break more easily and 
closer to the point, where the cross-sectional area is small. On 
the other hand, blunt pencil points, of the kinds children seem 
to prefer, are less prone to breaking. But when they do, under 
larger forces than children would normally exert in writing, 
large pieces of the point break off to give the appropriate 
value of TV. (Mechanical pencils, which have essentially right-
cylindrical lead points, will always have their lead break off 
where it enters the metal case, of course, because the max­
imum tensile stress increases linearly with distance from the 
writing surface. Thus, turning out too long a lead from our 
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Fig. 1 Geometry of a pencil point (Cowin, 1983) 

mechanical pencils brings us the same frustrations as making 
our wood-cased pencils too sharp.) 

The characteristic of the broken-off pencil points that was 
inexplicable to Cronquist is that the fracture surface is not ex­
actly perpendicular to the pencil axis. In fact, the fracture sur­
face always slants back toward the pencil shaft as it grows 
from the edge of the pencil point closest to the writing surface. 
Cronquist believed the reason for this behavior to be beyond 
the reach of his simple analysis, and he did not pursue the 
point further. We shall show that the characteristic slant of the 
fracture surface is readily explained in the context of both 
Cronquist's and Cowin's analyses when one looks at the max­
imum principal stress in the pencil lead and not just the max­
imum axial tensile stress. 

Some Historical Background 
The problem of the resistance of a pencil point to fracture is 

essentially that of the strength of a cantilever beam loaded at 
its end, and this is precisely the problem that Galileo con­
sidered in the Second Day of his 1638 discourses on the 
strength of materials, which is generally agreed to be the work 
with which the history of the theory of elasticity and of the ra­
tional determination of the strength of materials properly be­
gins (cf Todhunter and Pearson, 1886; Timoshenko, 1953). 

While Galileo incorrectly assumed a uniform tensile stress at 
the root of the beam to resist the moment of the weight sup­
ported, he did correctly predict that the strength of a uni­
formly thick beam varies as the square of its depth. Galileo 
went on to argue that the profile of a beam of constant 
strength, or a "solid of equal resistance," would have a 
parabola as its generating curve. Such an optimized beam 
would be no more or no less likely to break at one location 
than at any other along its length. However, since the need to 
sharpen continually a pencil point to such an optimal shape 
would be more trouble than it was worth, pencils and the 
shape of their points have developed independent of Galileo's 
insights about optimization of strength. 

The first "pencils" are believed to have been pieces of ac­
tual lead formed in convenient shapes. These were used to 
scribe guidelines such as engineering students used to do 
before lettering by hand their mechanical or structural draw­
ings. The modern pencil had its origins in the discovery of a 
graphite mine in Borrowdale, England, in 1565. At first, 
prismatic pieces of solid graphite were cut for use as pencils, 
and later were encased in protective wood. The wood not only 
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Fig. 2 Lead size as a function of hardness (Svensen and Street, 1962) 
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Ch/se/ Po/nf . 
Fig. 3 Conical and wedge points (Kirby, 1925) 

kept the writer's fingers clean, but also it strengthened the 
graphite prism so that pieces smaller in cross section could be 
used in pencils. When the graphite mine at Borrowdale was 
becoming worked out, alternatives were sought to using solid 
graphite for pencils. In 1790 Nicolas Conte, a French 
mechanic, and Josef Hardmuth of Vienna, perfected a process 
that enabled a mixture of pulverized graphite and clay to be 
used in the manufacture of pencils. This made it possible not 
only to use graphite dust instead of solid graphite, but also to 
make pencils of variable hardness. Soon a variety of pencils 
with circular cylindrical leads were being offered to writers, 
artists, and engineers (Fleming and Guptill, 1936). This variety 
is desirable to this day because paper, being composed of a 
weblike mass of interlaced fibers, exerts a file action on the 
pencil point. Especially in architectural drawing, where tex­
ture is so important, the rougher the paper being drawn on, 
the harder the pencil to be used (Halse, 1960). And in 
engineering drawing, of course, the hardness of the pencil is 
often matched to the fineness of the line being drawn, with 
harder pencils being able to take and hold a sharper point as 
long as they are not pressed too hard against the writing 
surface. 

Problems of Strength 
With a variety of products often comes a variety of 

manufacturing problems, however, and the resistance of pen­
cil leads to breaking is a function of the mixture of graphite 
and clay that they contain. So different writing hardnesses of 
pencils meant that, all other things being equal, different pen­
cils would break at different writing pressures, and this would 

<*> 

Fig. 4 Equivalent loading for wedge-pointed pencil 

mean that those using the pencils would have to adjust their 
touch to the degree of the pencil in their hand. Furthermore, 
the pencil manufacturers would have to adjust their processes 
to take into account different strengths of pencil lead. One 
economical solution to the problem is to make the lead of dif­
ferent diameters in pencils of different hardnesses (and 
strengths) as discussed, e.g., by Svensen and Street (1962). 
Properly adjusting the lead diameter, a whole line of pencils 
could be marketed with essentially the same fracture strength. 
Fig. 2 shows how the lead diameters of a whole range of 
drafting pencils varies from hard to soft. 

One of the disadvantages of a conventional wood-case pen­
cil is that it must be constantly sharpened in order to produce a 
uniform line. The conical point is clearly an easy to one to 
make with a piece of sandpaper, and easier with a mechanical 
pencil sharpener. But, as we all know, and, as discussed 
above, as the analyses of Cronquist and Cowin confirm, the 
sharper we make a conical point, the easier it will break. The 
empirical evidence long ago taught draftsmen that they could 
gain advantages in strength by using another shape for their 
pencils: the wedge or chisel point. This point is illustrated in 
Fig. 3, and it too is easily formed with a sandpaper pad. Ac­
cording to Kirby (1925): "For mechanical drawing (line work) 
use a 6H pencil, sharpened to a chisel (wedge) point at one end 
and to a conical point at the other end. (See Fig. 3.) Use the 
chisel point in ruling lines, and the conical point in marking 
points, as in laying off distances." 

The chisel point has the advantage that it keeps a more con­
stant thickness when used to draw thick lines, such as in ar­
chitectural rendering when the point is pulled along on its wide 
side, as well as to draw thin lines when the point is pulled 
along on its thin side. We shall analyze this pencil point shape 
to determine if it is indeed stronger than the conical shape 
analyzed by Cronquist and Cowin. As with their analyses, we 
shall assume the pencil point is geometrically ideal and 
without nicks or other imperfections. The propensity of a brit­
tle pencil point to break when nicked with the sharpening 
knife was cautioned against in drafting text books (e.g., 
Hoelscher and Springer, 1956) long before fracture mechanics 
became current. 

Stress Analysis of a Wedge-Pointed Pencil 
Timoshenko (1956) has shown that for a transversely loaded 

cantilever having the form of a wedge, with half angle, a, as 
shown in Fig. 4 (with Q = M = 0), the strength of materials 
beam formula can be corrected by a factor j3, where 

4 tan3 a cos4 a 

3 2a- sin 2a 

to give the exact elasticity solution for the maximum normal 
stress,i.e., 

My 
(CTJmax = - 0 - (3) 

(Note that since the normal stress is of the order /•"', the 
stresses would blow up at an infinitely sharp wedge-shaped 
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pencil point as soon as it touched the paper, and the point 
would be immediately broken. This is true for a conical point 
as well (cf Love, 1927).) 

For a typical sharpened pencil point, a = 6 deg, P = 0.99, 
and we see that the method of calculating the maximum nor­
mal stress <rv is not critical in establishing the location of the 
maximum normal stress. However, the exact shear stress on a 
section perpendicular to the pencil axis is given by 

P 16v2 tan3 a cos 4 </> 
xy bh h2 2a-sin 2a K> 

where b is the (constant) width and h the (varying) thickness of 
the section of interest. Thus the shear stress differs from that 
predicted by strength of materials analysis of a beam of 
uniform section in two important aspects: (a) The maximum 
value of the shear stress occurs at the top and bottom of the 
wedge, rather than at the neutral axis; and (b) the maximum 
value of the shear stress is numerically greater than the average 
by a factor of 3/3: 

P 
V7xy /max ^ P bh 

(5) 

The implications of this unbeam-like behavior of the shear 
stress means that at the top and bottom of the wedge the plane 
normal to the x axis is not a principal plane and is threfore not 
a plane of absolute maximum normal stress. 

Since both Cronquist and Cowin adopt a maximum normal 
stress failure criterion in interpreting their calculations for the 
cone, which suffer from the same inability to give a good ap­
proximation to the shear stress behavior at the cone boundary, 
their analysis cannot be expected to predict the inclination of 
the fracture plane. In fact, the actual initial fracture plane can 
be expected to be a plane perpendicular to the stress-free sur­
face of the pencil point. That plane will always have the max­
imum normal stress, and illustrations in the papers of both 
Cronquist and Walker suggest that the fractures of their pencil 
points did indeed initiate across such principal planes. 

Although beam theory is thus still sufficiently accurate to 
predict the location along the pencil axis where the normal 
stresses are maximum, we shall employ the elasticity solutions 
for a wedge loaded as shown in Fig. 4 to predict where the ab­
solute maximum normal stress will occur in a wedge point. 
The elasticity problem of a wedge loaded at its tip by the point 
loads P and Q is a generalization of MichelPs Problem, while 
the problem of a moment acting on the vertex of a wedge is 
Inglis' Problem (see Volterra and Gaines 1971), and these 
loads are statically equivalent to the loads Cowin considered 
to act on the truncated cone of Fig. 1 if we take 

R sin 8 —F cos 6 P 

Q 

M 

(6) 

(7) R cos d + F sin0 

iR (tan a sin 8 + cos 8) 

- IF (tan a cos 6 - sin 8) (8) 
According to Timoshenko and Goodier (1970), the normal 

and shear stresses across surface r = const in the wedge are 
given by 

- 2 P cos <t> 2Q sin 4> 

r(2a + sin 2a) r (2a - sin 2a) 

2M sin 2 <j> 

r2 (sin 2a - 2a cos 2a) 

M (cos 2<t> — cos 2a) 
r2 (sin 2a —2a cos 2a) 

(9a) 

(9b) 

The shear is clearly zero where <j> = a, as the boundary condi­
tions require, so that we can find the location rmax of the max­
imum principal stress along the edge </> = a of the wedge point 
by the condition dar/dr = 0. This procedure gives 

— Direction 
of Movement 

Paper-^ ^Guide 

Fig. 5 Pencil inclined to draw a line (Svensen and Street, 1962) 

MA (a) 

P cos a (2a -s in 2a) — Q sin a (2a + sin 2a) 

where 

A(a) = 
2 sin 2a (sin2 2 a - 4 a 2 ) 

(10) 

(11) 
sin 2a — 2a cos 2a 

For the case where the pencil is simply being pushed down on 
the writing surface, so that F — 0, we have 

A (a) (tan a sin 8 + cos 6) 
(12) 

sin 8 cos a (2a - sin 2a) - cos 8 sin a (2a + sin 2a) 
For a = 6 deg, this gives a positive value of rmax/l > 2 for all 8 
< 88 deg, and this corresponds to the parameter N > 9.5. For 
the standard drawing and drafting practice of exposing 3/8 in. 
of lead before sharpening (see, e.g., Halse, 1960, or Hoelscher 
and Springer, 1956), this would mean that a wedge point 
would have to be less than 0.04 in. thick to cause the max­
imum stresses to occur outside the wood case. 

For the situation where the force F — oo relative to R, we 
can take 

P= -Fcos 8 

Q = Fsin 8 

M=SF (sin 6 - tan a cos 8) 

Inserting these values into equation (11) gives 

(13) 

(14) 

(15) 

A (a) (sin 0 - t a n a cos 8) 

cos 6 cos a (2a - sin 2a) + sin 8 sin a (2a + sin 2a) 
(16) 

For a = 6 deg, this gives rmax/l > 0 for 6 > 6 deg, and for 8 > 
30 deg, this gives rmax/( > 1.5, which corresponds to A > 2.3. 

If we assume a pencil with a wedge-shaped point is being 
used at the recommended angle of 60 deg to 75 deg, as in­
dicated in Fig. 5 (see, e.g., Svensen and Street, 1962, or 
Hoelscher and Springer, 1956), then the location of a possible 
fracture can be predicted more precisely. For 65 deg, for ex­
ample, we have 1.87 <rmm/l < 2.64, which corresponds to a 
range of sizes for broken pencil points of: 

4.1 < Awedge < 7.8 (av. = 5.95) (17) 

which compares with Cowin's 
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1.9 < Ncom < 7.0 (av.= 4.45) (18) 

Since the size of the pencil tip, characterized by Cand a, deter­
mines the thickness or weight of the line drawn with the 
sharpened pencil, it is meaningful to compare the two results 
from equations (17) and (18). On the average, we can see that 
a given pencil, when overloaded in drawing a line of given 
weight, will have larger broken pencil points, as measured by 
the parameter N, when sharpened into a wedge than the same 
pencil sharpened into a conical point. Since the larger N, the 
greater the fracture area, we can also conclude that it would 
take on the average a greater effort to break a wedge-pointed 
pencil. Hence, not only does the wedge-pointed pencil have 
the advantage that it does not have to be twirled to keep line 
weight uniform, but also it can generally withstand a heavier 
hand on the part of the draftsperson. 

Conclusion 
The wood-case pencil is a common technological artifact 

whose size, shape, and composition have no doubt evolved 
with very little, if any, mathematical analysis. Equations flow 
from pencils, but pencils do not come of equations. Indeed, at 
one time during the nineteenth century, arguably the best pen­
cils made in America were manufactured by John Thoreau 
and Co., after a process perfected by John Thoreau's son, 
Henry David, who is remembered neither as a mathematician 
nor as an engineer (Harding, 1965). 

The use of the pencil by engineers and others, in particular 
the customary nature of the point with which drafting and 
sketching has traditionally been executed, also probably 
evolved more through trial and error and serendipity than 
through any deliberate, rational mathematical analysis. But, 
regardless of its origins and use, the pencil is as proper an ob­
ject of analysis as is the natural world and universe. By asking 
why and how a pencil point breaks in the way it does, we are 
not only led to a better understanding of the tools of stress 
analysis and their limitations, but we are also led to a fuller ap­
preciation of the wonders of technology when we analyze the 
aptness of such a manufactured product as the common 
pencil. 
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Inclusion Effects on Stress Measurement in 
Geological Materials 

A. L. Florence11 

Introduction 
Stress measurement in geologic materials by embedded 

gauges is complicated because the gauge forms an inclusion 
with properties different from those of the surrounding 
medium. The sensing element measures the stress or pressure 
in the inclusion, which then has to be related to the far-field 
stress component we wish to measure. The analytical results 
presented here provide this relationship for elastic axisym-
metric quasi-static stress fields. 

Our analysis was motivated by a need to support our 
laboratory experiments to develop and apply miniature gauges 
for obtaining compressive stress measurements in rocks, rock 
simulants, and soils. As background, we describe briefly the 
design of the stress gauge shown in Fig. 1. It consists of a thin 
disk of elastic material (2.0 cm diameter and 0.2 cm thick) cast 
around a very thin flat foil (0.3 cm square and 0.002 cm thick) 
of piezoresistive material, such as ytterbium. The gauge is thin 
to allow the stress normal to the face to have the dominant ef­
fect on the inclusion stress field. This normal stress is the com­
ponent the gauge is trying to measure. The sensing element is a 
piezoresistive conductor with a scalar response, consisting of a 
resistance change, to applied tensorial stress and strain (Gupta 
1983, 1984). We, therefore, have to restrict the inclusion 
stress-strain state so the resistive change can be related to that 
state. Such states are generally hydrostatic or uniaxial strain 
and they are calibratable. The hydrostatic state is provided by 
a gauge of fluid-like material (low shear modulus) around the 
foil. The uniaxial strain state is provided by bonding the foil to 
a thin, relatively stiff, material, such as steel. Thus, we can 
relate the resistance change to the pressure in a fluid inclusion 
or to the inclusion stress component normal to the surface of 
the sensing foil. Our task is to relate the inclusion pressure or 
stress normal to the disk face to the medium far-field stress 
normal to the disk face. 

Our analytical approach to the elastic inclusion problem is 
first to replace the thin disk with a thin oblate spheroid having 
the same aspect ratio, so that we can employ Eshelby's theory 
of inclusions (1958) to relate the inclusion and the far-field 
stress loading. We then examine the results to obtain the ef­
fects on this relationship of the loading stress ratio, the inclu­
sion aspect ratio, and the elastic properties of the inclusion 
and medium. We assume that the very thin foil embedded in 
the inclusion has no effect on the stress distribution 
throughout most of the inclusion. In fact, the foil forms an 
additional inclusion problem. The analysis of an oblate 
spheroidal inclusion under far-field loading has been treated 
(Edwards, 1951; Shibata and Kanji Ono, 1978), but our results 
were derived in applicable form by Eshelby's method because 
we are employing the method in a more general context of 
gauge design. 

Oblate Spheroidal Inclusion 
We consider an oblate spheroidal inclusion at the origin of 

axes (xl ,x2,xi) and x3 the axis of symmetry. Let the semiaxes 
have lengths a, b, and c such that c < b = a. The applied 
stress afj is also symmetric about the x3 axis, so oft = a^2, and 
afj = 0 (/ ^ j). Application of Eshelby's method leads to the 
inclusion stress formulas 
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1.9 < Ncom < 7.0 (av.= 4.45) (18) 

Since the size of the pencil tip, characterized by Cand a, deter­
mines the thickness or weight of the line drawn with the 
sharpened pencil, it is meaningful to compare the two results 
from equations (17) and (18). On the average, we can see that 
a given pencil, when overloaded in drawing a line of given 
weight, will have larger broken pencil points, as measured by 
the parameter N, when sharpened into a wedge than the same 
pencil sharpened into a conical point. Since the larger N, the 
greater the fracture area, we can also conclude that it would 
take on the average a greater effort to break a wedge-pointed 
pencil. Hence, not only does the wedge-pointed pencil have 
the advantage that it does not have to be twirled to keep line 
weight uniform, but also it can generally withstand a heavier 
hand on the part of the draftsperson. 

Conclusion 
The wood-case pencil is a common technological artifact 

whose size, shape, and composition have no doubt evolved 
with very little, if any, mathematical analysis. Equations flow 
from pencils, but pencils do not come of equations. Indeed, at 
one time during the nineteenth century, arguably the best pen­
cils made in America were manufactured by John Thoreau 
and Co., after a process perfected by John Thoreau's son, 
Henry David, who is remembered neither as a mathematician 
nor as an engineer (Harding, 1965). 

The use of the pencil by engineers and others, in particular 
the customary nature of the point with which drafting and 
sketching has traditionally been executed, also probably 
evolved more through trial and error and serendipity than 
through any deliberate, rational mathematical analysis. But, 
regardless of its origins and use, the pencil is as proper an ob­
ject of analysis as is the natural world and universe. By asking 
why and how a pencil point breaks in the way it does, we are 
not only led to a better understanding of the tools of stress 
analysis and their limitations, but we are also led to a fuller ap­
preciation of the wonders of technology when we analyze the 
aptness of such a manufactured product as the common 
pencil. 
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Inclusion Effects on Stress Measurement in 
Geological Materials 

A. L. Florence11 

Introduction 
Stress measurement in geologic materials by embedded 

gauges is complicated because the gauge forms an inclusion 
with properties different from those of the surrounding 
medium. The sensing element measures the stress or pressure 
in the inclusion, which then has to be related to the far-field 
stress component we wish to measure. The analytical results 
presented here provide this relationship for elastic axisym-
metric quasi-static stress fields. 

Our analysis was motivated by a need to support our 
laboratory experiments to develop and apply miniature gauges 
for obtaining compressive stress measurements in rocks, rock 
simulants, and soils. As background, we describe briefly the 
design of the stress gauge shown in Fig. 1. It consists of a thin 
disk of elastic material (2.0 cm diameter and 0.2 cm thick) cast 
around a very thin flat foil (0.3 cm square and 0.002 cm thick) 
of piezoresistive material, such as ytterbium. The gauge is thin 
to allow the stress normal to the face to have the dominant ef­
fect on the inclusion stress field. This normal stress is the com­
ponent the gauge is trying to measure. The sensing element is a 
piezoresistive conductor with a scalar response, consisting of a 
resistance change, to applied tensorial stress and strain (Gupta 
1983, 1984). We, therefore, have to restrict the inclusion 
stress-strain state so the resistive change can be related to that 
state. Such states are generally hydrostatic or uniaxial strain 
and they are calibratable. The hydrostatic state is provided by 
a gauge of fluid-like material (low shear modulus) around the 
foil. The uniaxial strain state is provided by bonding the foil to 
a thin, relatively stiff, material, such as steel. Thus, we can 
relate the resistance change to the pressure in a fluid inclusion 
or to the inclusion stress component normal to the surface of 
the sensing foil. Our task is to relate the inclusion pressure or 
stress normal to the disk face to the medium far-field stress 
normal to the disk face. 

Our analytical approach to the elastic inclusion problem is 
first to replace the thin disk with a thin oblate spheroid having 
the same aspect ratio, so that we can employ Eshelby's theory 
of inclusions (1958) to relate the inclusion and the far-field 
stress loading. We then examine the results to obtain the ef­
fects on this relationship of the loading stress ratio, the inclu­
sion aspect ratio, and the elastic properties of the inclusion 
and medium. We assume that the very thin foil embedded in 
the inclusion has no effect on the stress distribution 
throughout most of the inclusion. In fact, the foil forms an 
additional inclusion problem. The analysis of an oblate 
spheroidal inclusion under far-field loading has been treated 
(Edwards, 1951; Shibata and Kanji Ono, 1978), but our results 
were derived in applicable form by Eshelby's method because 
we are employing the method in a more general context of 
gauge design. 

Oblate Spheroidal Inclusion 
We consider an oblate spheroidal inclusion at the origin of 

axes (xl ,x2,xi) and x3 the axis of symmetry. Let the semiaxes 
have lengths a, b, and c such that c < b = a. The applied 
stress afj is also symmetric about the x3 axis, so oft = a^2, and 
afj = 0 (/ ^ j). Application of Eshelby's method leads to the 
inclusion stress formulas 
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Piezoresistive Foil 

Copper Foil Leads 

Plastic Disc 

Fig. 1 Schematic of a miniature stress gage 

Wan = {n[{m-1)B' + l] + m(n-l)A'/a}pA 

- ln(m-l)aB + m[(n-l)A + l]}TA 

3Ha33={nl(m-l)B' + l]-m(n-l)2A'/a)pA 

- {n(m- \)a.B-2m[(n- \)A + l j l r 4 

where 

H= [{n - l)A + \}[{m - \)B' + 1] - (m - \)(n - \)A 'B 

A = \-{\(,-K/3)R B=l-A-4RIa 

A'=A-(Q-R)Ia 

B' = \-A' -RIa-Q[{4-w/3)-Ia}3k2/{\-k2) 

2 = 3 / 8 ^ ( 1 - ^ # = ( l - 2 e ) / 8 7 r ( l - x ) 

Ia = 2-Kk{(cos-^k)/(l-k2yn-k}/(l-k2) 

k = — ( 0 < £ < 1 ) 
a 

(1) 

(2) 

pA=aA
3+2oA

x T ^ = o f 3 - ^ , 

a = 3K/2fi m = n*/ii n=K*/K 

(4) 

(5) 

(3) 
In these formulas K, ix, and v are the bulk modulus, shear 
modulus, and Poisson's ratio. An asterisk indicates the inclu­
sion material property. 

Because of our interest in thin gauges in order to minimize 
the difference between the inclusion stress <r33 and the free-
field stress component aA

3 to be measured, we can simplify 
stress formula (2) by expanding in powers of the inverse aspect 
ratio k = c/a and neglect terms with powers of k greater than 
unity. This process leads to 

"33/033 = 1 - ^/16)(B0/H0) {3(m - l)(/i - 1X3,4 - 1) 

-2(m-l)-4(n-l)-2(n-m)A]k 
where 

H0 = nA+mB0 B0 = \-A A = ofl/o
A

3 

In equations (5), the constants A, B0, and H0 apply to an in­
finity thin disk, A being the same as that given by equations 
(3). The far-field stress ratio A is called here the loading ratio 
and we shall restrict our attention to the uniaxial to 
hydrostatic range, 0 < A < 1. The design formula becomes 
inaccurate when both m = \x,*/\t, and n = K*/K are small 
because of the binomial approximation made for H l; a guide 
is that we should have k < < 2n when v = 1/3 and m = n. 
The case of both m and n small is not of practical interest. 

If we want to subject the sensing foil to a hydrostatic state 
by using an inclusion material of very low shear modulus (m 
~ 0), we can approximate design formula (4) by 

a33/a
A

3 = 1 - (7r/4an) (1 - (n - l)(9A + l)/2-nA)k (6) 

in which a and A are functions of v for the medium according 
to equations (3). 

Discussion of Results 

Our discussion on the results of the analysis is focussed on 
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gauge inclusions of fluid-like material, that is, material with a 
low shear modulus. Under quasi-static and static conditions 
the fluid will not allow an undesirable stretch of the 
piezoresistive foil. Under dynamic conditions, however, 
stretching may be induced by viscous drag. 

The results are presented to examine the ratio, a3i/a
A

}, of 
the inclusion stress being measured to the far-field stress we 
want to measure. We shall call this ratio the registration fac­
tor. We either require this factor to be close to unity or 
relatively invariant under the range of loading factors, 0 < A 
< 1. Our calculations have shown that the worst conditions 
are caused by uniaxial stress described by A = 0. 

Figure 2 shows the effect on the registration factor, a^/a^, 
of the bulk modulus mismatch n over the full range of oblate 
spheroidal aspect ratios for a fluid inclusion subjected to 
uniaxial stress. It is immediately evident that the inclusion 
should be thin with inverse aspect ratios below k = 0.05. Then 
the registration factor is close to unity and fairly insensitive to 
the bulk modulus ratio (for 0.2 < n < 1.0). 

Figure 3 shows how the registration factor varies with the 
bulk modulus ratio for a few thin fluid inclusions under uniax­
ial stress conditions. If for practical reasons the inclusion must 
have an inverse aspect ratio larger than desired, we see that the 
bulk modulus ratio must be large enough. For example, if the 
minimum practical value of inverse aspect ratio is k = 0.1 we 
should try to select a fluid-like material to give n > 0.4. 

Should the inclusion material have some shear resistance, 
and the oblate spheroid is slender, say k = 0.1, the influence 
of small values of the shear modulus ratio, m, is fairly small, 
as shown in Fig. 4. The registration factor increases from 
about 0.7 to 0.75 when k = 0.1, n = 0.2, and m increases 
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from zero to 0.1. This influence is less if the bulk modulus 
ratio is increased. 

Whenever the oblate spheroid is slender (k < 0.1) and the 
bulk modulus ratio is large enough (n > 0.2) the change in 
registration factor with loading ratio A is small, which is a very 
desirable feature during nonproportional loading. 

Figure 5 shows a comparison of the pressures in a thin fluid 
gauge inclusion under uniaxial stress loading. The full lines 
were obtained from equation (2) with m = 0, A = 0, k = 0.05 
and 0.10, and the dashed lines were obtained from the approx­
imate formula (6) for a thin fluid inclusion, also with A = 0, k 
= 0.05 and 0.10. The comparison for A = 1 (not shown) is 
even better. Provided n s 2k, Fig. 5 shows that (6) is a useful 
design formula that can be used to obtain the influence on 
stress measurement with a fluid gauge of loading ratio, bulk 
modulus ratio, medium Poisson's ratio, and low inverse 
aspect ratios. For example, as «—1 we see immediately from 
(6) that the registration factor tends to 

ff33/o£ = 1 - ( 1 - A ) (irk/Aa) 

For v = 1/3, and hence a = 4, we have 0-33/0̂ 3 = 
1 - ( 1 -A)7rA:/16. Because irk/16 is small, the stress measure­
ment is insensitive to the loading ratio. Examination of (6) and 
Fig. 5 shows that satisfactory registration factors are obtained 
if the bulk modulus ratio lies in the range 0.3 < n < 1. 

Onset of Plasticity 
We assume that as loading increases the fluid-like inclusion 

material remains elastic and so yielding first occurs in the 
medium. The location of yielding will be at the inclu­
sion/matrix interface. To find the stress there we again call 
upon Eshelby's method. Generally, yielding will occur first at 

the edge of a slender inclusion, a point on which can be 
described by xx = a, x2 = 0, x3 = Q. If we let the stress dif­
ference there be 0-33 - afy = T™, having a Tresea yield condi­
tion in mind, we find that 

HTM= {-{n- l)[{m- l)B' + 1] + ( m - l)(A'/a) }pAA/a 

+ (m-l){(n-l)aB+[(n-l)A + \]}TAA/a 

- ( / j - l K ^ ' / a J ^ + K w - l M + l l r 4 (7) 

As a special case of interest a slender fluid inclusion (k ~ 0, m 
= 0) subjected to a far-field uniaxial stress loading (033 = p4 

= r4, A = 0) reduces equation (7) to 

TM/<j3
4
3=(l-n)(l~a)(a-3A)/a2n-l/oi+l/An (8) 

After setting T " = aa, the uniaxial compressive strength of the 
medium material (8) gives the uniaxial loading for incipient 
plastic deformation around the edge of the slender fluid inclu­
sion. If the material has v = 1/3, equation (8) gives a33 = 8n 
CT0/(9 + ri). As expected, if the bulk modulus of the fluid is 
much lower than that of the medium the loading range for 
elastic response (0-33 « na0) becomes limited. 

Conclusions 
We have obtained theoretical results to support our 

laboratory experiments for developing a miniature stress 
gauge for measuring compressive stresses in geologic materials 
under axisymmetric quasistatic elastic conditions. The results 
have focussed on a gauge inclusion made of fluid-like material 
to simplify the interpretation of the piezeoresistive foil 
resistance change due to stress and strain. 

The results show that the best stress registration factors 
(0-33/0-33) are obtained if the inclusion has a high aspect ratio (k 
< 0.1), and a bulk modulus ratio that is not too low (0.3 < n 
< 1.0). These requirements ensure a registration factor that is 
not too far below unity, (0.8 < a33/a33 < 1.0), and insensitive 
to the far-field loading ratio (0 < A < 1). Above all, the 
results determine the factor in terms of the parameters so that 
stress gauge development is guided. 
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Table 1 Comparison of displacement Vhb and deflections Vb 
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Fig. 1 Principle of superposition for calculating normal displacements 
on the surface of a beam 

1 Introduction 
The problem of indentation of a beam supported at both 

ends has been solved by Sankar and Sun (1983) and Keer and 
Miller (1983). The basic principle in both methods was using 
the elasticity solution to describe displacements and stresses in 
the vicinity of contact, and using the beam-theory equations to 
describe the global behavior. They differed in the numerical 
technique of solving the contact problem, but reached essen­
tially the same conclusions. It may be noted that the basic in­
formation needed to solve a contact problem is the Green's 
function for surface displacements. Then, the problem may be 
formulated in terms of an integral equation, which may be 
solved numerically. Once the contact area and the contact 
stresses beneath the indenter are found, the stress field in the 
contacting bodies can be solved by using the equations of 
elasticity. 

In this paper an approximate Green's function for normal 
displacements on the surface of a beam is proposed. The in­
tegral equation for frictionless contact between a beam and a 
rigid cylindrical indenter is formed in terms of the Green's 
function. The integral equation is solved by a least squares ap­
proximation procedure. A numerical example is given for the 
problem of central indentation of a simply supported isotropic 
beam by a smooth, rigid cylinder. The results for the contact 
stresses beneath the indenter are compared with those given by 
Keer and Miller (1983). 

2 An Approximate Green's Function 
Consider the problem of a simply supported beam of rec­

tangular cross section and unit width subjected to a concen­
trated force P as shown in Fig. 1(a). In the context of contact 

x/h 
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0.7 
0.8 
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4.6667 
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8.4612 
8.1347 
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7.4401 
7.0729 
6.6932 
6.3016 
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5.4858 
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4.6313 

<vb" v h b ) ' v hb 
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0.00869 
0.00875 
0.00871 
0.00862 
0.00849 
0.00833 
0.00816 
0.00798 
0.00781 
0.00764 

problems our interest is in determining the surface 
displacements v(x, 0) in the v direction. As described in 
Timoshenko and Goodier (1970) the solution to the problem 
in Fig. 1(a) can be obtained as the superposition of solutions 
of systems shown in Figs. 1(b) and 1(c). In the above reference 
such a superposition procedure has been used to calculate 
stresses in a beam subjected to a concentrated force. We shall 
extend the same method for determining the displacements as 

v(x,0) = vh (x,0) + vhb (xfi), (1) 

where vh and vhb are the displacements of systems in Figs. 1(b) 
and 1(c), respectively. 

In Fig. 1(b) the force P acts on a half-plane. The expression 
for surface displacements in a half-plane of unit thickness 
under plane stress is given by (Timoshenko and Goodier, 
1970) 

vh(x,Q)= -(IP/TTE) log 1*1 + constant. (2) 

It will be shown later that in contact problems we need only 
relative displacements, and there is no need to evaluate the 
constant term. 

In Fig. 1(c) radial tensile stresses act on the sides of the rec­
tangular beam supported at the ends. The magnitude of these 
radial stresses are equal to the magnitude of the compressive 
stresses on face ABCD in the half-plane in Fig. 1(b). 
Displacements vhb(x, 0) for the problem shown in Fig. 1(c) 
can be obtained from the beam theory. It will be further 
shown that the displacement vhb is approximately equal to the 
deflection vb in a beam subjected to a concentrated force P as 
shown in Fig. 1(d). 

The bending moment about the centroid at any section of 
the beam in Fig. 1(c) can be easily computed if we note that 
the radial tractions on face ABE are statically equivalent to the 
radial pressure over the circular arc FG of an arbitrary radius r 
in Fig. 1(b). The expression for this radial pressure distribu­
tion is given in Timoshenko and Goodier (1970) as 

-(2Pcosd)/-irr, (3) 

where 6 is measured in a counter-clockwise sense from the y 
axis. The resultant of this radial pressure is equivalent to two 
forces Fx and Fy (Fig. 1(c)) acting at O given by 

and 

Fx=P(l+cos2(j>)/2ir 

F'= P (-w - 20 - sin20)/27r, 

(4) 

where tan$ = x/h. 
The bending moment M(x) at any section can be calculated as 

M(x)=\P(s-x)-Fx(h/2)+Fyx, (5) 

where X = 1 - s/l. 
The displacement vhb is then obtained by integrating M(x) 
twice as follows: 
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Fig. 2 Central indentation of a simply supported beam 
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Fig. 3 Contact stress variation in a simply supported beam 

[2x3 t a n - ' i + l o g C l + ^ l + ^jf+Cj, 

(6) 

12ir 

where x = x/#. 
In equation (6) E is the Young's modulus, / is the moment 

of inertia of beam-cross section, and s is the distance of force 
P from the right support. The constants of integration c, and 
c2 can be determined from the conditions that displacements 
are zero at x = s and x = (s — I). 

The displacements thus obtained were compared with the 
deflection vb (x) of a beam subjected to a concentrated force 
P calculated using the elementary beam formula. The agree­
ment was excellent for large Uh ratios, and also when the load 
was not very close to either support. The comparison for a 
worst case (Uh = 10 and s/t = 0.2) is given in Table 1. It may 
be noted that the maximum difference in displacements occurs 
near the point of application of the concentrated force, but it 
is still less than 1 percent. An interpretation of this agreement 
can be that the resultant of Fx and Fy in Fig. 1(c) pass very 
close to the centroid at the section through E, and does not 
contribute much to the bending moment, making M(x) ap­
proximately equal to \P(s — x), which is identical to the pro­
blem in Fig. 1(d). It should be remembered that vhb or vb is 
only part of the solution to which vh has to be added. 

In conclusion, it has been shown that the transverse 
displacements on the surface of a beam due to a concentrated 
force can be calculated by superposing the displacements on 
the surface of the half-plane and the beam-theory deflections. 
The solution for a concentrated force can then be used as a 
Green's function for computing displacements due to any 
other type of loading on the beam. 

3 Central Indentation of a Simply Supported Beam 
Consider a simply supported beam of length I and thickness 

h (Fig. 2). The beam is assumed to be of unit width and is in a 
state of plane stress parallel to the x-y plane. The beam is in­
dented by a rigid cylindrical indenter with a parabolic profile 
given by y = — x2/2R. The contact is assumed to be smooth. 
Our interest is in determining the contact stress distribution 
p(x) = — oyy (x, 0) beneath the indenter. 

We start with a known contact length 2c symmetrical about 
the center of the beam. The contact length is divided into Nd 

number of divisions. The unknown contact stresses are as­
sumed to be uniform over each division, that is, over they'th 
division p(x) = Pj. The p/s are determined from the condi­
tion that the deformed shape of the beam in the contact region 
should conform to the shape of the indenter. This is achieved 
by choosing Nc number of collocation points x,-'s including 
Ul = c, and requiring that 

v(xr,0)-v(xh0) = (xj- x2
r )/2R,i=l ,NC, (7) 

where xr is a reference point in the contact region. The left-
hand side of equation (7) can be found as a linear function of 
p/s using the superposition principle described in Section 2. 
Thus, the system of equation (7) can be written in the form 

%Aupj=(x}-x2)/2R,i=l,Nc. (8) 

The number Nc has to be at least equal to Nd, but it was found 
that the variation of contact stresses would be smooth if 7VC > 
Nd, and the least squares solution procedure was used to solve 
for the p / s . In the numerical examples Nc was equal to 25 and 
Nd was equal to 20. The IMSL subroutine LLSQF was used in 
a VAX-11/780 computer to solve the system of linear 
equations. 

In order to compute Aj/s, the solution for relative normal 
displacements on the boundary of the half-plane due to a 
uniform load, sayp over -t < x < t, is needed. For the case 
of plane stress the relative displacements can be expressed as 
(Timoshenko and Goodier, 1970) 
vh(x,0)-vh(0,0) = (-2pt/irE)[(\-x)\og\l-x\ 

+ ( l + * ) l o g l l + x l ] , (9) 

where x = x/t. 
The contact stress distribution shown in Fig. 3 corresponds 

to the case I = 50.8 mm, h = 2.54 mm, R = 25.4 mm, and E 
= 6.8971 GPa (106 psi). The results agree well with those 
given in Sankar and Sun (1983). In Fig. 3 the symbols repre­
sent the results obtained by Keer and Miller (1983). Again, the 
agreement is quite good. 

4 Summary 
The normal displacements on the surface of a beam can be 

obtained by superposing the beam-theory deflections and the 
corresponding half-plane solutions. The restriction is that the 
load should not be very close to a support. This method of 
superposition simplifies the formulation of the problem of 
contact between a beam and a rigid indenter. Although the 
numerical example was concerned with the indentation of a 
simply supported beam, this method can be easily extended to 
other boundary conditions, and also to the case of asym­
metrical indentation, where the contact stresses may not be 
symmetrical about the indenter. 
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On Singular Solutions for Inclusion Prob­
lems in Plane Elasticity 

G. R. Miller1315 and R. P. Young1415 

Introduction 
In a series of papers (Dundurs and Hetenyi, 1961; Hetenyi 

and Dundurs, 1962; Dundurs and Mura, 1964; Dundurs and 
Sendeckyj, 1965) Dundurs and coworkers have presented solu­
tions to the class of problems involving edge dislocations and 
concentrated force type singularities interacting with circular 
elastic inclusions. As later discussed by Dundurs (Dundurs, 
1968), these types of singularities are closely related, having 
similar Airy stress function representations. The purpose of 
this note is to solve again this class of singular problems using 
a unified complex variables approach, which, beyond pro­
viding a means of deriving the appropriate complex potentials 
in a direct manner, further emphasizes the close relationship 
between the dislocation and concentrated force solutions. A 
similar approach has recently been used by Rubinstein (1986) 
for the limiting cases of a rigid inclusion and a void. 

Analysis 

The starting point of the analysis is the well-known for­
mulation of Muskhelishvili (1954) written in polar form: 

a„ + /Yrf =** (z) + ** (z) \z$'k (z) + *k (z)] 
z 

(1) 

3 

~dd 

iz C 
[ux + ivy]=-—[«A(z) 

Z J 
(2) 

in which: z = x+iy; *<- and ¥k are complex functions of z, 
with k = 1, 2 designating the region of interest: Izl > a 
defines region 1; Izl < a defines region 2; and the respective 
material constants are fi and K {(JL is the shear modulus, while K 
= 3-4i> for plane strain, and K = (3 -y) / ( l + c) for plane 
stress). The solution sought must contain the proper singulari­
ty at a given point, say z = z0, and the tractions and 
displacements must be continuous across the interface be­
tween the two materials at Izl = a. To meet this latter condi­
tion the new set of complex potentials Qk(z) are introduced as 
follows: 

- / a 2 \ a2 - /a2\ a2 . /a2\ 

Qi(z) = 
\z\>a 

. /a2\ a2 . /a2\ a2 . /a2\ 
(3) 

Izl <a 

fi2(z): 
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2/i i 2 ^ 2 

Izl >a 

2ii2 2/X[ 

Izl <a 

• L M T K O - T - M T ) ] 

• [<)-T <)--?-•'£)] 
(4) 

in which the usual notation * ( z ) = ^ ( z ) is used. These new 
potentials have been chosen such that for z — t+ = aew (i.e., z 
approaches the circular boundary from the outside), the 
following relations hold: 

36 

[arr + /r r t],+ - [orr + IT„]2- = fi,+ (t) - Of (0 

{[ux + iVy\t -[ux + ivy]j;] 

= a/e" ,{Q2
+(0-Gi"(0) 

(5) 

(6) 

That is, the jumps in the boundary tractions and 
displacements correspond to the jumps in the potentials across 
the interface. Conversely, if the potentials defined in equa­
tions (3) and (4) are analytic across the interface, then there 
will be no jump in the corresponding tractions and 
displacements. To determine the appropriate potentials, con­
sider the well-known singular potentials corresponding to 
either a point force or an edge dislocation acting at a point, z0: 

o*i U ) = -
z-z0 

o*i (z) = 
B Az0 

(7) 

z - z 0 (z-z0)
2 

These potentials give rise to logarithmic displacements or to 
net forces acting on closed contours, depending on the com­
plex constants, A and B. In particular, for a dislocation we 
have: 

A=B = 
n{[ux] + i[vy]) 

TM(K+1) 

while for a concentrated force the appropriate values are: 

X+iY 
A = -B/K--

2TT(K+1) 

(8) 

(9) 

In equation (8) the square brackets denote displacement 
jumps, while in equation (9) X and Y represent the concen­
trated force components in the x andy directions, respectively. 
Equations (7) have been written assuming the singularity exists 
in region 1, but the reverse choice could be made equally well. 
For the case at hand, however, the corresponding starting 
potentials for region 2 may be taken as 0 $ 2 = 0*2 = 0. 
Transforming these starting potentials according to equations 
(3) and (4) gives rise to the following expressions for the cor­
responding 0Qk: 

0QAz)-

(z-z0) 
Izl >a 

-*S d 1 
Z L ( « 2 / z - Z n ) 2 J a2/z-z0 z L ( a 2 / z - z 0 ) : 

(10) 

a2 r B 

z2 L a 2 / z - z , 

ZQA 

Z0 ( t fVZ-Zrj)2 

Izl <a 
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B 
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Since for these potentials 0fi/ - 0Q]~ ^ 0, the interface con­
dition is not satisfied. To correct this the additional potentials 
RQj are introduced as follows: 

/A(z) = 

A a2 r A "I 
ffVz-z"o z L ( a 2 / z - z 0 ) 2 J 

a2 r £ 

z2 Lfl2 /z-z0 (a: 
Zo-4 
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(z~z0) 

/ z - z 0 ) 2 - i (12) 
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Izl < a 

«fi2(z) : 

1 

2/i, 

( A a2 r ^ "I 

U 2 / z - z 0
 + T L(a 2 /2-Zn) 2 J 
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2 
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Izl >a 

]} 
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Noting that these additional potentials are nonsingular, it can 
be seen that the total potentials Qk = 0Qk + RQk will be 
analytic everywhere, thus satisfying the interface condition, 
and will possess the proper singular behavior as embodied in 
the 0Qk terms. 

The remaining conditions the solution must satisfy are those 
at infinity and at the origin. Requiring that the stresses vanish 
at infinity and be bounded at the origin leads to the addition 
of a constant term to each of the total potentials, Qk. To see 
this, first note that the relations (3) and (4) may be inverted, 
giving the following matrix expressions for the $k and ^rk in 
terms of the Qk: 

for z>a: 

* , ( z ) 

040-40 
2|t*iiU2 

l/2/x2 1 

-K]/2ft! 1 

Qife) 

02(z) 
(14) 

fo rz<a : 

*2U) 

< K <)--£<) 
(15) 

2 ^ 2 r i / 2 ^ i 11 r fii^) 

M2 + K2M1 |_ - K 2 / 2 / X 2 1 J |_ G2fe) 

The potentials * t can be determined from these expressions 
(for z in the appropriate region), while the ¥k can be deter­
mined in the appropriate region by noting that for I z I > a, 
I a2/z I < a, and vice versa. Thus for ¥l (z) the correct expres­
sion for Izl > a can be obtained from equation (15): 

*,(z)=-^-[*,(z)-**,'(*) 

*2 / * l 
Q ( T ) -

2MJM2 
a (T)] (16) 

^2 + «2Ml " ̂  Z ' M2 + K2M1 

The analogous expression for ^2(z) for Izl < a is determined 
from equation (14): 

* 2 ( z ) : $2(z)-z<f>i(z) 

K-1^2 

^!+Kill2 
fi (T)-

2MlM2 

Ml +K1M2 
• Q . m (17) 

Thus the stress conditions at the origin and at infinity can be 
cast in terms of conditions on the potentials through equations 
(1) and (2). In the present case these conditions become: 

fiJt(z)~0(l/z) as Iz l -00 (18) 

and 

[*2(z)-z#2'(z) + 

M l + K 1 ^ 2 \ Z ' J 

*lft> 

^!+K,/i2 

. , P2^ 
•fi, 

(T) 

as l z l - 0 (19) 

Substituting the total potentials Qk = 0Qk + RQk into these 
expressions then makes it possible to determine the additional 
constant terms required. The final expressions for the poten­
tials * t and yk can then be derived from equations (10)-(17), 
thus making it possible to calculate the stresses through rela­
tions such as those in equations (1) and (2) (alternatively, ex­
pressions such as equations (1) and (2) may be derived in terms 
of the fl potentials directly). The final potentials are as 
follows: 

A ( 3 - a r A a2 V A "1 

* ' ( Z ) = z - z 0 1+/3 U 2 / z - Z n +~z~\-(a2/z-z0)
2\ 

a* r B z0A 

-2/z-

A 

* i ( z ) = 
B 

/Z-ZQ 

Az0 

rl^3 
-z0 ( z - z 0 ) 

( a + /3 \ A 

7 a2/z-z, 

(a2/z-z0)
2 

a2 r 

2 + —2-j*i(z)-Z*i ' (z) 

(20) 

zA 
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(22) 
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in which 

M= (l + «) -[(«-0) — (1-/3) 

(23) 

(24) 

(25) 

( a - l ) ( l + a - 2 0 ) L z0 Zo 

These potentials have been written in terms of Dundur's con­
stants (Dundurs, 1968): 

a = [H2(KI + 1) - /x, (K2 + l)]/[^2(/t, + 1) + n} (K2 + 1)] 

^ = [At2(«i - 1) -/*i («2 - l)l/[M2(«i + 1) + /*J («2 + 1)] 
and it should be noted that the stresses outside the inclusion 
are to be calculated using * , and ¥ , , while the stresses inside 
the circle are determined by 3>2 and '4r

2. 
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Levy Type Solutions for Symmetrically 
Laminated Rectangular Plates Using First-
Order Shear Deformation Theory 
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Fig. 1 Nondimensionalized center deflection versus side to thickness 
ratio of orthotropic plates under uniformly distributed, q0 

here in conjunction with the state-space concept. The analysis 
concerns the solution of the first-order transverse shear defor­
mation theory of symmetrically laminated rectangular plates 
with two opposite edges simply supported and the remaining 
edges subjected to a combination of free, simply supported, 
and clamped boundary conditions. 

Governing Equations 

Consider a rectangular (axb) laminated plate composed of 
Northotropic layers, symmetrically located with respect to the 
midplane of the laminate. For such symmetric composite flat 
plates the stretching and bending states of stress are uncou­
pled. The equations governing the transverse bending are 
given by (Reddy, 1984) 

9 / , dw \ d / , dw \ 

d 

dx 

(A. dx 
+ D, a*, 

By 

dy 

a ^ 
h°*U%+%) 
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Introduction 

Closed-form solutions for the bending case of the classical 
laminated plate theory and the first-order shear deformation 
theory were developed by Whitney and Leissa (1969), Whitney 
and Pagano (1970), Bert and Chen (1978), and Reddy and 
Chao (1981) for two types of simply supported boundary con­
ditions and certain lamination schemes (Reddy, 1984). These 
served as excellent references for comparison by numerical 
analysis (Reddy, 1980). Such closed-form solutions of the 
first-order shear deformation theory for composite laminates 
with other types of boundary conditions are not reported in 
the literature. The present study deals with the development of 
Levy-type solutions originated by Levy (1899) and approached 
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-A»(4,x + —)=0 

D,, 
dx\dy dx) dv V 3y 

d 

"a7 dx dy > 

-A«(*>+-W) = o (i) 

Here w denotes the transverse displacement, \j/x and i/^ denote 
the rotations of a transverse normal about the y and x axes, 
respectively, q is the distributed transverse load, while Ay (ij 
= 4, 5) and Z>,y (/, j = 1 , 2 , 6 ) denote the transverse shear and 
bending rigidities, respectively. 

The Solution Procedure 

The Levy method of solution is applicable to rectangular 
plates with two opposite edges simply supported and the re­
maining ones having arbitrary boundary conditions. The 
method reduces the partial differential equations to ordinary 
ones. The plate edges x = 0, a are considered simply sup­
ported (SS) while the other two edges (y = ± b/2) have ar­
bitrary edge conditions. 
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Fig. 1 Nondimensionalized center deflection versus side to thickness 
ratio of orthotropic plates under uniformly distributed, q0 

here in conjunction with the state-space concept. The analysis 
concerns the solution of the first-order transverse shear defor­
mation theory of symmetrically laminated rectangular plates 
with two opposite edges simply supported and the remaining 
edges subjected to a combination of free, simply supported, 
and clamped boundary conditions. 

Governing Equations 

Consider a rectangular (axb) laminated plate composed of 
Northotropic layers, symmetrically located with respect to the 
midplane of the laminate. For such symmetric composite flat 
plates the stretching and bending states of stress are uncou­
pled. The equations governing the transverse bending are 
given by (Reddy, 1984) 
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Closed-form solutions for the bending case of the classical 
laminated plate theory and the first-order shear deformation 
theory were developed by Whitney and Leissa (1969), Whitney 
and Pagano (1970), Bert and Chen (1978), and Reddy and 
Chao (1981) for two types of simply supported boundary con­
ditions and certain lamination schemes (Reddy, 1984). These 
served as excellent references for comparison by numerical 
analysis (Reddy, 1980). Such closed-form solutions of the 
first-order shear deformation theory for composite laminates 
with other types of boundary conditions are not reported in 
the literature. The present study deals with the development of 
Levy-type solutions originated by Levy (1899) and approached 
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Here w denotes the transverse displacement, \j/x and i/^ denote 
the rotations of a transverse normal about the y and x axes, 
respectively, q is the distributed transverse load, while Ay (ij 
= 4, 5) and Z>,y (/, j = 1 , 2 , 6 ) denote the transverse shear and 
bending rigidities, respectively. 

The Solution Procedure 

The Levy method of solution is applicable to rectangular 
plates with two opposite edges simply supported and the re­
maining ones having arbitrary boundary conditions. The 
method reduces the partial differential equations to ordinary 
ones. The plate edges x = 0, a are considered simply sup­
ported (SS) while the other two edges (y = ± b/2) have ar­
bitrary edge conditions. 
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Fig. 2 Nondimensionalized center deflection versus side to thickness 
ratio of cross-ply (0/90/0) laminates (a/b = 1) under uniformly distributed 
transverse load, q0 

An adequate form of solution to equations (1) that satisfies 
the boundary conditions w = 0; Mx = 0; ypy = 0 on edges x = 
0, a is: 

E mirx 
Wm(y)sm 

m=l a 

Y^ rnirx 
i>x(x>y) = Li X,„(y)cos 

m = l a 

x^ mirx 
ty(x,y)= Li Ym(y)s™ 

m=\ a 

i n ~ , . ""fjc 
q(x,y) = Li Qm 0 0 sin 

m = l a 

Substituting equations (2) into equations (1), we obtain 

W"m = c, Wm + c2X,„ + c3 Y,'„ + c0Qm 

X;;,=C4W,„ + c5Xm+c6Y;„ 

Y'm = C7 W'm + C$Xf„ + C9 Ym 

where 

1 n 2 A » 

(2) 

(3) 

--Cy/a, 

1 , CA = a • 
D* 

A55+a2Du (Dl2+D66) 

D* -, c6=-a 

Ad D„ 

D66 

Au + a2D66 

Dr 
(4) 

and a = mis/a while the primes on the variables indicate dif­
ferentiation with respect to y. 

The ordinary differential equations in equation (3) will be 
solved by using the "state-space concept" (Franklin, 1968). 
As per this method, we define the (state) variables, 
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Fig. 3 Nondimensionalized center normal stress versus side to 
thickness ratio for orthotropic plates (alb = 1) under uniformly 
distributed transverse load, q 0 

Z, — Wm, Z2 - W,'„, Z3 —Xm, Z4 -X'm, 

and rewrite equations (3) in the form, 

Z ' =AZ + r 
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The solution of equation (6) is given by 

Z(y)=eA>'K + eA>'\e-Alirdri (8) 

where K is the vector of integration constants, determined 
from the boundary conditions. The operator e*y can be ex­
pressed in terms of the matrix of eigenvectors [C] and distinct 
eigenvalues A,- (/ = 1,2, . . . ,6) associated with the matrix^4: 

e^ 0 

pAy . [Q 

0 

ety [Q (9) 

At this point we consider various boundary conditions on 
the remaining two edges (i.e., edges parallel to the x axis). For 
free, simply supported and clamped edges (on edges y = ± 
b/2), we have the following boundary conditions: 

Free (F): My = Qy=Mxy=0 

Simply Supported (S): 

Clamped (C): 

--My=0 (10) 

Numerical Solutions 
A numerical illustration of the solution procedure for two 
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Fig. A Nondimensionalized center normal stress versus side to 
thickness ratio of cross-ply (0/90/0) square (alb = 1) laminates under 
uniformly distributed transverse load, q 0 

cases, (a) a single layered orthotropic plate and (b) a three 
layered cross-ply composite plate, is considered. It is assumed 
that each layer has the following engineering constants used in 
the literature (Craig and Dawe, 1986): 

£\ =20.83 x 106 psi(143.6 GPa), E2 = 10.94 X 106 psi(75.4GPa), 

Gn = 6.10 x 106 psi(42.1 GPa), G13 = 3.71 x 106 psi(25.6 GPa), 

G23 = 6.19x 106 psi(42.7 GPa), vn = 0.44 

The designations SS, CC, FF, SC, SF, and CF will be referred 
to the edge conditions associated to the edges y = ± b/2 only. 

The numerical results presented in Figs. 1-4, indicate the ef­
fect of transverse shear deformation on the nondimensional­
ized transverse deflection, w [ = (w(«/2, Q)hiE2/q0a

A) X 102] 
and central normal stress, an [= (on(a/2, 0, h/2)h2/q0a) x 
10]. 

From these figures it is clear that the effect of transverse 
shear deformation is more pronounced on deflections than on 
stresses and that this effect is increasingly higher for boundary 
conditions SC, SS, CF, SF, and FF. It is also interesting to 
note that for certain boundary conditions (SC, SS, and SF) the 
shear deformation has the effect of decreasing the stresses for 
thick orthotropic and cross-ply laminates. 

Summary 
Levy type solutions of the first-order transverse shear defor­

mation theory of laminated orthotropic composite plates have 
been developed. The approach is based on the state-space con­
cept which allows one to treat, in a unified manner, various 
boundary conditions. The numerical examples illustrate the 
effect of transverse shear deformations on the transverse 
deflection and central normal stress as well as the influence of 
the various boundary conditions on the deflections and 
stresses. 

Diffusion in Hydromagnetic Oscillatory Flow 
Through a Porous Channel 

A. Ramachandra Rao20 and K. S. Deshikachar21 

Introduction 

It has been established that the axial dispersion of a con­
taminant through tubes of circular cross section under both 
steady (Taylor, 1953) and oscillatory (Watson, 1983) laminar 
flow conditions is considerably larger than in the absence of 
flow. Further, the dispersion in an oscillatory flow has been 
found to be comparable in magnitude to values found in 
Taylor diffusion under steady state conditions when the flow 
oscillation period is comparable with the radial diffusion of 
the contaminent but becomes much less efficient when the 
Womersley number is either very large or small. An analogous 
problem in heat conduction for an oscillatory flow in a chan­
nel has been studied by Kurzweg (1985) and an enhancement 
of effective diffusivity has been observed in the presence of 
oscillations. 

The studies of longitudinal dispersion in the flow in a 
parallel plate channel with permeable walls for hydrodynamic 
and hydromagnetic cases have been carried out by Eroshenko 
and Zaichik (1980) and Annapurna et al. (1985), respectively, 
highlighting the importance of these studies in practical situa­
tions. Here, we use Watson's (1983) exact analysis to study the 
dispersion of a solute matter in an oscillatory flow of an elec­
trically conducting fluid in a channel with porous walls in the 
presence of a transverse magnetic field. 

Formulation 

Consider the laminar oscillatory flow of an electrically con­
ducting, incompressible viscous fluid in a channel with porous 
walls situated at y = ± h with an x axis along the center line 
of the channel. The plates y = ± h are subjected to uniform 
injection and suction, respectively, with the same velocity v0 

and a uniform magnetic field B0 is applied perpendicular to 
the walls. The equations governing the unsteady flow under 
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found to be comparable in magnitude to values found in 
Taylor diffusion under steady state conditions when the flow 
oscillation period is comparable with the radial diffusion of 
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problem in heat conduction for an oscillatory flow in a chan­
nel has been studied by Kurzweg (1985) and an enhancement 
of effective diffusivity has been observed in the presence of 
oscillations. 

The studies of longitudinal dispersion in the flow in a 
parallel plate channel with permeable walls for hydrodynamic 
and hydromagnetic cases have been carried out by Eroshenko 
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highlighting the importance of these studies in practical situa­
tions. Here, we use Watson's (1983) exact analysis to study the 
dispersion of a solute matter in an oscillatory flow of an elec­
trically conducting fluid in a channel with porous walls in the 
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Formulation 

Consider the laminar oscillatory flow of an electrically con­
ducting, incompressible viscous fluid in a channel with porous 
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the usual magnetohydrodynamic approximations reduce to a 
single equation given by 

u, + v0uy = —px/p + vuxx — aB^u/p, (1) 

where u(x,t) is the x component of velocity, p is the density, p 
is the pressure, v is the kinematic coefficient of viscosity, a is 
the electrical conductivity, t is the time, and subscripts denote 
partial differentiation with respect to the variable. Here we 
have assumed that the magnetic Reynolds number is small. 

By taking px = — P cos oit and u = Re(f(y)e'w'), in equa­
tion (1), we get 

a2f/p + v0fy=P/p + vfyy, a2 = ia>p + oBi. (2) 

The no-slip boundary condition at the walls give / = 0. It is 
assumed that the diffusing substance is a passive contaminant 
for which the concentration is very small so that the physical 
properties of the fluid and the dif fusivity k of the contaminant 
are taken as constants. Further, the walls of the channel are 
impermeable for the contaminant. The govening equation and 
boundary conditions for the concentration 6(x, y, t) of the 
contaminant are given by 

d, + udx=k(6xx + eyy), dy = 0 at y=±h. (3) 

Equation (3) has an exact solution of the form, Taylor (1953), 
6 = —yx + yRe(g(y)eiul), where 7 is a constant and this on 
substitution in equation (3) gives 

iug-f=kgyy, gy=0 at y= ±h. 

Introducing nondimensional quantities: 

f=-Pa-2[F{V)-l], g = iPa-2[G(r,)-l], 

y = T)h, 

in equations (2) and (4), we get 

Fv„+RlFrl-a
2F=0, F=\ at i,= ± l . 

G„n=o2(G-F), G„=0 at , = ± 1 . 

(4) 

(5) 

(6) 

(7) 

where Rx = v0h/v (suction Reynolds number), a,2 = M2 + 
iWl, M2 = aBlh2/pv (Hartmann number), W0 = wh2/v 
(Womersley number), and of = io0Wo, a0 = v/k (Schmidt 
number). 

Exact Solution 

The solutions of equations (6) and (7) are given by 

F(rj) = [sinh f2•eh" +sinh ft -e~^] (8) 

G(ij) =Ale°ii +Ble~"i'> +A2e^" + B2e~^. (9) 

where 

f i = £o + >7o. f2 = ?o-1?o» 

£0 = tR2 + 4c.,2)1/2/2, Vo=R{/2, (10) 

Au A2, By, and B2 are known constants, the expressions of 
which are omitted for briefness. From equation (9), we 
observe that G = constant on the boundary walls. The effec­
tive diffusivity K in an oscillatory flow is (Watson, 1983) K = 
k{\ +R), where the relative increase in the flux R is given by 

eh 
SkhR-- (fg+fg)dy, (11) 

with bars denoting complex conjugates. Using equation (5) in 
equation (11), we obtain 

R = iP2o0(&vo)ct2c(-2)-] f (FG-FG+G-G-F+F)dri. 

(12) 

Substituting the values of F and G from equations (8) and (9) 
in equation (12), we have 

R = iP2a2h\2aiPv2Wa)-
2{P, - P , ) , (13) 

where P{ is a known complex constant, the expression of 
which is omitted for briefness. Following Watson (1983) the 
expression for tidal volume is 

V2=16P2h2Ql(u
2\a2\y (14) 

where 

Q, = l(2£0sinh f, sinh f2 -a2 sinh 2£0)/a,2 sinh2 £0 I
2. 

Now using equation (14) in equation (13), we get 

R = h-*V2H(Wa,M,R,°o), 

where 

H=Rh4 J/f 2 = CJ2(P1 -Px)/teQx. (15) 

Taking the limit Rx — 0 and Wx — 0, we observe that the 
above results coincide with the results presented by Watson 
(1983) for a plane channel. 
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Frequency Response of a Nonlinear 
Pneumatic System1 

H. M. Paynter2 and E. P. Fahrenthold.3 The writers note 
with great interest this work by the authors on an important 
gas compression process. However, we were also dismayed to 
find no citation of research on very similar systems conducted 
over a period of nearly two decades by David Otis and col­
leagues at the University of Wisconsin (Otis, 1970, 1974; Otis 
and Pourmovahed, 1985). Also the recent paper of Kagawa 
(1985) is of value to readers and investigators in this area. 

Unfortunately the authors' brief reference to Fluid Power 
Control (edited by Blackburn, Reethof, and Shearer, 1960) 
omitted mentioning that nearly thirty-five years ago Dr. 
Lowen Shearer and others at the M.I.T. Dynamic Analysis 
and Control Laboratory (DACL) employed shunt tank-
resistor mass transfer dampers to stabilize pneumatic ram 
positioning servos. The diagram on page 550 of this last cited 
reference is in fact strikingly similar to Fig. 1 of the authors' 
paper. This earlier system was built and tested, as well as 
analyzed from both linear and nonlinear viewpoints. The fact 
that Dr. Richard Booton, while at the DACL, extended 
Kochenberger's sinusoidal describing function linearization 
techniques to complete harmonic balance methods and to ran­
dom inputs as well, is a strong indication that the DACL 
employed nonlinear methods. 

Our own continuing concern with nonlinear pneumatic 
dynamics is indicated by some very recent papers (Paynter et 
al., 1987a, 1987b; Paynter and Fahrenthold, 1987). Based on 
the earlier efforts of Otis and coworkers, we have established 
that it is thermodynamically inconsistent to assume a 
polytropic exponent " n " without at the same time incor­
porating a conjugated dissipative, phase-shifted process. If the 
authors had in fact constructed and tested their system, this 
flaw in their model would have become quite apparent. 
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Authors' Closure 

The authors are familiar with the literature cited by the 
discussers; nevertheless, these references, along with some 
other related publications on pneumatic, hydraulic, and elec­
tromechanical systems, had to be excluded. The literature 
review included only those references most relevant to the 
main focus of the paper, which was on the construction of an 
approximate solution to the nonlinear orifice problem. In an 
earlier publication (Wang and Singh, ASME JOURNAL OF A P ­
PLIED MECHANICS, Vol. 53, pp. 956-958, Dec. 1986), a 
pneumatic chamber with nonlinearities due to compressibility 
and friction was analyzed using again the harmonic balance 
technique. 

Figure 1 was chosen as a generic example case, which could 
represent many physical systems including Shearer's research 
work on continuous motion control. To the best of the 
authors' knowledge, no one, including the researchers cited by 
the discussers, has analyzed the same fundamental problem 
using the same analytical tool. Hence, the authors' work is 
believed to supplement the available literature. 

The polytropic index employed in this paper essentially in­
dicates that the thermodynamic process is somewhere in the 
isothermal to isentropic regime. In many practical systems and 
components, it is closer to the isentropic index. The issue of 
using the polytropic model has also been addressed by Singh 
and his coworkers with application to a reciprocating com­
pressor (see, for instance, ASHRAE Transactions, Vol. 92, 
part 1, pp. 250-258, 1986). 

A Rate-Independent Constitutive Theory 
for Finite Inelastic Deformation4 

R. Hill5 and J. R. Rice.6 Hill (1968) showed that the 
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DISCUSSION/AUTHORS CLOSURE 

5r(S) = 5s«[ar(S)/as]s=St <o (2') 
remains valid with the same interpretation of SS, as pointing 
locally into the elastic domain from S„, as earlier. Also, since 
dpE = d(dpy)/8S at S = S t , one has 

limit[cPE/ IdK I] = [3r(S)/3S]s==Sji 

This shows that inequality (2') requires 

SS»[limit[^E/ltfKI])<0 (3') 

which clearly expresses normality. 
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Author's Closure 

The substance of the Discussion is my statement (Carroll, 
1987) that Hill and Rice (1973) did not prove that Il'yushin's 
postulate implies normality and that they did not claim to have 
done so. The Discussion clearly disposes of the latter claim, so 
that we can concentrate on the former. 

Apart from the issue of the starting point, discussed below, 
the debate is not about the validity of the result, rather it per­
tains to the validity of the proof by Hill and Rice. On p. 454 of 
their 1973 paper they established the inequality (1) in their 
Discussion, and its strain space counterpart, by considering 
finite cycles that involve a first order inelastic history dK, 
which is "accumulated at a state E^, say, on a yield surface, 
whereas the path starts from some finitely distant state E 
within the yield surface." I have changed the notation to con­
form with that in may 1987 paper and the Discussion, and the 
italics are mine. I argued that the inequality should not then be 
used in the limit E0—E t to obtain normality, because to do so 
would reduce the expression in (1) to second order and that se­
cond order terms were ignored in the derivation of (1). Rice 
and Hill correctly state that I tacitly assumed that the differen­
tials dK and 9E = E% - E 0 are of the same order. In view of the 
above quotation from their 1973 paper, and the fact that dif­
ferent orders of differentials are not mentioned there, I do not 
agree that my unhappiness was "self-generated." 

I have never been comfortable with differentials, except in 
the context of limiting values and linear relations. Hill and 
Rice (1973, p. 451) appear to share this view, to the extent that 
even though they state that dv<p is defined as the change in the 
function <j> (E, K) when K is changed to K + dK, so that 

G?"V = <P(E, K + dK) - Y>(E, K), 

it is clear that from the context (cf their equation (9)) that 
this equality holds only to first order, i.e., that dp<t> is really 
defined as the first order change in ip. (The same is true of the 
various relations indicated as identities in the Discussion.) For 
this reason, I am very uncomfortable with powers and pro­
ducts of differentials, and especially so with the notion of dif­
ferentials which are arbitrarily large compared with other 
differentials. 

The Discussion by Rice and Hill certainly clarifies the issue. 
My bias against this use of differentials, which the reader may 
or may not share, makes me still prefer the normality proof of 
Naghdi and Trapp (1975) and the shorter proof of Casey 
(1984), which are based on the evaluation of work integrals for 
limits of sequences of finite deformation cycles. 

With regard to the comment in the Discussion that the work 
assumption of Naghdi and Trapp (1975) is apparently the 

same as the Il'yushin postulate, I should mention that the dif­
ferences between the two are discussed in their 1975 paper and 
need not be repeated here. In essence, Naghdi and Trapp point 
out that the Il'yushin postulate is a condition on the integral of 
the stress power in a cycle of infinitesimal deformation, since 
this is the context of Ilyushin's (1961) paper, while the work 
assumption is a condition on the external work on a body in a 
cycle of finite homogeneous deformation, which is not 
necessarily quasistatic. 

I take this opportunity to comment on a remark in the In­
troduction of my 1987 paper to the effect that the theory 
presented there "is stable in the sense that the external work 
needed to carry a body through any closed cycle of deforma­
tion is nonnegative." This remark is misleading since it sug­
gests that the normality condition is sufficient to ensure non-
negative work. In fact it is not sufficient; further necessary 
conditions are set down by Naghdi and Trapp (1975) and by 
Casey (1984), for example, and I am not aware that sufficient 
conditions have been established. 
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A Composite Plate Theory for Arbitrary 
Laminate Configurations7 

Y. Y. Yu.8 The authors should be congratulated for hav­
ing made another contribution to the theory of laminated 
plates, by using Reissner's new mixed variational principle and 
by adopting simultaneously the assumptions of piecewise 
linear continuous displacements and quadratic transverse 
shear stress distributions. In doing so, they were rather modest 
in stating that their proposed theory possesses two main 
drawbacks: first, the number of equilibrium equations and 
edge boundary conditions increases with the number of layers; 
and second, no clear physical meaning seems to be associated 
with the coupled natural edge boundary conditions. These are 
actually characteristics of a layered-plate theory derived by 
assuming piecewise linear continuous displacements and, as 
such, are inherent with the mathematical modeling of the 
physical system. In this case the laminated plate is a physical 
system whose components are the individual laminates. 
Although the system is recognized as being intrinsically more 
complex than its components, we would still like to formulate 
mathematical theories for treating laminated plates in the 
same manner as we have always treated single-layered plates. 
Of course this is not always possible, unless we are willing to 
compromise and accept oversimplified theories. 

Indeed, the above characteristics of the laminated plate 
theory need not be drawbacks. In vibration analysis, as the 
number of equations of motion (and edge boundary condi­
tions) increases with the number of layers, the theory may just 
provide the proper ingredients that are needed to analyze the 
modes and to cover the frequency range adequately, as has 
been demonstrated in the past. 

7By A. Toledano and H. Murakami and published in the March, 1987, issue 
of the ASME JOURNAL OF APPLIED MECHANICS, Vol. 54, pp. 181-189. 

8 Professor of Mechanical Engineering, New Jersey Institute of Technology, 
Newark, NJ 07102. Fellow ASME. 
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